Неравенства с степенью квадратного уравнения

11.3.5. Решение показательных неравенств, приводящихся к квадратным неравенствам

При решении показательных неравенств, приводящихся к квадратным неравенствам, поступают так же, как в примерах решения показательных уравнений, приводящихся к квадратным уравнениям, т. е. делают замену переменных, получают квадратное неравенство, которое решают, а затем возвращаются к прежней переменной.

Решить неравенство:

1) (0,5) 2 x +2 x .

Сделаем замену: пусть (0,5) х =у. Получаем неравенство:

у 2 +2 2 -3y+2 2 -3y+2 на линейные множители по формуле:

ax 2 +bx+c=a (x-x1)(x-x2), где х1 и х2 – корни квадратного уравнения ax 2 +bx+c=0.

Находим корни приведенного квадратного уравнения y 2 — 3 y+ 2 =0. Дискриминант D=b 2 -4ac=3 2 -4∙1∙2=9-8=1=1 2 . Так как дискриминант является полным квадратом, то применим теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

у12= 3 , у1∙у2= 2 . Отсюда: у1= 1 , у2= 2 . Значит, y 2 -3y+2=(у- 1 )(у- 2 ).

Решаем неравенство: (у-1)(у-2) 1 ; 2 ), отсюда: (0,5) х є( 1 ; 2 ).

(0,5) х = 1 → (0,5) х = (0,5) 0х=0.

(0,5) х = 2 → ( 1 /2) x = 2 → 2 — x = 2 1 → -x=1; x=-1. Значит, хє(-1; 0).

2) 9 x -1 x -1 +6.

Представим 9 х-1 в виде степени числа 3.

3 2 ( x -1) x -1 +6. Сделаем замену: 3 х-1 =у. Тогда получается квадратное неравенство: у 2 2 -у-6 2 -у-6=0. Проверим, возможно ли применить теорему Виета, ведь ею пользуются только, если корни являются целыми числами. Гарантией этого будет дискриминант, который должен быть полным квадратом некоторого числа. Находим дискриминант D=b 2 -4ac=1-4∙(-6)=1+24=25=5 2 . Дискриминант является полным квадратом числа 5, поэтому, подбираем корни, пользуясь теоремой Виета: у12=1, у1∙у2=-6. Подходят значения: у1= -2 и у2= 3 .

Раскладываем левую часть неравенства на линейные множители, получаем:

+2 )(у- 3 ) -2 ; 3 ). Возвращаемся к переменной х:

3 х-1 є( -2 ; 3 ), но так как отрицательных значений степень 3 х-1 принимать не может, то запишем: 3 х-1 є( 0 ; 3 ). Определим интервал значений переменной х.

3 х-1 → 0 при х-1 → -∞, так как число 3 в степени, стремящейся к минус бесконечности, фактически будет равным нулю, значит, х→ -∞ .

Далее, 3 х-1 = 3 → 3 х-1 = 3 1 → х-1=1 → х=2.

Показательные неравенства

О чем эта статья:

10 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательных неравенств

Показательными считаются неравенства, которые включают в себя показательную функцию. Другими словами, это неравенства с переменной в показателе степени: a f(x) > a g(x) , a f(x) g(x) .

Из них показательно-степенными неравенствами являются те, в которых есть переменные и в показателе степени, и в основании.

Для изучения этой темы стоит повторить:

И, конечно, для решения тригонометрических и логарифмических показательных неравенств также придется вспомнить формулы соответствующих разделов алгебры.

Если все это еще свежо в памяти, давайте приступим. Как и к показательным уравнениям, к неравенствам стоит подходить, помня о свойствах показательной функции. Напомним, что она выглядит так: y = a x , где a > 0 и a ≠ 1. Два графика ниже дают представление о том, на что похожа такая функция, когда основание степени а больше и меньше единицы. Наверняка вы уже догадались, каково главное свойство этой функции. Да, она монотонна.

При этом заметьте — значения а всегда больше нуля. На практике в этом несложно убедиться, если возводить какое-либо число во всевозможные степени, включая отрицательные. Например: 2 -2 = 4, 2 -4 = 1/16 и т. д. Значение функции будет уменьшаться, но никогда не достигнет нуля.

Для любых а и х верно неравенство a x > 0, т. е. показательная функция не принимает отрицательных значений.

Запишем следствие монотонности показательной функции в виде формул:

  • a f(x) > a g(x) f(x) > g (x), когда функция возрастает, т. е. а > 1;
  • a f(x) > a g(x) f(x)

Как решать показательные неравенства

Как мы уже говорили, для успешного освоения этой темы нужно хорошенько повторить все, что касается показательных уравнений. Способы решения показательных неравенств выглядят примерно так же — мы будем пытаться упростить выражение, получить одинаковые степени или одинаковые основания, по возможности свести все к квадратному или рациональному уравнению. Но есть и свои тонкости.

Допустим, у нас есть простейшее показательное неравенство:

Если вы помните, как решались показательные уравнения, не придется долго думать, что делать с таким неравенством — приведем его к одинаковому основанию:

Казалось бы, все логично, но всегда ли можно смело вычеркивать одинаковые основания степеней? А что, если вместо 3 у нас основание степени будет 0,5? Посмотрим:

Проверим, верно ли в таком случае х > 2.

0,5 3 = 0, 125 и т. д.

Как видите, на самом деле в этом случае х

Если а > 1, то a x > a n a > n, и при решении неравенства можно просто убрать одинаковые основания степени.

Если 0 x > a n a

Наконец, если рассмотреть случай, когда а х > 9

Логичное, на первый взгляд, предположение, что х > 2, не выдержит проверки, потому что:

Если продолжить этот ряд, знаки будут чередоваться, и наш корень будет попеременно то меньше, то больше 2. Поэтому для ясности всегда предполагается, что основание степени — положительное число.

Это были общие правила, а сейчас рассмотрим разные виды показательных неравенств и примеры с решениями.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Показательные неравенства, сводящиеся к простейшим

Решая показательные уравнения, вы наверняка первым делом исследовали их на возможность приведения к одинаковым основаниям или одинаковым степенным функциям. Так вот, с неравенствами можно делать то же самое! Помните лишь о смене знака, если основание степени меньше единицы. И да пребудет с вами сила. 😎

Попробуем на примере несложного показательного неравенства с разными основаниями.

Пример 1

Поскольку 3 больше 1, знак не меняем:

Показательные неравенства, сводящиеся к квадратным

Снова давайте вспомним, как аналогичный метод применялся к показательным уравнениям. Если все переменные имели общий множитель, его можно было обозначить новой переменной — в итоге у нас, как правило, получалось квадратное уравнение. Нужно было лишь найти дискриминант и произвести обратную замену. И снова алгоритм решения показательных неравенств будет совершенно таким же.

Пример 1

Наименьший общий множитель в данном случае будет 3 х , обозначим его новой переменной у и перенесем все слагаемые в левую сторону.

(3 х ) 2 — 12 × 3 х + 27 х = у

y 2 — 12y + 27 х 1 х 2

Поскольку 3 > 1, мы не меняем знак.

1 2 x — 5 sinx + 2 2 — 5y + 2

Показательные неравенства, сводящиеся к рациональным

Как вы, наверное, помните из предыдущего курса алгебры, рациональные показательные неравенства — это такие, в которых левая и правая часть представляют собой дробно-рациональные функции. Метод их решения таков: нужно перенести все в левую часть, чтобы в правой остался лишь ноль, и привести к общему знаменателю. Далее решаем уравнение, отмечаем все корни на оси и применяем метод интервалов (если забыли, что это такое — повторите).

Важно помнить: если в числителе и знаменателе встретятся одинаковые множители с переменной, сокращать их нельзя.

Пример 1

Преобразуем неравенство указанным выше способом:

(обратите внимание, мы избавились от минуса в числителе и поменяли знак неравенства).

Поскольку выражение 2 х + 2 в любом случае будет больше нуля, мы можем смело его исключить из неравенства.

(2 х — 2) × (2 х — 1/2) × (2 х — 3) > 0

Пример 2

Обозначим 3 х через новую переменную y:

3 х = y, при условии что 3 х > 0.

Применим метод интервалов и получим:

Вернем на место нашу старую переменную:

Однородные показательные неравенства

Однородными называются такие показательные неравенства, где в каждом слагаемом сумма степеней одинакова.

Иногда такие выражения бывают очень длинными и запутанными, но не стоит этого пугаться. Практически все неравенства с однородными показательными функциями решаются по одному принципу: стараемся упростить выражение, разделив его на одночлен, а затем при необходимости делаем замену переменных.

Пример 1

4 х — 2 × 5 2х — 2 х × 5 х > 0

2 × 2 х — 2 × 5 2х — 2 х × 5 х > 0

В левой части неравенства мы видим однородные функции относительно 2 х и 5 х . Следовательно, можно разделить обе части на 2 2х или 5 2х . Выберем 5 2х , т. е. 25 х . В итоге у нас получится:

Если обозначить (2/5) х новой переменной y, получим квадратное неравенство:

Неравенства, решаемые графическим методом

Этот метод решения показательных неравенств — самый наглядный, и для многих он может показаться самым простым. Нужно лишь построить графики функций, заданных в левой и правой части выражения, а затем посмотреть, в какой точке они пересекаются. Если бы мы имели дело с уравнением, эта точка стала бы корнем.

Но поскольку мы рассматриваем неравенства, нужно будет выделить искомую область. Для неравенства f(x) > g(x) это будет та область, где график функции f(x) находится выше.

Пример 1

2 х х и 3 — х, а также точка их пересечения.

Очевидно, что точкой пересечения является х = 1, при этом график функции 2 х ниже в области от -∞ до 1.

Пример 2

Начертим графики этих двух функций, чтобы найти точку пересечения.

Искомой точкой будет х = -1, а областью, где функция (1/2) х находится выше — диапазон от -∞ до -1.

Показательные неравенства на ЕГЭ по математике

Знакомство с этой темой мы начнем с самых простых показательных неравенств.

Так же, как и при решении простейших показательных уравнений, представим правую часть в виде степени числа 2:

Когда я спрашиваю школьников, что делать дальше, они обычно отвечают: «Убрать основания!» Я не против такой формулировки, просто надо четко представлять себе, почему мы так делаем. А для этого — вспомним, как выглядит график показательной функции y = 2 x .


Видим, что эта функция монотонно возрастает, то есть большему значению x отвечает большее значение y. И наоборот, если 2 x1 > 2 x2 , то x1 > x2 . Итак, от неравенства 2 x > 2 3 можно перейти к алгебраическому неравенству x > 3.

2. Следующее неравенство:

Так же, как и в предыдущем примере, представим правую часть в виде значения показательной функции. Как это сделать? С помощью логарифма, конечно:
7 = 2 log27 .

3. Еще одно неравенство:

Здесь правую часть удобно представить как .

Вспомним, как выглядит график функции :

Эта функция монотонно убывает (так как основание степени меньше единицы), поэтому большее значение функции соответствует меньшему значению аргумента. То есть из неравенства \left ( \frac<1> <2>\right )^<4>» src=»https://latex.codecogs.com/png.latex?%5Cleft&space;(&space;%5Cfrac%3C1%3E%3C2%3E&space;%5Cright&space;)%5E%3Cx%3E&space;%3E&space;%5Cleft&space;(&space;%5Cfrac%3C1%3E%3C2%3E&space;%5Cright&space;)%5E%3C4%3E» /> следует, что x x − 2 · 5 2x − 10 x > 0.

Заметим, что 4 x = 2 2x , 10 x =5 x ·2 x , и запишем неравенство в виде:
2 2x − 5 x ·2 x − 2 · 5 2x > 0.

Разделим обе части на положительную величину 5 2x и обозначим . Получим квадратное неравенство:

Кроме того, t > 0.

Графиком функции y = t 2 − t − 2 является парабола, ветви которой направлены вверх. Решая квадратное уравнение t 2 − t − 2 = 0, получим t1 = −1, t2 = 2. В этих точках наша парабола пересекает ось t.

Отметим на числовой прямой промежутки, являющиеся решениями неравенств t 2 − t − 2 > 0 и t > 0.

Видим, что обоим неравенствам удовлетворяют значения t > 2.

Но решение еще не закончено! Нам нужно вернуться к переменной x. Вспомним, что и получим:

Представим 2 в виде степени с основанием :

Его дискриминант , корни

Объединяем решения обоих систем на числовой прямой.

Получаем, что значит,

Каким бы ни было показательное неравенство — его надо упростить до неравенства Знак здесь может быть любой: . Важно, чтобы слева и справа в неравенстве находились степени с одинаковыми основаниями.

И после этого «отбрасываем» основания! При этом, если основание степени , знак неравенства остается тем же. Если основание такое, что , знак неравенства меняется на противоположный.


источники:

http://skysmart.ru/articles/mathematic/pokazatelnye-neravenstva

http://ege-study.ru/pokazatelnye-neravenstva-na-ege-po-matematike/