No2 co no co2 уравнение нулевого порядка

МОЛЕКУЛЯРНОСТЬ И КИНЕТИЧЕСКИЙ ПОРЯДОК РЕАКЦИИ

К элементарным реакциям применимо понятие «молекулярность реакции», которое характеризует число частиц, участвующих в элементарном взаимодействии.

Различают моно-, би- и тримолекулярные реакции, в которых участвуют соответственно одна, две и три частицы.

PCl5(г) ⇄ PCl3(г) + Cl2(г) (мономолекулярная) = [PCl5]

I2(г) + H2(г) ⇄ 2HI(г) (бимолекулярная) = [I2][H2]

2NO(г) + Cl2(г) ⇄ 2NOCl(г) (тримолекулярная) = [NO] 2 [Cl2]

Столкновение четырех частиц одновременно невероятно. Максимально возможно столкновение трех частиц.

В случае сложных реакций совокупность элементарных стадий составляет механизм химической реакции. Стадия, имеющая наименьшую скорость, является определяющей и называется лимитирующей стадией реакции.

Порядок реакции определяет характер зависимости скорости от концентрации. Истинный порядок реакции определяется по уравнению, описывающему скорость лимитирующей стадии процесса, полученному из эксперимента. Таким образом, общий (суммарный) кинетический порядок реакции – сумма показателей степеней при концентрациях реагирующих веществ в уравнении лимитирующей скорости реакции, определенном экспериментально.

Так, если для реакции А + В + С продукты кинетическое уравнение, определенное экспериментально, имеет вид

= = ,

то n1 + n2 + n3 = n – общий кинетический порядок реакции; n1 , n2, n3 – порядок реакции по каждому из компонентов А, В, С; n1 , n2, n3 могут быть целыми или дробными числами.

Реакции, скорость которых не зависит от концентрации, имеют нулевой порядок.

Для элементарных процессов n1 , n2, n3 совпадают со стехиометрическими коэффициентами в уравнении реакции, т.е. молекулярность совпадает с общим кинетическим порядком реакции. Если уравнение реакции не отражает ее механизм, порядок реакции не зависит от стехиометрических коэффициентов.

Рассмотрим химическую реакцию:

Согласно уравнению реакции = [NO2][CO]. Экспериментально установленное уравнение скорости этой реакции = [NO2] 2 [ CO] 0 .

Поскольку порядок реакции не соответствует стехиометрическим коэффициентам ее полного уравнения, реакция не может протекать в одну стадию, которая включала бы столкновение между молекулами NO2 и CO. Установлено, что эта реакция протекает в две бимолекулярные стадии:

1) NO2(г) + NO2(г) → NO(г) + NO3(г) = [NO2] 2

2) NO3(г) + CO(г) → NO2(г) + CO2(г) = [NO3][CO]

Каждая из этих стадий называется элементарной реакцией. На первой стадии происходит столкновение двух молекул NO2, в результате чего атом кислорода переходит от одной из молекул NO2 к другой. Образовавшийся NO3 затем быстро передает атом кислорода молекуле CO, в результате чего получается молекула CO2 и молекула NO2.

Первая стадия является лимитирующей. Она определяет скорость процесса. Суммарный порядок полной реакции определяется молекулярностью лимитирующей стадии.

Частица NO3(г) является интермедиатом (промежуточным

продуктом) поскольку она не входит ни в число реагентов, ни в число продуктов, а лишь образуется в одной элементарной реакции и поглощается в следующей. В этой реакции показатели степени при концентрациях реагентов (два для диоксида азота и нуль для монооксида углерода) со стехиометрическими коэффициентами не совпадают. Они отражают молекулярность (и стехиометрию) лимитирующей стадии (1) и отсутствие влияния участников второй быстрой стадии на скорость реакции в целом. Энергетическая диаграмма этого процесса представлена на рис.1.

координата реакции
Eа1
NO2 + CO
ПС1
NO3 + NO
ПС2
NO + CO2

Рис.1 Энергетическая диаграмма двухстадийной реакции

– энергия активации первой (лимитирующей) стадии реакции, — энергия активации второй (быстрой) стадии реакции; ПС1 и ПС2 – переходные состояния.

Дата добавления: 2015-07-24 ; просмотров: 903 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Оксид азота IV: получение и химические свойства

Оксиды азотаЦветФазаХарактер оксида
N2O Оксид азота (I), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
NO Оксид азота (II), закись азота, «веселящий газ»бесцветныйгазнесолеобразующий
N2O3 Оксид азота (III), азотистый ангидридсинийжидкостькислотный
NO2 Оксид азота (IV), диоксид азота, «лисий хвост»бурыйгазкислотный (соответствуют две кислоты)
N2O5 Оксид азота (V), азотный ангидридбесцветныйтвердыйкислотный

Оксид азота (IV) — бурый газ. Очень ядовит! Для NO2 характерна высокая химическая активность.

Способы получения

1. Оксид азота (IV) образуется при окислении оксида азота (II) кислородом или озоном:

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

Например , при действии концентрированной азотной кислоты на медь:

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Например , при разложении нитрата серебра:

Химические свойства

1. Оксид азота (IV) реагирует с водой с образованием двух кислот — азотной и азотистой:

Если растворение NO2 в воде проводить в избытке кислорода , то образуется только азотная кислота:

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3 и NO:

При нагревании выделяется кислород:

2. При растворении оксида азота (IV) в щелочах образуются нитраты и нитриты:

В присутствии кислорода образуются только нитраты:

3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор , уголь , сера , оксид серы (IV) окисляется до оксида серы (VI):

4. Оксид азота (IV) димеризуется :


источники:

http://chemege.ru/oksid-azota-iv/