Нестандартные способы решения алгебраических уравнений

Нестандартные методы решения уравнений и неравенств

Данная работа — исследовательский реферат, который учащиеся представляли на научной практической конференции , а также материалы этой работы представляли на уроке — семинаре в 11-м классе по теме » Решение логарифмических и показательных уравнений нестандартными методами». Данную рароту можно использовать учителям как методическое пособие на факультативных занятиях, при подготовке к ЕГЭ заданий С1, С3 и для работы в профильных классах . Преимущество этой работы в том, что здесь выведены и подробно описаны алгоритмы решений уравнений и неравенств, что не наблюдается в обычных источниках.

Скачать:

ВложениеРазмер
referat.doc822.5 КБ

Предварительный просмотр:

  1. Метод ограниченности функций:

1.1. Решение уравнений

2. Метод неотрицательности функций:

3. Метод использования области допустимых значений:

4. Метод использования свойств синуса и косинуса:

5. Метод использования числовых неравенств:

5.2. решение неравенств

6. Метод использования производной:

6.2. решение неравенств

7. Решение неравенств методом замены функций.

« Уж лучше совсем не помышлять об отыскании каких бы то ни было истин, чем делать это без всякого метода…»

В математике, как известно, выше всего ценится не просто верное решение, но и наиболее короткое из возможных, как говорят сами математики, более рациональное.

Как найти такое решение? Что для этого необходимо знать? Чем владеть? Что это даёт ученику? Или это только удел одарённых учеников? На эти вопросы мы попробуем найти ответы. Учимся мы в физико – математическом классе и увлечены математикой.

Хотим иметь прочные и высокие знания по данному предмету, которые понадобятся нам при дальнейшем обучении в вузах. Почему мы выбрали именно эту тему?

Данная тема актуальна, она соответствует нашему профилю, потому что её изучение помогает расширить и углубить знания по теме: «Методы решения уравнений и неравенств». Эта работа поможет нам успешно сдать ЕГЭ и приобрести опыт выполнения научной работы.

  1. Метод ограниченности функций.

1.1. Решение уравнений.

Данный метод основан на применении следующей теоремы:

Теорема: Если на промежутке Х наибольшее значение одной из функции y=f(x), y=g(x) равно А и наименьшее значение другой функции тоже равно А, то уравнение f(x)=g(x) равносильно системе уравнений:

Пример 1. Решите уравнение: .

  1. Рассмотрим функции g() = и f()=
  2. E(g()) =, т.к .
  3. E(f()) =, т.к , то .
  4. g()=1 для функции g() = и f()=1 для функции f()= , значит можно воспользоваться теоремой о ограниченности функции.

5. Составляем систему уравнений и решаем её:

Достаточно решить одно, более простое уравнение, и сделать проверку корней в другом уравнение.

Проверка: если , то ,, -1 = -1, верно, значит является решением исходного уравнения.

Пример 2 . Решите уравнение:

Преобразуем данное уравнение:

Рассмотрим функции и

  1. Е, т.к ,
  2. Е, т.к
  3. Составляем систему уравнений и решаем её:

1.2. Решение неравенств.

Данный метод для решения неравенств основан на следующей теореме:

Пусть множество есть общая часть (пересечение) областей существования функций и и пусть для любого справедливы неравенства и где — некоторое число. Тогда неравенство

равносильно системе уравнений

Обе части неравенства определены для всех действительных чисел . Для любого , поэтому Следовательно, неравенство равносильно системе

которая, в свою очередь, равносильна системе

Единственное решение второго уравнения системы есть Это число удовлетворяет первому уравнению системы. Следовательно, система и неравенство имеют одно решение

Обе части неравенства определены на множестве Для любого имеем

Поэтому неравенство равносильно системе уравнений

Первое уравнение системы имеет единственное решение , которое удовлетворяет второму уравнению системы. Следовательно, система и неравенство имеют одно решение .

  1. Метод неотрицательности функций.

2.1. Решение уравнений.

Данный метод основан на следующей теореме:

Пусть левая часть уравнения F(х)=0 (1), есть сумма нескольких функций F(x)=f(x)+f(x)+…+f(x) каждая из которых неотрицательна для любого х из области её существования.

Тогда уравнение (1) равносильно системе уравнений:

Так как и 0, то данное уравнение равносильно системе из двух уравнений:

Проверка:
если х=3, то 0 = 0, верно. Так как х = 3 является решением системы равносильной исходному уравнению, то оно является корнем первоначального уравнения.

преобразуем данное уравнение, выделив полные квадраты двух выражений

Так как данные функции f(x)=(x+22) и g(x)=(2-1) неотрицательны, то данное уравнение равносильно системе двух уравнений:

Проверка: если x = 0, то 2 = 0, неверно.

Так как уравнение имеет единственное решение

x = 0, которое не является решением второго уравнения , то система не имеет решений, следовательно первоначальное уравнение не имеет решений.

Ответ: нет решений.

2.2. Решение неравенств .

Данный метод для решения неравенств основан на следующей теореме:

Пусть левая часть неравенства есть сумма нескольких неотрицательных функций , каждая из которых неотрицательна для любого из области определения ее существования, тогда данное неравенство равносильно системе уравнений

Так как для любого справедливы неравенства

данное неравенство равносильно системе уравнений

Второе уравнение системы имеет два решения: и . Из этих чисел только удовлетворяет первому уравнению системы. Следовательно, система и неравенство имеют единственное решение

Каждая функция и неотрицательна для любого из области ее существования. Поэтому неравенство равносильно системе уравнений

Первое уравнение системы имеет два решения: и . Из этих чисел только 4 удовлетворяет второму уравнению системы. Следовательно, система и неравенство имеет одно решение .

  1. Метод использования области допустимых значений .

3.1. Решение уравнений.

Иногда знание ОДЗ позволяет доказать, что уравнение не имеет решений, а иногда позволяет найти решения уравнения подстановкой чисел из ОДЗ.

Пример 1 . Решите уравнение:

ОДЗ этого уравнения состоит из всех , одновременно удовлетворяющих условиям и , т.е ОДЗ есть пустое множество, значит ни одно из чисел не может являться решением, т.е.это означает, что уравнение корней не имеет.

Ответ: нет корней.

Рассмотрим ещё один пример.

Пример2 . Решите уравнение:

ОДЗ этого уравнения состоит из чисел, удовлетворяющих условиям т.е. ОДЗ есть Сделаем проверку, подставив эти значения в уравнение, получим верное равенство.

3.2. Решение неравенств.

Суть этого метода в следующем: если при рассмотрении неравенства выясняется, что обе его части определены на множестве М , состоящем из одного или нескольких чисел, то нет необходимости проводить какие-либо преобразования неравенства, достаточно проверить, является или нет каждое из этих чисел решением данного неравенства.

Рассмотрим этот метод на следующих неравенства х :

1.Найдем область допустимых значений неравенства и объединим их в систему:

2.Решим эту систему:

3. Решением этой системы являются два числа: и .

4.Сделав проверку в первоначальное неравенство, x = 1 не удовлетворяет ему. Следовательно, решением неравенства является x = 5.

  1. Найдем область допустимых значений неравенства и объединим их в систему:

2.Эта система не имеет решений, а значит и данное неравенство не имеет решений.

Ответ: нет решений.

  1. Метод использования свойств синуса и косинуса.

4.1. Решение уравнений.

Решение некоторых тригонометрических уравнении может быть сведено к решению систем уравнений. Примерами таких уравнений могут быть следующие:

где , , А и В – данные отличные от нуля числа, m и n – данные натуральные числа. При этом используются следующие свойства: если для некоторого числа справедливо строгое неравенство или , то такое число не может быть корнем ни одного из уравнений данного вида.

Пример 1. Решите уравнение : (1)

  1. Если число — решение уравнения (1), то sin=1 или sin=-1.
  2. Если , то из уравнения (1) следует, что , а это невозможно.
  3. Если sin=1, то cos4=1.
  4. Eсли sin=-1, то cos4= — 1.
  5. Следовательно, любое решение уравнения (1) является решением совокупности двух систем уравнений
  1. Первое уравнение системы (2) имеет решения .

Все они удовлетворяют второму уравнению системы (2), т.е. являются её решением.

  1. Первое уравнение системы ( 3) имеет решения . Ни одно из этих чисел не удовлетворяет второму уравнению системы (3). Поэтому система (3) не имеет решений.
  2. Значит, все решения уравнения (1) совпадают со всеми решениями системы (2).

4.2. Решение неравенств.

Аналогичные рассуждения могут применяться и при решении неравенств.

Рассмотрим следующий пример:

1.Допустим -решение данного неравенства, тогда так как в противном случае было бы справедливо неравенство что невозможно. Следовательно, решением неравенства является решение системы:

2. Решая первое уравнение, получается Это решение удовлетворяет второму уравнению. Значит, это решение является решением неравенства.

  1. Метод использования числовых неравенств.

5.1. Решение уравнений.

Применяя то или иное числовое неравенство к одной из его частей уравнения, его можно заменить равносильной ему системой уравнений. Примером такого неравенства является неравенство между средним арифметическим и средним геометрическим, где a и b – неотрицательные числа, причём равенство здесь возможно лишь при a=b.

Можно использовать следствие из этих неравенств, например, , при , причём тогда и только тогда, когда , или при , причём

тогда и только тогда, когда

Пример 1. Решите уравнение:

причём она равна четырём, если x=0.

3. Правая часть при х=0 также равна четырём, а для всех меньше четырёх

4. Следовательно, х=0 , единственное решение

Пример 2. Решите уравнение:

  1. Введём новые переменные: , , где a>0 и b>0.
  2. Перепишем левую часть уравнения и докажем, что
  3. Применим неравенство о среднем арифметическом и среднем геометрическом:

то данное уравнение равносильно системе из двух уравнений

6. Из второго уравнения системы находим его решения и . Подставим эти значения в первое уравнение системы, получим верное равенств, следовательно, они являются его решением. Значит, и являются решением исходного уравнения.

5.2. Решение неравенств.

1. Преобразуем левую часть неравенства, получаем:

Применяя формулу этого метода, получаем, что для любого x справедливо неравенство:

Равенство здесь справедливо, когда x=0.

Так же для любого x справедливо неравенство:

Равенство здесь справедливо, когда x=0.

2.Следовательно, неравенство имеет одно решение x=0.

3. Из последних двух неравенств следует, что исходное неравенство справедливо лишь тогда, когда обе части исходного неравенства равны 4, а это возможно лишь при х = 0.

  1. Метод использования производной.

6.1. Решение уравнений.

Использование монотонности функции .

Пример 1. Решите уравнение:

  1. Рассмотрим функцию
  2. D
  3. Эта производная принимает только положительные значения на всей области определения, значит функция возрастает. Следовательно, она принимает каждое своё значение только в одной точке. Это означает, что данное уравнение имеет не более одного корня.
  4. Подбором находим, что .

Использование наибольшего и наименьшего значений функции

Пример 2. Решите уравнение: .

  1. ОДЗ уравнения есть интервал .
  2. Рассмотрим функцию на отрезке
  1. Так как функция непрерывна на своей области определения, то её наибольшее и наименьшее значения находятся среди чисел , ,
  2. Наибольшее значение есть , следовательно уравнение имеет единственный корень .

Применение теоремы Лангранжа.

Теорема: Если функция непрерывна на отрезке и имеет производную на интервале , то найдется такая точка с интервала , что .

Пример 3. Решите уравнение:

  1. Подбором находим, что и . Докажем, что других корней уравнение не имеет.
  2. Предположим, что уравнение имеет три корня
  3. Рассмотрим функцию . Она непрерывна на всей числовой прямой.
  4. Найдем её производную: . Данная функция тоже непрерывна на всей числовой прямой.
  5. По теореме Лагранжа имеем
  1. Значит, существует хотя бы две точки и , в которых производная функции f(x) равна нулю.
  2. Уравнение имеет только один корень.
  3. Значит , заданное уравнение имеет два корня: -2 и 1.

Пример1. Решить неравенство

2. D() = (). на области определения, значит функция f(x) возрастает на своей области определения и принимает каждое своё значение ровно в одной точке.

3. Тогда уравнение f(x) = 0 может иметь не более одного корня и таким корнем является х = 0.

4. Определим знаки функции: так как функция f(x) определена и непрерывна на всей числовой прямой, то для x f(x) а для x >0 имеем f(x)>0.

5. Значит , решением исходного неравенства являются все х из промежутка (0;).

  1. Решение неравенств методом замены функций.

Данный метод основан на следующем утверждении:

Если область определения, нули и промежутки знакопостоянства функции соответственно совпадают с областью определения, нулями и промежутками знакопостоянства функции , то неравенства

Это утверждение означает то, что если одна из функций или имеет более простой вид, то при решении этих неравенств ее можно заменить на другую. Рассмотрим основные примеры таких пар функций.

Области определения функций и совпадают. Кроме того, при :

Следовательно, для функций и условия утверждения выполнены.

Пример 1. Решите неравенство

Приведем числитель дроби к основанию 2, а знаменатель к основанию 5.

Последнее неравенство решается методом интервалов, его решением является объединение промежутков

Области определения функций и совпадают. Кроме того,

Следовательно, для функций и условия утверждения выполнены.

Последнее неравенство решаем методом интервалов.

Данное неравенство равносильно неравенству

Множество — решение последнего неравенства.

При нечетном утверждение справедливо. Кроме того, при четном области определения функций совпадают, и

Следовательно, при четном для функций и также выполнены условия утверждения.

Решив последнюю систему методом интервалов, получаем

Области определения функций и совпадают. Кроме того, при :

Следовательно, для функций и при выполнены условия первоначального утверждения.

Это неравенство равносильно следующему:

Это неравенство равносильно следующему:

Изложенные методы решения эффективны при решении неравенств, левая часть которых представляет собой произведение или частное двух функций указанных выше видов, а правая часть равна нулю.

Для того , чтобы успешно решать такие уравнения и неравенства , предлагаем придерживаться общего алгоритма:

1. Визуально проанализировать уравнение(неравенство)

( определить тип, не спешить раскрывать знак модуля, скобки, возводить в степень)

  1. Преобразовать, если необходимо
  2. Определить способ решения и учитывать его особенности при выполнении
  3. В процессе преобразований необходимо постоянно следить за областью допустимых значений и равносильностью преобразований
  4. Уравнение – проверка!

Работа над данной темой была интересной и познавательной. Изучив новые методы решения уравнений и неравенств, мы обогатили свой опыт:

  1. Новыми научными понятиями
  2. Научились работать со справочной литературой
  3. Узнали методы, которые выходят за рамки школьной программы
  4. Углубили и расширили свои знания

Самыми трудными оказались методы: применение производной: использование теоремы Лагранжа( ещё требует дополнительного изучения), использование свойств синуса и косинуса, использование числовых неравенств.

Также мы приобрели навыки пользователя компьютера:

  1. Форматирование и редактирование текста
  2. Работа с редактором формул в Microsoft Word
  3. Работа с мастером функций в Microsoft Excel

Данные методы позволяют рационально решать сложные уравнения и неравенства, а порой являются и единственными способами. Для того, чтобы овладеть этими методами, необходимо иметь прочные навыки по стандартным методам, преобразованиям, знать много теоретического материала и дополнительно решать.

  1. Никольский С.М. « Алгебра и начала анализа . 11 класс», Москва, « Просвещение» — 2004.
  2. С.Н. Олехник, М.К. Потапов, П.И. Пасиченко « Уравнения и неравенства», Москва, «Экзамен» — 1998.
  3. Журнал « Математика для школьников», № 4 – 2005.
  4. С.Н. Олехник, М.К. Потапов, П.И. Пасиченко «Уравнения и неравенства. Нестандартные методы», Москва, « Дрофа» — 2002.
  5. Школьная энциклопедия « Математика», Москва, « Дрофа» — 1997.
  6. Мордкович А.Г. « Алгебра и начала анализаю 10-11 класс. Учебник и задачник», Москва, « Мнемозина» — 2002.
  7. Медиаресурсы: «Вся математика», « Повторяем весь школьный курс», « Алгебра 7 – 11».

Творческие проекты и работы учащихся

В процессе работы над индивидуальным проектом по математике «Нестандартные методы решения уравнений и неравенств» ученицей 10 класса школы была поставлена и реализована цель изучить новые методы решения уравнений и неравенств. Каждый из методов был описан и продемонстрирован отдельно.

Подробнее о проекте:

В готовом творческом и исследовательском проекте по математике «Нестандартные методы решения уравнений и неравенств» учащейся приведены характеристики таких методов решения уравнений, как метод разложения на множители, метод замены переменной, метод решения уравнений с помощью теоремы Виета и метод интервалов, а также продемонстрированы нестандартные методы решения алгебраических уравнений и неравенств, метод рационализации, учёт ОДЗ и метод мажорант.

Оглавление

Введение
1. Теория уравнений и неравенств.
1.1 Основные понятия теории уравнений и неравенств.
1.2 Методы решения уравнений и неравенств.
1.2.1 Метод разложения на множители.
1.2.2 Метод замены переменной.
1.2.3 Метод решения уравнений с помощью теоремы Виета.
1.2.4 Метод интервалов.
2. Нестандартные методы решения алгебраических уравнений и неравенств.
2.1 Метод рационализации.
2.2 Учёт ОДЗ.
2.3 Метод мажорант (оценки).
2.4 Использование свойств функций.
2.4.1 Использование ОДЗ.
2.4.2 Использование монотонности функции.
2.4.3 Использование графиков.
2.5 Некоторые искусственные способы решения алгебраических уравнений.
2.5.1 Угадывание корня уравнения.
3. Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств».
3.1 Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт.
3.2 Создание контента тренажёра.
3.3 Описание созданного продукта.
3.4 Апробация продукта.
Заключение
Список литературы

Введение

Объектом исследования являются уравнения и неравенства.

Предмет исследования: некоторые нестандартные методы решения уравнений и неравенств.

В начале работы над проектом была сформулирована гипотеза: благодаря новым методам решения уравнений и неравенств, удастся сократить количество шагов решения в алгоритме и снизить вероятность допущения ошибки. Исходя из этого вывода, была поставлена цель проекта: изучить новые методы решения уравнений и неравенств.

Продуктом проекта были выбраны дидактические материалы с алгоритмом решения уравнений и неравенств новыми методами и тренажёры для отработки заданий подобного типа. Для продуктивного и удобного использования тренажера необходимо установить критерии оценки продукта проекта:понятный и удобный интерфейс, наличие мобильной версии, возможность использования русского языка, возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера, тиражируемость (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования).

В процессе создания проекта были сформулированы некоторые задачи:

  1. Изучить всевозможные источники информации по данной теме, структурировать собранную информацию
  2. Провести опрос
  3. Разработать алгоритмы решения уравнений и неравенств определенным (нестандартным) способом
  4. Анализ имеющихся тренажёров, подобрать задания, решаемые нестандартным способом, решить их
  5. Создать тренажёр
  6. Апробировать продукт
  7. Провести опрос об эффективности продукта
  8. Собрать статистику
  9. Распространить продукт

Методы исследования, используемые при работе над проектом: анализ, обобщение, синтез, классификация, систематизация, сравнение, прототипирование.

Научная новизна: разработаны уникальные дидактические материалы

Теоретическая значимость: расширение представления о некоторых методах решения уравнений и неравенств.

Практическая значимость: продукт проекта может быть использован учениками при подготовке к ЕГЭ, а также учителями математики.

Социальная значимость: проект может помочь ученикам 9-11 классов при подготовке к экзамену.

Основные понятия теории уравнений и неравенств

Уравнение – равенство, содержащее в себе переменную, значение которой требуется найти.

Корень (решение) уравнения – это значение переменной, при котором уравнение обращается в верное числовое равенство.

Решить уравнение — найти его корни или доказать, что корней нет.

Неравенство – два числа или математических выражения, соединенных одним из знаков: , ≤, ≥.

Основные свойства уравнений:

  • Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
  • Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

Решение неравенства – то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – найти все его решения или установить, что их нет.

Методы решения уравнений и неравенств

Теперь, после перечисления основных понятий, следует вспомнить известные нам из школьной программы способы решения уравнений и неравенств.

Метод разложения на множители

Для разложения на множители используют формулы сокращённого умножения (ФСУ), вынесение общего множителя за скобку, способ группировки, деление многочлена на многочлен.

Суть данного метода в том, чтобы путем равносильных преобразований представить левую часть исходного уравнения, содержащую неизвестную величину в какой-либо степени, в виде произведения двух выражений, содержащих неизвестную величину в меньшей степени. При этом справа от знака равенства должен оказаться ноль.

Метод замены переменной

Цель данного метода в том, чтобы удачным образом заменить сложное выражение, содержащее неизвестную величину, новой переменной, в результате чего уравнение принимает более простой вид. Далее полученное уравнение решается относительно новой переменной, после чего происходит возврат к исходной переменной.

Метод решения уравнений с помощью теоремы Виета

Важно. Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

Приведенное квадратное уравнение – это уравнение, в котором старший коэффициент «a = 1». В общем виде приведенное квадратное уравнение выглядит следующим образом: х2 + px + q = 0. разница с обычным общим видом квадратного уравнения ax2 + bx + c = 0 в том, что в приведённом уравнении x2 + px + q = 0 коэффициент а = 1.

Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит что справедливо следующее:

x1 · x2 = q, где x1 и x2 — корни этого уравнения.

Нестандартные методы решения алгебраических уравнений и неравенств. Метод рационализации

Приведем алгоритм решения уравнений и неравенств методом рационализации:

  • Нахождение ОДЗ уравнения/неравенства
  • Привести данное неравенство к стандартному виду: слева дробь (или произведение), справа – ноль.
  • Заменить выражения левой части на более простые, эквивалентные им по знаку.
  • Решить полученное неравенство, например, методом интервалов.

Учёт ОДЗ

Иногда знание ОДЗ позволяет доказать, что уравнение (или неравенство) не имеет решений, а иногда позволяет найти решение уравнения (или неравенства) непосредственно подстановкой чисел из ОДЗ.

  • Найти ОДЗ уравнения/неравенства.
  • Подставить значение ОДЗ в исходное уравнение/неравенство, чтобы проверить, является ли оно корнем.

Метод мажорант (оценки)

Метод мажорант также называют методом оценки левой и правой частей, входящих в уравнения и неравенства.

Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р.

Мажоранты многих элементарных функции известны. Их нетрудно указать, зная область значений функции.

  • Определить монотонность и область определения функции (ООФ).
  • Методом подбора найти корень уравнения/неравенства.
  • Исходя из монотонности функции делаем вывод о количестве корней.

Использование графиков

При решении уравнений и неравенств иногда полезно рассмотреть эскиз графиков их правой и левой частей. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения (или неравенства) было очевидно.

Обратим внимание, что эскиз графика лишь помогает найти решение, но писать, что из графика следует ответ, нельзя, ответ ещё надо обосновать.

  • Определить ОДЗ уравнения/неравенства.
  • Представить левую и правую части уравнения/неравенства как функции и построить их графики.
  • По графику определить решение уравнения/неравенства.
  • Доказать справедливость ответа.

Угадывание корня уравнения

Иногда внешний вид уравнения подсказывает, какое число является корнем уравнения.

  • Методом подбора определить корень уравнения.
  • Найти ОДЗ уравнения.
  • Привести многочлен к стандартному виду.
  • Определить остальные корни уравнения.

Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств»

В качестве продукта проекта был выбран интерактивный тренажер, который позволит практиковаться в решении уравнений и неравенств с помощью новых, нестандартных методов решения. Размещение тренажера на сетевой платформе позволит сделать данный продукт доступным для всех, кто хочет разобраться в этой теме.

Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт

При создании продукта были проанализированы следующие сетевые сервисы:

Платформы были проанализированы по критериям:

  • Понятный и удобный интерфейс сайта
  • Возможность составления разнотипных заданий, для создания интересного и разнообразного контента
  • Наличие мобильной версии
  • Возможность использования русского языка
  • Возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера
  • Доступность (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования)
  • В данной таблице приведены результаты оценки сетевых сервисов по выбранным критериям:

Нестандартные способы решения алгебраических уравнений

    Главная
  • Список секций
  • Математика
  • Нестандартные способы решения квадратных уравнений

Нестандартные способы решения квадратных уравнений

Автор работы награжден дипломом победителя III степени

Введение

Математическое образование, получаемое в школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям.

Актуальность темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе в 9 классе, а также 10 и 11 и при сдаче экзаменов.

Цель: Изучить стандартные и нестандартные способы решения квадратных уравнений

Задачи

  1. Изложить наиболее известные способы решения уравнений
  2. Изложить нестандартные способы решения уравнений
  3. Сделать вывод

Объект исследования: квадратные уравнения

Предмет исследования: способы решения квадратных уравнений

Методы исследования:

  • Теоретические: изучение литературы по теме исследования;
  • Анализ: информации полученной при изучении литературы; результатов полученных при решении квадратных уравнений различными способами.
  • Сравнение способов на рациональность их использования при решении квадратных уравнений.

Глава 1.Квадратные уравнения и стандартные способы решения

1.1.Определение квадратного уравнения

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0, где х – переменная, а, b и с– некоторые числа, причем, а ≠ 0.

Числа а, b и с — коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b– вторым коэффициентом и число c – свободным членом.

Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

Определение 3. Корнем квадратного уравнения ах 2 + bх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + bх + с обращается в нуль.

Определение 4. Решить квадратное уравнение — значит найти все его

корни или установить, что корней нет.

Пример: – 7x + 3 =0

В каждом из уравнений вида a + bx + c = 0, где а ≠ 0, наибольшая степень переменной x – квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х2 равен 1, называют приведенным квадратным уравнением.

Пример

1.2.Стандартные способы решения квадратных уравнений

Решение квадратных уравнений с помощью выделения квадрата двучлена

Решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0. Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:(х + 12)(х — 2) = 0

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

Решение квадратного уравнения по формуле.

Дискриминант квадратного уравнения ax 2 + bx + c = 0 выражение b 2 – 4ас = D — по знаку которого судят о наличии у этого уравнения действительных корней.

Возможные случаи в зависимости от значения D:

  1. Если D>0, то уравнение имеет два корня.
  2. Если D= 0, то уравнение имеет один корень: х =
  3. Если D 2 + bx + c = 0.

Обозначим второй коэффициент буквой р, а свободный член буквой q:

х 2 + px + q = 0, тогда

Глава 2.Нестандартные способы решения квадратных уравнений

2.1.Решение с помощью свойств коэффициентов квадратного уравнения

Свойства коэффициентов квадратного уравнения – это такой способ решения квадратных уравнений, который поможет быстро и устно найти корни уравнения:

  1. Еслиа+ b+c=0, тоx1= 1,x2=

Пример. Рассмотрим уравнение х 2 +3х – 4= 0.

Проверим полученные корни с помощью нахождения дискриминанта:

Следовательно, если + b +c= 0, то x1 = 1, x2 =

  1. Еслиb =a+c, тоx1= -1,x2=

Пример. Рассмотрим уравнение 3х 2 +4х +1 = 0, a=3, b=4, c=1

Значит корнями этого уравнения являются –1 и . Проверим это с помощью нахождения дискриминанта:

D= b 2 – 4ас=4 2 – 4·3·1 = 16 – 12 = 4

2.2.Способ «переброски»

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а±b+c≠0, то используется прием переброски:

Применяя способ «переброски» получаем:

Таким образом, с помощью теоремы Виета получаем корни уравнения:

Однако корни уравнения необходимо поделить на 3 (то число, которое «перебрасывали»):

Значит, получаем корни: x1 = -1, x2 = .

2.3.Решение с помощью закономерности коэффициентов

  1. Если уравнениеax 2 + bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 +10х +3 = 0.

Таким образом, корни уравнения: x1 = -3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 — bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 10х +3 = 0.

Таким образом, корни уравнения: x1 = 3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 + bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = —a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 + 8х —3 = 0..

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

  1. Если уравнениеax 2 — bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 8х —3 = 0..

Таким образом, корни уравнения: x1 = 3, x2 = —

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

2.4.Решение с помощью циркуля и линейки

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис.6 ).

Допустим, что искомая окружность пересекает ось

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки S (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис.8б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра AS SB, R> б) AS=SB, R= в) AS 2 — 2х — 3 = 0 (рис.8).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

2.5.Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

Примеры.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.9).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей:

первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим:

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

Решение представлено на рис 10. где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис. .

3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

Преобразуя уравнение, получаем

На рис 11. находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25, или у — 3 = ± 5, где у1 = 8 и у2 = — 2.

Заключение

В ходе выполнения своей исследовательской работы я считаю, что с поставленной целью и задачами я справился, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Нужно отметить, что каждый способ решения квадратных уравнений по-своему уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на контрольных работах и экзаменах. При работе над темой я ставил задачу, выяснить какие методы являются стандартными, а какие нестандартными.

Итак, стандартные методы (используются чаще при решении квадратных уравнений):

  • Решение с помощью выделения квадрата двучлена
  • Разложение левой части на множители
  • Решение квадратных уравнений по формуле
  • Решение с помощью теоремы Виета
  • Графическое решение уравнений

Нестандартные методы:

  • Свойства коэффициентов квадратного уравнения
  • Решение способом переброски коэффициентов
  • Решение с помощью закономерности коэффициентов
  • Решение квадратных уравнений, с помощью циркуля и линейки.
  • Исследование уравнения на промежутках действительной оси
  • Геометрический способ

При этом следует заметить, что каждый способ обладает своими особенностями и границами применения.

Решение уравнений с использованием теоремы Виета

Достаточно легкий способ, дает возможность сразу увидеть корни уравнения, при этом легко находятся только целые корни.

Решение уравнений способом переброски

За минимальное количество действий можно найти корни уравнения, применяется совместно со способом теоремы Виета, при этом также легко найти только целые корни.

Свойства коэффициентов квадратного уравнения

Доступный метод для устного нахождения корней квадратного уравнения, но подходит только к некоторым уравнениям

Графическое решение квадратного уравнения

Наглядный способ решения квадратного уравнения, однако могут возникать погрешности при составлении графиков

Решение квадратных уравнений с помощью циркуля и линейки

Наглядный способ решения квадратного уравнения, но также могут возникать погрешности

Геометрический способ решения квадратных уравнений

Наглядный способ, похож на способ выделения полного квадрата

Решая уравнения разными способами, я пришел к выводу, что зная комплекс методов решения квадратных уравнений, можно решить любое уравнение, предлагаемое в процессе обучения.

При этом, следует заметить, что одним из более рациональных способов решения квадратных уравнений является способ «переброски» коэффициента. Однако самым универсальным способом можно считать стандартный способ решения уравнений по формуле, потому что данный способ позволяет решить любое квадратное уравнение, хотя иногда и за более длительное время. Также такие способы решения, как способ «переброски», свойство коэффициентов и теорема Виета помогаю сэкономить время, что очень важно при решении заданий на экзаменах и контрольных работах.

Думаю, что моя работа будет интересна учащимся 9-11 классов, а также тем, которые хотят научиться решать рационально квадратные уравнения и хорошо подготовиться к выпускным экзаменам. Также она будет интересна и учителям математики, за счет рассмотрения истории квадратных уравнений и систематизации способов их решения.

Список литературы

  1. Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.
  2. Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович — М.: Просвещение, 1988, 372с.
  3. Ковалева Г. И., Конкина Е. В. «Функциональный метод решения уравнений и неравенств», 2014 г.
  4. Кулагин Е. Д. «300 конкурсных задач по математике», 2013 г.
  5. Потапов М. К. «Уравнения и неравенства. Нестандартные методы решения» М. «Дрофа», 2012 г.
  6. .Барвенов С. А «Методы решения алгебраических уравнений», М. «Аверсэв», 2006 г.
  7. Супрун В.П. «Нестандартные методы решения задач по математике» — Минск «Полымя», 2010г
  8. Шабунин М.И. «Пособие по математике для поступающих в вузы», 2005г.
  9. Башмаков М.И. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. – М.: Просвещение, 2004. – 287с.
  10. Шаталова С. Урок – практикум по теме «Квадратные уравнения».- 2004.


источники:

http://tvorcheskie-proekty.ru/node/3678

http://school-science.ru/5/7/34001