Неопределенный интеграл в дифференциальном уравнении

Методы интегрирования неопределенного интеграла с примерами решения

Содержание:

При решении многих практических задач таких, как вычисление длин линий, площадей, отыскание траекторий движения и других, вводится понятие интегрирования.

Определения

Определение: Первообразной функции

Теорема: (о существовании первообразной) Если функция f(x) непрерывна на сегменте то на этом интервале существует первообразная этой функции.

Теорема: Если F(x) — первообразная функции f(х), то функция F(x) + C (С -произвольная постоянная) также является первообразной функции f(х).

Доказательство:

ТЗ. Если и первообразные функции f(х), то они отличаются друг от друга на постоянную величину.

Доказательство: Пусть Введем в рассмотрение вспомогательную функцию и рассмотрим эту функцию на открытом интервале По теореме Лагранжа для любого интервала выполняется равенство По условию теоремы следовательно, . В силу произвольности точек полученное равенство выполняется для всего исследуемого интервала. Это означает, что откуда и вытекает утверждение теоремы.

Пример:

Пусть дана функция Найти первообразную этой функции.

Решение:

В случае наличия двух первообразных показать, что они отличаются на постоянную величину.

Для функции существуют две первообразные Их разность

Определение: Совокупность всех первообразных функции называется неопределенным интегралом и обозначается — переменная интегрирования, — подынтегральная функция, — подынтегральное выражение.

На основании теорем можно записать, что

Определение: Отыскание всех первообразных называется неопределенным интегрированием.

Выясним геометрический смысл неопределенного интеграла. Пусть дана функция и требуется найти такую кривую y = F(x), для которой в каждой ее точке тангенс угла наклона касательной равен значению функции f(х) в этой точке. Такой линией будет кривая, для которой F’(x) = f(х). Таким образом, неопределенный интеграл определяет все кривые, у которых тангенс угла наклона в каждой ее точке совпадает со значением функции f(х).

Пример:

Построить кривые, которые задаются неопределенным интегралом

Решение:

Первообразной для под интегральной функции f(х) = 2х будет функция следовательно, Построим эти кривые (Рис. 1):

Рис. 1. Интегральные кривые

Свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна под интегральной функции

Доказательство: По определению неопределенного интеграла

2. Дифференциал неопределенного интеграла равен под интегральному выра- жению

Доказательство: По определению дифференциала от неопределенного интеграла имеем

3. Если под интегральное выражение является дифференциалом некоторой функции F(x), тo неопределенный интеграл равен

Доказательство: Так как

4. Неопределенный интеграл от линейной комбинации функций равен той же самой линейной комбинации неопределенных интегралов от этих функций

  • а) неопределенный интеграл от суммы (разности) функций равен сумме (разности) неопределенных интегралов от этих функций
  • б) постоянный множитель можно выносить за знак неопределенного интеграла

5. Формула неопределенного интеграла не зависит от обозначения переменной интегрирования

Таблица основных неопределенных интегралов

Методы интегрирования

Метод тождественных преобразований под интегральной функции

Данный метод основан на использовании простых приемов, алгебраических и тригонометрических формул, свойств подынтегральной функции, разложения полиномов на простые множители и свойств неопределенного интеграла. Рассмотрим этот метод на конкретных примерах.

1. Почленное деление числителя дроби на ее знаменатель

Замечание: Следует запомнить, что нет формулы почленного деления знаменателя дроби на ее числитель, т.е.

Пример:

Найти

Решение:

Выполним в под интегральной функции почленное деление числителя дроби на ее знаменатель и воспользуемся свойством линейности неопределенного интеграла

Замечание: Из этого примера видно, что слова «найти неопределенный интеграл” означают: за счет преобразований подынтегральной функции и использования свойств неопределенного интеграла данный интеграл надо привести к совокупности табличных интегралов и воспользоваться этой таблицей.

Замечание: Из примера также видно, что, несмотря на наличие двух табличных интегралов, константа интегрирования С пишется один раз, так как сумма или разность постоянных интегрирования все равно есть постоянная величина.

2. Использование противоположных арифметических операций (например, сложение-вычитание).

Пример:

Найти

Решение:

Анализ под интегральной функции показывает, что в числитель дроби надо добавить и вычесть 1 (при этом подынтегральная функция не изменится), а затем воспользоваться первым приемом (почленное деление числителя дроби на ее знаменатель)

3. Использование алгебраических и тригонометрических формул, например,

и других формул.

Пример:

Найти

Решение:

Воспользуемся формулой квадрата разности

Пример:

Найти

Решение:

4. Использование свойств функций, например,

Пример:

Вычислить

Решение:

Пример:

Вычислить

Решение:

5. Использование разложения полиномов на простые множители, например, , где и корни уравнения

Пример:

Найти

Решение:

По теореме Виета уравнение имеет корни следовательно, разложение квадратичного полинома на простые множители имеет вид: Подставим полученное выражение в подынтегральную функцию, получим

Метод замены переменной интегрирования

Данный метод основан на формуле

Метод замены переменной интегрирования применяется в двух случаях:

а) Если аргумент функции отличается от простого аргумента х, то этот сложный аргумент принимается в качестве новой переменной интегрирования t.

Пример:

Вычислить

Решение:

Так как показатель степени экспоненты отличается от простого аргумента х, то этот показатель степени принимаем в качестве новой переменной интегрирования, т.е.

Замечание: После нахождения первообразной с новой переменной интегрирования надо обязательно вернуться к старой переменной интегрирования.

Пример:

Вычислить

Решение:

Выражение, стоящее в круглых скобках, является аргументом степенной функции и отличается от простого аргумента х, поэтому принимаем его в качестве новой переменной интегрирования, т.е.

Пример:

Вычислить

Решение:

Выражение, стоящее в круглых скобках, является аргументом функции синус и отличается от простого аргумента х, поэтому принимаем его в качестве новой переменной интегрирования, т.е. б) Если элементарная функция, содержащаяся в подынтегральном выражении, имеет простой аргумент и в качестве множителя при dx присутствует первая производная этой функции, то в качестве новой переменной интегрирования принимается элементарная функция.

Пример:

Найти

Решение:

В подынтегральном выражении содержится элементарная функция tgx и в качестве множителя при dx присутствует ее первая производная следовательно, в качестве новой переменной интегрирования принимаем /gx:

Пример:

Найти

Решение:

Данный пример объединяет первый метод с методом замены переменной интегрирования. Выполним почленное деление числителя дроби на ее знаменатель и разобьем интеграл на два интеграла, для которых применяются два случая замены переменной интегрирования

Замечание: Умение отыскивать подходящую замену вырабатывается в процессе многократных упражнений, однако можно указать ряд случаев, когда можно сразу увидеть необходимую замену переменной интегрирования при анализе подынтегрального выражения, например, Из показанных примеров видно, что умение хорошо интегрировать зависит от хорошего знания таблицы производных от элементарных функций (см. Лекцию № 17 из Первого семестра).

Метод интегрирования по частям

Интегрирование по частям основано на использовании формулы дифференциала от произведения двух функций откуда находим, что произведение

Таким образом, для неопределенного интеграла формула интегрирования по частям имеет вид:

Для того чтобы знать, какую из функций принимать за U (все остальное в подынтегральном выражении принимается за dV), рассмотрим наиболее часто встречающиеся случаи:

1. — полином (многочлен) порядка n.

В этом случае

Замечание: Для нахождения функции dU используют определение дифференциала функции. При вычислении функции V интегрируют выражение dV, при этом постоянная интегрирования полагается равной нулю (С = 0). После выполнения этих действий применяют формулу интегрирования по частям.

Пример:

Вычислить

Решение:

Применим метод интегрирования по частям

Замечание: Из приведенного примера видно, что при необходимости метод интегрирования по частям применяется повторно.

2. Для интегралов вида

Пример:

Вычислить

Решение:

Действуя согласно методике, получим

3. Для интегралов вида которые называются возвратными, на первом шаге интегрирования безразлично, какую из функций (показательную или тригонометрическую ) принимать в качестве функции U. Однако на втором шаге в качестве функции U надо обязательно принимать ту из функций (показательную или тригонометрическую ), которая была принята на первом шаге, в противном случае интеграл возвращается к своему исходному виду при отсутствии проинтегрированной части.

Пример:

Найти

Решение:

(если сейчас в качестве функции U выбрать экспоненту, то интеграл вернется к своему первоначальному виду при отсутствии проинтегрированной части; убедитесь в этом самостоятельно)

Решим полученное уравнение относительно буквы Отсюда находим, что

4. Нестандартные интегралы требуют для своего вычисления приобретения опыта на практических занятиях.

Пример:

Найти

Решение:

Неопределенный интеграл

Определение 1. Пусть Δ − промежуток действительной оси. Функция y=F(x) называется первообразной для функции y=f(x) на промежутке Δ, если F(x) − дифференцируема на Δ и (1)

Пример:

а) F(x)=x − первообразная для
б) − первообразная для − на любом промежутке из области определения функции f(x).
в) − первообразная для Действительно,
− на любом промежутке, не содержащем точку 0.

Замечание. Первообразная функция определена не однозначно. А именно,
F(x) = x+C , где С – любая константа также будет первообразной для
В общем случае верна теорема:

Теорема 1. Две дифференцируемые на промежутке Δ функции и будут первообразными для одной и той же функции y=f(x) тогда и только тогда, когда

. Докажем, что они отличаются на константу. Пусть

Тогда Пусть
По теореме Лагранжа (теорема 4 § 12):

Достаточность. Обозначим
Тогда то есть — первообразные
для одной и той же функции y=f(x), что и требовалось доказать.

Определение 2. Множество всех первообразных для функции y=f(x) на промежутке Δ называется неопределенным интегралом от функции f(x) и обозначается
Если F(x) — одна из первообразных, то , согласно теореме 1, (2)

Свойства неопределенного интеграла

  1. Если ( ) F x — дифференцируема на Δ , то (3) или
  2. (4) здесь под записью подразумеваем одну из первообразных.
  3. Если f (x) имеет первообразную на Δ, то λf(x) также имеет первообразную на Δ и ,если λ ≠ 0, то (5)
  4. Если имеют первообразную на Δ , тогда также имеет первообразную на Δ и: (6)

Свойства 1 – 4 легко выводятся из определения первообразной и интеграла
и соответствующих свойств производной.
Докажем, например, свойство 3.

Пусть F (x) — первообразная для f (x) на промежутке Δ. Тогда , то есть λF(x) — первообразная для λf(x) ⇒
что и требовалось доказать.

Из определений 1,2 следует, что интегрирование – действие обратное
дифференцированию (находится функция, производная которой равна данной).

Таблица интегралов

При вычислении интегралов в простых случаях применяют свойства 1 – 4.

Пример:


Пример:

Теорема 1. Если y=f(x) — непрерывна на промежутке Δ , то для нее ∃ первообразная функция y = F(x) на этом промежутке.

Замена переменной в неопределенном интеграле

Теорема 1. Пусть функция y = F(t) — первообразная для функции y = f(t) на промежутке то есть Пусть — дифференцируема на промежутке . Тогда — первообразная для
то есть (1)
Доказательство. что и требовалось доказать.
Замечание. Формулу (1) можно переписать в виде(2)
формула интегрирования с помощью подстановки или в виде:
(3)
Формула интегрирования с помощью поднесения под дифференциал, когда
подынтегральную функцию ⋅ записывают в виде ,
занося под дифференциал.

Пример:

Пример:

Пример:


При поднесении под дифференциал можно использовать свойства
дифференциала (см. § 6) где с – константа.

Пример:

Пример:

Пример:

Иногда в формуле (2) легче вычислять левую часть, чем правую:
(5)
Формула (5) – формула интегрирования с помощью замены переменной ; при этом — обратная функция.

Пример:

Интегрирование по частям в неопределенном интеграле

Теорема 1. Пусть функция u(x) и v(x) – дифференцируемы на промежутке Δ и на этом промежутке Тогда на этом промежутке
∃ и (1) формула интегрирования по частям.
Доказательство. (см. § 6). (по свойству 1 § 18), ∫vdu существует по условию теоремы, поэтому ∫udv — существует и

Пример:

Пример:

Замечание.

  1. При интегрировании выражений вида:— многочлен степени n полагают: После интегрирования по частям степень многочлена уменьшается на 1 (см. пример 1).
  2. При интегрирования выражений вида:полагают: (— многочлен). После интегрирования по частям интеграл упрощается.

Пример:

Пример:

Таким образом, проинтегрировав дважды по частям, получили уравнение,
содержащее в правой и левой части. Решив его, получим:

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Определённый интеграл
  • Кратный интеграл
  • Ряды в математике
  • Дифференциальные уравнения с примерами
  • Дифференциальное исчисление функций одной переменной
  • Исследование функции
  • Пространство R»
  • Неопределённый интеграл

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Неопределенный интеграл в дифференциальном уравнении

pdf Лекция 1 . Первообразная и ее свойства. Неопределенный интеграл, его свойства, связь с дифференциалом. Таблица основных неопределенных интегралов.

pdf Лекция 2 . Интегрирование подстановкой и заменой переменной. Интегрирование по частям. Интегрирование выражений, содержащих квадратный трехчлен.

pdf Лекция 3 . Рациональные дроби. Разложение правильной рациональной дроби на сумму простейших (без д-ва). Интегрирование простейших дробей. Интегрирование правильных и неправильных рациональных дробей.

pdf Лекция 4 . Интегрирование выражений, рационально зависимых от тригонометрических функций. Интегрирование иррациональных функций. Примеры интегралов, не выражающихся через элементарные функции.

pdf Лекции 5-6 . Определенный интеграл как предел интегральных сумм. Теорема об интегрируемости кусочнонепрерывной функции (без д-ва). Геометрическая интерпретация определенного интеграла. Основные свойства определенного интеграла. Теоремы об оценке и о среднем значении.

pdf Лекция 7 . Определенный интеграл с переменным верхним пределом и теорема о его производной. Формула Ньютона-Лейбница. Вычисление определенных интегралов подстановкой и по частям. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат.

Модуль 2 — «Приложения определенного интеграла»

pdf Лекция 8 . Несобственные интегралы по бесконечному промежутку (1-го рода). Несобственные интегралы от неограниченных функций на отрезке (2-го рода). Признаки сходимости несобственных интегралов. Абсолютная и условная сходимости. Несобственные интегралы с несколькими особенностями.

pdf Лекции 9-10 . Признаки сходимости несобственных интегралов. Абсолютная и условная сходимости. Несобственные интегралы с несколькими особенностями.

pdf Лекция 11 . Вычисление площадей плоских фигур, ограниченных кривыми, заданными в декартовых координатах, параметрическии и в полярных координатах.

pdf Лекции 12-13 . Вычисление объемов тел по площадям поперечных сечений и объемов тел вращения. Вычисление длины дуги и площади поверхности вращения. Метод Симпсона приближенного вычисления определенного интеграла.

Модуль 3 — «ОДУ первого порядка»

pdf Лекция 14 . Задачи, приводящие к дифференциальным уравнениям. Дифференциальное уравнение первого порядка, его решения. Частные и общие решения. Интегральные кривые. Понятие частной производной функции нескольких переменных. Задача Коши для дифференциального уравнения первого порядка. Теорема Коши о существовании решения дифференциального уравнения.

pdf Лекция 15 . Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных, линейных, Бернулли.

pdf Лекция 16 . Геометрическая интерпретация дифференциального уравнения первого порядка. Изоклины. Геометрическое решение дифференциальных уравнений с помощью изоклин. Особые точки и особые решения дифференциального уравнения первого порядка.

pdf Лекция 17 . Дифференциальные уравнения n-го порядка. Частные и общие решения. Задача Коши и ее геометрическая интерпретация (n=2). Теорема Коши о существовании и единственности решения дифференциального уравнения (без док-ва). Краевая задача. Понижение порядка некоторых типов дифференциальных уравнений n-го порядка.

Модуль 4 — «ОДУ высших порядков»

pdf Лекции 18-19 . Линейные дифференциальные уравнения n-го порядка, однородные и неоднородные. Теорема существования и единственности решения. Дифференциальный оператор L[y], его свойства. Линейное пространство решений однородного линейного дифференциального уравнения. Линейная зависимость и независимость системы функций на промежутке. Определитель Вронского (вронскиан). Теорема о вронскиане системы линейно независимых решений однородного линейного дифференциального уравнения. Теорема о структуре общего решения однородного линейного дифференциального уравнения. Размерность пространства решений однородного линейного дифференциального уравнения. Фундаментальная система решений однородного линейного дифференциального уравнения. Формула Остроградского-Лиувилля и ее следствия. Понижение порядка однородного линейного уравнения (при известном частном решении).

pdf Лекции 20-21 . Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение линейного однородного дифференциального уравнения. Построение общего решения по корням характеристического уравнения (вывод для n=2). Линейные неоднородные дифференциальные уравнения. Структура общего решения линейного неоднородного дифференциального уравнения. Теорема о наложении частных решений. Метод Лагранжа вариации постоянных (вывод для n=2). Структура частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида.

pdf Лекция 22 . Нормальные системы дифференциальных уравнений. Автономные системы дифференциальных уравнений. Фазовое пространство и фазовые траектории. Задача и теорема Коши. Частные и общее решения. Сведение дифференциального уравнения высшего порядка к нормальной системе дифференциальных уравнений первого порядка. Сведение нормальной системы к дифференциальному уравнению высшего порядка (вывод для n=2). Первые интегралы системы. Понижение порядка системы дифференциальных уравнений при помощи первых интегралов. Интегрируемые комбинации. Симметрическая форма записи нормальной автономной системы дифференциальных уравнений.

pdf Лекция 23 . Системы линейных дифференциальных уравнений первого порядка. Определитель Вронского. Фундаментальная система решений. Формула Остроградского-Лиувилля. Теоремы о структуре общего решения однородной и неоднородной систем линейных дифференциальных уравнений. Метод вариации произвольных постоянных.

pdf Лекция 24 . Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами. Характеристическое уравнение системы. Построение общего решения по корням характеристического уравнения (вывод только для случая действительных и различных корней).

Интегралы Дифференциальные уравнения — реферат

Основные вопросы лекции: первообразная; неопределенный интеграл, его свойства; таблица интегралов; методы интегрирования: разложение, замена переменной, по частям; интегрирование рациональных функций; интегрирование иррациональностей и выражений, содержащих тригонометрические функции, задачи, приводящие к понятию определенного интеграла; интегральная сумма; понятие определенного интеграла, его свойства; определенный интеграл как функция верхнего предела; формула Ньютона Лейбница; применение определенного интеграла к вычислению площадей плоских фигур; вычисление объемов тел и длин дуг кривых; несобственные интегралы с бесконечными пределами и от неограниченных функций, основные понятия дифференциальных уравнений; задача Коши; дифференциальные уравнения с разделяющимися переменными; однородные дифференциальные уравнения 1-го порядка; линейные дифференциальные уравнения 1-го порядка, дифференциальные уравнения 2-го порядка, допускающие понижение порядка; линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами: однородные и неоднородные.

Функция называется первообразной для функции на промежутке , если в любой точке этого промежутка .

Теорема. Если и – первообразные для функции на некотором промежутке , то найдется такое число , что будет справедливо равенство

= + .

Множество всех первообразных для функции на промежутке называется неопределенным интегралом от функции и обозначается . Таким образом,

= + .

Свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна подынтегральной функции, то есть

.

2. Дифференциал неопределенного интеграла равен подынтегральному выражению, то есть

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть

,

где – произвольное число.

4. Постоянный множитель можно выносить за знак интеграла, то есть

5. Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, то есть

.

Метод замены переменной

,

где – функция, дифференцируемая на рассматриваемом промежутке.

Метод интегрирования по частям

,

где и – дифференцируемые функции.

Интегрирование рациональных дробей. Простейшими дробями называют дроби вида

и ,

причем квадратный трехчлен не имеет действительных корней.

Рациональную функцию можно разложить в сумму простейших дробей, причем в знаменателе этих дробей могут быть и степени от выражения стоящего в знаменателе.

Для интегралов вида делают замену , а для интегралов в общем случае используются подстановки Эйлера.

При интегрировании тригонометрических выражений в общем случае используется замена переменной , где .

Талица основных интегралов.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Пусть на отрезке задана функция . Разобьем отрезок на элементарных отрезков точками . На каждом отрезке разбиения выберем некоторую точку и положим , где . Сумму вида

(1)

будем называть интегральной суммой для функции .на . Для избранного разбиения отрезка на части обозначим через максимальную из длин отрезков , где .

Пусть предел интегральной суммы при стремлении к нулю существует, конечен и не зависит от способа выбора точек и точек . Тогда этот предел называется определенным интегралом от функции на , обозначается , а сама функция называется интегрируемой на отрезке , то есть

= .

Экономический смысл интеграла. Если – производительность труда в момент времени , то есть объем выпускаемой продукции за промежуток . Величина и объем продукции, произведенной за промежуток времени , численно равна площади под графиком функции , описывающей изменение производительности труда с течением времени, на промежутке или .

Достаточное условие существования интеграла. Теорема. Если непрерывна на отрезке , то она интегрируема на этом отрезке.

Свойства определенного интеграла.

1. Постоянный множитель можно выносить за знак интеграла, то есть

,

где – некоторое число.

2. Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, то есть

.

3. Если отрезок интегрирования разбит на части, то интеграл на всем отрезке равен сумме интегралов для каждой из возникших частей, то есть при любых

4. Если на отрезке , где , , то и

.

Следствие. Пусть на отрезке , где , , где и – некоторые числа. Тогда

.

Теорема о среднем. Если функция непрерывна на отрезке , где , то найдется такое значение , что

.

Теорема. Пусть функция непрерывна на отрезке и – любая первообразная для на . Тогда определенный интеграл от функции на равен приращению первообразной на на этом отрезке, то есть

Эта формула называется формулой Ньютона – Лейбница.

Теорема. Пусть функция имеет непрерывную производную на отрезке , и функция непрерывна в каждой точке вида , где .

Тогда имеет место равенство

= .

Эта формула носит название формулы замены переменной в определенном интеграле.

Теорема. Пусть функции и имеют непрерывные производные на отрезке . Тогда

.

Эта формула называется формулой интегрирования по частям.

Теорема. Пусть на отрезке заданы непрерывные функции и такие, что . Тогда площадь фигуры, заключенной между кривыми и , на отрезке вычисляется по формуле

Пусть на отрезке задана непрерывная знакопостоянная функция . Тогда объем тела, образованного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями , и находится по формуле

.

Дифференциальным уравнением называется уравнение, связывающее искомую функцию одной или нескольких переменных, эти переменные и производные различных порядков данной функции.

Дифференциальное уравнение го порядка называется разрешенным относительно старшей производной, если оно имеет вид

.

Решением дифференциального уравнение называется такая функция , которая при подстановке ее в это уравнение обращает его тождество.

Общим решением дифференциального уравнения го порядка называется такое его решение

,

которое является функцией переменных и произвольных независимых постоянных .

Частным решением дифференциального уравнения называется решение, получаемое из общего решения при некоторых конкретных числовых значениях постоянных .

Теорема. Пусть в дифференциальном уравнении

(1)

функция и ее частная производная непрерывны на открытом множестве координатной плоскости. Тогда

1. Для любой точки множества найдется решение уравнения (1), удовлетворяющее условию .

2. Если два решения и уравнения (1) совпадают хотя бы для одного значения , то эти решения совпадают для всех тех значений переменной , для которых они определены.

Дифференциальное уравнение (1) первого порядка называется неполным, если функция явно зависит либо только от , либо только от .

Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если оно может быть представлено в виде

,

где , , – некоторые функции переменной ; – функции переменной .

Дифференциальное уравнение первого порядка называется линейным, если оно имеет вид

,

где и – некоторые (непрерывные) функции переменной .

В случае, когда функция тождественно равна нулю, уравнение называется однородным, в противном случае – неоднородным.

Линейное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет вид

, (2)

где – некоторые действительные числа, – некоторая функция.

Если , то уравнение

(3)

называется однородным, в противном случае при уравнение (2) называется неоднородным.

Теорема. Если и – линейно независимые частные решения уравнения (3), то общее решение этого уравнения является линейной комбинацией этих частных решений, то есть имеет вид

,

Для некоторых действительных чисел и .

(4)

называется характеристическим уравнением уравнения (3).

1. Пусть характеристическое уравнение (4) имеет действительные корни , причем . Тогда общее решение уравнения (3) имеет вид

,

где и – некоторые числа.

2. Если характеристическое уравнение (4) имеет один корень (кратности 2), то общее уравнения (3) имеет вид

,

где и – некоторые числа.

3. Если характеристическое уравнение (4) не имеет действительных корней, то общее решение уравнения (3) имеет вид

,

где , , и – некоторые числа.

Теорема. Общее решение линейного неоднородного дифференциального уравнения (2) равно сумме общего решения соответствующего однородного уравнения (3) и частного решения исходного неоднородного уравнения (2).

Числовым рядом называется выражение вида

(1)

Числа называются членами ряда, а член — общим членом ряда.

Сумма первых членов ряда называется – й частичной суммой ряда.

Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, то есть

Число называется суммой ряда.

Свойства сходящихся рядов.

1. Если ряд (1) сходится и имеет сумму , то и ряд полученный умножением данного ряда на число также сходится и имеет сумму .

(2)

сходятся и их суммы соответственно равны и , то и ряд представляющий сумму данных рядов также сходится, и его сумма равна .

3. Если ряд сходится, то сходится и ряд, полученный из данного путем отбрасывания или приписывания конечного числа членов.

Теорема (необходимый признак сходимости) Если ряд сходится, то предел его общего члена стремится к нулю, то есть

.

Теорема (признак сравнения). Пусть (1) и (2) – ряды с положительными членами, причем члены первого ряда не превосходят членов второго, то есть при любом

.

Тогда а) если сходится ряд (2), то сходится и ряд (1)

б) если расходится ряд (1), то расходится и ряд (2).

Теорема (предельный признак сравнения). Пусть (1) и (2) – ряды с положительными членами и существует конечный предел отношения их общих членов , то ряды одновременно сходятся, либо расходятся.

Теорема (признак Даламбера). Пусть дан ряд (1) с положительными членами и существует предел

.

Тогда, если , то ряд сходится; если , то ряд расходится; если , то вопрос о сходимости ряда остается нерешенным.

Ряды с членами произвольного знака

Знакочередующиеся ряды. Под знакочередующимся рядом понимается ряд в котором члены попеременно то положительны то отрицательны

Теорема. (Признак Лейбница). Если члены знакочередующегося ряда убывают по абсолютной величине и предел его общего члена при равен нулю, ряд сходится, а его сумма не превосходит первого члена.

Если ряд, составленный из абсолютных величин членов данного ряда (1) сходится, то сходится и данный ряд.

Ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Ряд называется абсолютно сходящимся, если сходится как сам ряд, так и ряд, составленный из абсолютных величин его членов.

Степенным рядом называется ряд вида

(3)

Совокупность тех значений , при которых степенной ряд (3) сходится, называется областью сходимости степенного ряда.

Теорема Абеля. 1). Если степенной ряд сходится при значении (отличном от нуля), то он сходится и, притом абсолютно, при всех значениях таких, что . 2). Если степенной ряд расходится при , то он расходится при всех значениях таких, что .

1. ,

2. .

Тогда областью сходимости степенного ряда будет интервал .

На любом отрезке , целиком принадлежащем интервалу сходимости , функция является непрерывной, а следовательно, степенной ряд можно почленно интегрировать на этом отрезке.

Кроме того, в интервале сходимости степенной ряд можно почленно дифференцировать. При этом после интегрирования или дифференцирования полученные ряды имеют тот же радиус сходимости .

Имеют место следующие разложения элементарных функций.

Основные вопросы лекции: случайные события; случайные величины, описательный подход к понятию случайной величины, дискретные случайные величины, случайные величины общего вида, функция распределения, распределение случайных величиныи числовые характеристики.

Числовые характеристики случайных величин

Рассмотрим основные характеристики дискретной случайной величины при конечном числе значений.

Каждому значению дискретной случайной величины отвечает его вероятность. Как отмечалось выше, последовательность таких пар образует ряд распределения дискретной случайной величины:

где , , i= 1,…, n, .

Если случайная дискретная величина является случайной альтернативной величиной, т.е. задается двумя значениями 0 и 1 и соответствующими им вероятностями исходов q = 1 – ри р, то ряд распределения принимает форму:

,

где 0 ≤ p ≤ 1, p + q = 1.

На основе ряда распределения можно определить среднее значение случайной дискретной величины как меру, которая объединяет значения случайной дискретной величины и их вероятности. Среднее значение есть взвешенная средняя всех возможных значений случайной величины, роль весов (частот) играют вероятности.

Ожидаемое среднее значение случайной величины называется математическим ожиданием М(Х) (оценкой, которую ожидают получить).

Математическое ожидание случайной дискретной величины X (т.е. принимающей только конечное или счетное множество значений x1, x2,…, хп соответственно с вероятностями р1, p2,…, рп) равно сумме произведений значений случайной величины на соответствующие им вероятности:

. (1)

Свойства математического ожидания случайной дискретной величины

Математическое ожидание случайной дискретной величины обладает следующими свойствами:

где С – постоянная величина.

где С – постоянная величина.

3. М (Х1 ± Х2 ±…± Хn) = М(Х1) ± М(Х2) ±…± М(Хn). (2)

4. Для конечного числа пнезависимых случайных величин:

М (Х1∙ Х2∙…∙Хn)= М(Х1) ∙М(Х2) ∙…∙М(Хn). (3)

Следствие. Математическое ожидание отклонения значений случайной величины X от ее математического ожидания равно нулю:

6. Математическое ожидание среднего арифметического значения п одинаково распределенных взаимно независимых случайных величин равно математическому ожиданию каждой из величин:

. (5)

Случайные дискретные величины называются одинаково распределенными, если у них одинаковые ряды распределения, а следовательно, и одинаковые числовые характеристики.

Пусть Х1, Х2,…, Хn – одинаково распределенные случайные величины, математические ожидания каждой из которых одинаковы и равны а. Тогда математическое ожидание их суммы равно nаи математическое ожидание средней арифметической равно а:

.

Ожидаемое среднее значение функции случайной величиныожидаемое среднее значение можно вычислять как функцию случайной величины. Пусть h(X) – функция случайной величины X. Ожидаемое значение функции дискретной случайной величины:

(6)

Функция h(X) может быть любой, например X 2,3Х 4, logX. Разберем простой пример, когда h(X) – линейная функция от X, т.е. h(X)= аХ+ b, где а, b – числовые параметры.

Ожидаемый ежемесячный доход от продаж продукции составляет 5400 условных денежных единиц. Для линейной функции случайной величины вычисления M[(h(x)] можно упростить, так как из свойств математического ожидания следует, что

где a, b – числовые параметры.

Формула (5) подходит для любых случайных величин как дискретных, так и непрерывных.

Дисперсия дискретной случайной величины

Дисперсия случайной величины есть математическое ожидание квадрата отклонения значений случайной величины от ее математического ожидания.

σ2 = D(X) = M <[X – M(X)] 2>= [xi – M(X)] 2P(xi). (7)

Вероятности значений случайной величины играют роль весов (частот) при вычислении ожидаемых значений квадратов отклонений дискретной случайной величины от средней. По формуле (7) дисперсия вычисляется путем вычитания математического ожидания из каждого значения случайной величины, затем возведения в квадрат результатов, умножения их на вероятности Р(хi) и сложения результатов для всех хi.

Для примера 3.1 (о рекламных объявлениях, размещаемых в газете в определенный день) дисперсия вычисляется так:

σ2 = [xi–M(X)] 2P(xi) = (0–2,3) 2 + (1–2,3) 2 + (2–2,3) 2 + (3–2,3) 2+ (4–2,3) 2 + (5 – 2,3) 2 = 2,01.

Свойства дисперсии дискретной случайной величины

Дисперсия дискретной случайной величины обладает следующими свойствами.

где C – постоянная величина.

где C – постоянный множитель.

3. Для конечного числа nнезависимых случайных величин:

D (X1 ± Х2±…±Xn) = D(X1) + D(X2)+ … +D(Xn). (8)

4. Если Х1, Х2,…, Хn – одинаково распределенные независимые случайные величины, дисперсия каждой из которых равна σ2 (Хi), то дисперсия их суммы равна пσ2, а дисперсия средней арифметической равна σ2/п:

σ2/п. (9)

Для вычисления дисперсии проще пользоваться другой формулой, полученной путем несложных математических выкладок:

D(X) = M[X – M(X)] 2 =M[X2 – 2M(X) X+ M(X) 2] =

M(X) 2 –2M(X) M(X) + [M(X)] 2 = M(X2) – [M(X)] 2 = M (X 2) – М 2 (Х).

Таким образом, σ2 = D(X) = M(X2) – М2 (Х). (10)

Дисперсия линейной функции случайной величины

Для случайной величины, заданной линейной функцией аХ+b, имеем

D(a∙X+ b)= a2∙D(X)=a2∙σ2. (11)

По формуле (11) найдем дисперсию ожидаемого дохода для примера 3. Доход задан функцией 2Х-8000. Находим M(X2)=50002∙0,2 + 60002∙0,3 + 70002∙0,2 + 80002∙0,2 + 90002∙0,1 =4 650 000. М(Х)=6700. Отсюда дисперсия D(X)=M(X2) – [М(Х)] 2=46 500 000 – 67002=1 610 000. Используя формулу (11), вычислим дисперсию ожидаемого дохода: D(Х) = σ2 = 22∙1 610 000 = 6 440 000. Среднее квадратическое отклонение дохода равно

Испытания Бернулли – это последовательность n идентичных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода: успех и неуспех – взаимно несовместные и противоположные события.

2 Вероятность успеха р остается постоянной от испытания к испытанию. Вероятность неуспеха q = 1-р.

3. Все n испытаний – независимы. Вероятность наступления события в любом из испытаний не зависит от результатов других испытаний.

Успех и неуспех – статистические термины. Например, когда имеют дело с производственным процессом, то исход испытания «деталь дефектная» определяют как успех. Успех относится к появлению определенного события – «деталь дефектная», а неуспех относится к непоявлению события. Определим случайную величину как биномиальную, если для нее мы рассчитываем число успехов и неуспехов в последовательности n испытаний Бернулли.

Случайная величина, для которой вычисляется число успехов в n повторных испытаниях, где р – вероятность успеха в любом из заданных испытаний, a q = (1-р) – соответствующая вероятность неуспеха, подчиняется закону биномиального распределения с параметрами n и р.

Все возможные исходы данного эксперимента называются элементарными событиями, а множества составленные из них – событиями. Таким образом можно разбить все множество исходов на благоприятствующие данному событию (то есть входящие в него) и не благоприятствующие. Множество всех исходов обозначают , а события – заглавными латинскими буквами.

Классическое определение вероятности. Вероятностью события называется отношение числа всех исходов на число благоприятствующих событию исходов и обозначают , то есть

,

где – число всех исходов эксперимента, -число благоприятствующих событию исходов. Это так называемая классическая схема.

Пусть некоторый эксперимент повторяется раз.

Схема Бернулли имеет место при соблюдении трех условий.

1. Каждое повторение имеет два исхода.

2. Повторения независимы.

3. Вероятность появления события постоянна и не меняется при повторениях.

Тогда вероятность появления события раз при испытаниях можно найти по формуле

,

где – число сочетаний из элементов по , .

Если события такие, что

1. попарно не пересекаются, то есть .при

2. ,

то говорят что они образуют полную группу событий.

Теорема (формула полной вероятности). Если – полная группа событий и , то

.

Теорема (формула Байеса) Если – полная группа событий и , то

,

Случайной величиной называют любую числовую функцию заданную на множестве . Случайные величины делятся на дискретные и непрерывные.

Дискретной случайной величиной называется случайная величина принимающая не более чем счетное число значений. Дискретную случайную величину удобно задавать в виде таблицы

где – вероятность того, что случайная величина примет значение при .

Математическим ожиданием дискретной случайной величины называется число = .

Свойства математического ожидания

1.

2.

3. .

Дисперсией дискретной случайной величины называется число

1.

2.

3. .

Среднеквадратическим отклонением называется число .

Функцией распределения случайной величины называют функцию .

Свойства функции распределения

1. .

2. Функция непрерывна слева.

3. Функция монотонно возрастает.

Случайная величина называется непрерывной, если непрерывна ее функция распределения. Плотностью распределения случайной величины называют функцию, удовлетворяющую следующим условиям

1.

2.

3.

Для непрерывных случайных величин математическое ожидание определяется как число . Для дисперсии формула остается прежней.

На практике чаще всего встречаются следующие виды распределений

1.Биномиальное, где случайная величина принимает значения с вероятностями .

2.Геометрическое, где случайная величина принимает значения с вероятностями

3.Нормальное, где плотность распределения имеет вид

4.Равномерное, где плотность распределения имеет вид

1. Высшая математика для экономистов: Учебник для вузов / Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2003.

2.Е.С. Кочетков, С.О. Смерчинская Теория вероятностей в задачах и упражнениях / М. ИНФРА-М 2005.

3. Высшая математика для экономистов: Практикум / Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2004.Ч1, 2

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М., Высшая школа, 1977

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М., Высшая школа, 1977

6. М.С. Красс Математика для экономических специальностей: Учебник/ М. ИНФРА-М 1998.

7. Выгодский М.Я. Справочник по высшей математике. – М., 2000.

8.Берман Г.Н. Сборник задач по курсу математического анализа. – М.: Наука, 1971.

9.А.К. Казашев Сборник задач по высшей математике для экономистов – Алматы — 2002 г.

10.Пискунов Н.С. Дифференциальное и интегральное исчисление. – М.: Наука, 1985, Т1,2.

11.П.Е. Данко, А.Г. Попов, Т.Я. Кожевников Высшая математика в упражнениях и задачах/ М. ОНИКС-2005.

12.И.А. Зайцев Высшая математика/ М. Высшая школа-1991 г.

13.Головина Л.И. Линейная алгебра и некоторые ее приложения. – М.: Наука, 1985.

14.Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы анализа экономики. – М.: ДИС, 1997.

15.Карасев А.И., Аксютина З.М., Савельева Т.И. Курс высшей математики для экономических вузов. – М.: Высшая школа, 1982 – Ч 1, 2.

16.Колесников А.Н. Краткий курс математики для экономистов. – М.: Инфра-М, 1997.


источники:

http://fn.bmstu.ru/educational-work-fs-12/70-lections/241-int

http://www.sinref.ru/razdel/03100matematica/04/382726.htm