Нормальное уравнение плоскости в прямоугольных координатах

Нормальное уравнение плоскости

В данной статье мы рассмотрим нормальное уравнение плоскости. Приведем примеры построения нормального уравнения плоскости по углу наклона нормального вектора плоскости от осей Ox, Oy, Oz и по расстоянию r от начала координат до плоскости. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть в пространстве задана декартова прямоугольная система координат. Тогда нормальное уравнение плоскости Ω представляется следующей формулой:

xcosα+ycosβ+zcosγ−r=0,(1)

где r− расстояние от начала координат до плоскости Ω, а α,β,γ− это углы между единичным вектором n, ортогональным плоскости Ω и координатными осьями Ox, Oy, Oz, соответственно (Рис.1). (Если r>0, то вектор n направлен в сторону плоскости Ω, если же плоскость проходит через начало координат, то направление вектора n выбирается произвольной).

Выведем формулу (1). Пусть в пространстве задана декартова прямоугольная система координат и плоскость Ω (Рис.1). Проведем через начало координат прямую Q, перпендикулярную плоскости Ω, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение плоскости Ω через следующие параметры: длину отрезка и углы наклона α, β, γ между вектором n и осьями Ox, Oy, Oz, соответственно.

Так как вектор n является единичным вектором, то его проекции на Ox, Oy, Oz будут иметь следующие координаты:

n=<cosα, cosβ, cosγ>.(2)

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M (x,y, z). Точка M лежит на плоскости Ω тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

,(4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

.(5)

Учитывая, что n=<cosα, cosβ, cosγ>, , мы получим:

.(6)

Тогда из уравнений (3), (5), (6) следует:

xcosα+ycosβ+zcosγ=r,
xcosα+ycosβ+zcosγ−r=0.(7)

Мы получили нормальное уравнение плоскости Ω. Уравнение (7) (или (1)) называется также нормированным уравнением плоскости . Вектор n называется нормальным вектором плоскости .

Как было отмечено выше, число r в уравнении (1) показывает расстояние плоскости от начала координат. Поэтому, имея нормальное уравнение плоскости легко определить расстояние плоскости от начала координат. Для проверки, является ли данное уравнение плоскости уравнением в нормальном виде, нужно проверить длину нормального вектора этой плоскости и знак числа r, т.е. если |n|=1 и r>0, то данное уравнение является нормальным (нормированным) уравнением плоскости.

Пример 1. Задано следующее уравнение плоскости:

.(7)

Определить, является ли уравнение (7) нормальным уравнением плоскости и если да, то определить расстояние данной плоскости от начала координат.

Решение. Нормальный вектор плоскости имеет следующий вид:

Определим длину вектора n:

Ответ: Длина вектора n равна 1, , следовательно уравнение (7) является нормальным уравнением плоскости, а − это расстояние плоскости от начала координат.

Приведение общего уравнения плоскости к нормальному виду

Ax+By+Cz+D=0.(8)

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Утрерждение 2 статьи «Общее уравнение плоскости»), то существует такое число t, что

tA=cosα, tB=cosβ, tC=cosγ, tD=−r.(9)

Возвышая в квадрат первые три равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 +() 2 =cos 2 α+cos 2 β+cos 2 γ=1.(10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 +t 2 C 2 =t 2 (A 2 +B 2 +C 2 )=1,
.(11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B, C не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на четвертое равенство в (9). Так как r−это расстояние от начала координат до плоскости, то r≥0. Тогда произведение tD должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку D.

Подставляя в (1) вместо cosα, cosβ, cosγ и −r значения из (9), получим tAx+tBy+tCz+tD=0. Т.е. для приведения общего уравенения плоскости к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение плоскости

2x−3y+6z+4=0.(12)

Построить нормальное уравнение плоскости (12).

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=6, D=4. Вычислим t из равенства (11):

.

Так как D>0, то знак t отрицательный:

.

Умножим уравнение (12) на t:

.

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

.

Отметим, что число является расстоянием от начала координат до прямой (12).

∀ x, y, z

Главная ≫ Форум ≫ Математика ≫ Уравнение плоскости. Расстояние от точки до плоскости

Уравнение плоскости. Расстояние от точки до плоскости

Сообщения: 2 🔎
# 1 Июл 2016 18:45:00
Evgeniy

Общее уравнение плоскости

Утверждение. Всякое уравнение первой степени вида , где , и — некоторые действительные числа, где 0$» title=»$A^2+B^2+C^2>0$»>, то есть , и одновременно не равны нулю, задает плоскость в прямоугольной системе координат , и обратно, любая плоскость в прямоугольной системе координат задается уравнением вида при некотором наборе значений , и .

Утверждение состоит из двух частей.

Докажем сначала, что уравнение вида задает плоскость.

Всегда найдется точка , координаты которой удовлетворяют уравнению , то есть, . Это следует из того, что система линейных уравнений, состоящая из одного уравнения , всегда имеет решение.

Вычтем из левой и правой частей уравнения соответственно левую и правую части равенства , при этом получаем эквивалентное уравнение вида .

Уравнение представляет собой необходимое и достаточное условие перпендикулярности двух векторов и . То есть, множество всех точек определяет в прямоугольной системе координат плоскость, перпендикулярную направлению вектора .

Таким образом, уравнение задает плоскость в прямоугольной декартовой системе координат , следовательно, эквивалентное ему уравнение вида задает эту же прямую. Таким образом, первая часть утверждения доказана.

Теперь докажем обратное, что всякая плоскость в прямоугольной системе координат определяется уравнением вида .

Пусть в прямоугольной системе координат задана плоскость , проходящая через точку , причем — нормальный вектор плоскости , и пусть — произвольная точка этой плоскости. Тогда векторы и перпендикулярны, следовательно, их скалярное произведение равно нулю, то есть, . Полученное равенство можно переписать в виде . Если обозначить , то получим уравнение , которое соответствует плоскости .

Итак, доказательство утверждения завершено.

# 1 Июл 2016 19:04:43
Evgeniy

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Уравнение плоскости вида называется нормальным уравнением плоскости, если длина вектора нормали равна единице, то есть , и кроме того принимается соглашение, что коэффициент .

Обычно нормальное уравнение плоскости записывают в виде:

Здесь — направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , причем . Кроме того с учетом соглашения о знаке свободного коэффициента .

Найдем расстояние от произвольной точки до плоскости , которая задана нормальным уравнением .

Пусть — произвольная точка плоскости . Тогда расстояние от точки до плоскости будет равно длине проекции вектора на нормаль .

Проекция вектора на нормаль выражается через скалярное произведение:

Если в качестве точки взять начало координат , то получим . Отсюда, в частности, следует, что расстояние от начала координат до плоскости равно .

Если изначально не накладывать ограничения на знак , то величина будет положительной в том случае, если точка лежит в полупространстве относительно плоскости , в которую направлен вектор , будет отрицательной в случае, если точка лежит в полупространстве относительно плоскости , в которую направлен вектор , и будет нулевой, если точка принадлежит плоскости .

Поскольку по принятому соглашению и при этом значение , то можно сделать вывод, что условие определяет направление вектора нормали так, что он направлен из начала координат к плоскости.

Таким образом, можно заключить, что значение будет отрицательным, если точка находится в одном полупространстве с началом координат , будет положительным, если точка не находится в одном полупространстве с началом координат , и будет нулевым, если принадлежит самой плоскости.

Нормальное уравнение плоскости: описание, примеры, решение задач

Статья раскрывает суть нормального (нормированного) уравнения и показывает, при каких видах задач его чаще всего применяют. Рассмотрим выведение нормального уравнения плоскости с примерами решений. Приведем примеры приведения общего уравнения плоскости к нормальному виду. Решим задачи по нахождению расстояния от точки до плоскости при помощи нормального уравнения плоскости.

Нормальное уравнение плоскости – описание и пример

Возьмем прямоугольную систему координат О х у z трехмерного пространства. Если плоскость удалена на расстояние p ≥ 0 в положительном направлении нормального вектора n → . Возьмем за единицу длину вектора n → . Получим, что координатами направляющего косинуса являются n → = ( cos α , cos β , cos γ ) , тогда n → = cos 2 α , cos 2 β , cos 2 γ = 1 .

Примем обозначение O N за расстояние от точки до плоскости, таким образом, точка N принадлежит плоскости, где длиной отрезка O N будет значение p . Представим это на рисунке, изображенном ниже.

Теперь найдем уравнение заданной плоскости.

В трехмерном пространстве обозначим точку M ( x , y , z ) . Отсюда получим, что O M → , являющийся ее радиус вектором, с координатами ( x , y , z ) . Запись примет вид O M → = ( x , y , z ) . Отсюда получаем, что плоскость определена множеством точек M ( x , y , z ) , тогда числовая проекция вектора O M → по направлению n → равна значению p . Запись принимает вид n p n → O M → = p . Рассмотрим на приведенном ниже рисунке.

Из вышесказанного получим, что определение скалярного произведения векторов по формуле n → = ( cos α , cos β , cos γ ) и O M → = ( x , y , z ) в результате дают равенство

n → , O M → = n → · O M → · cos n ⇀ , O M → ^ = n → · n p n → O M → = 1 · p = p

Данная формула представляет скалярное произведение в координатной форме. Тогда получаем следующее выражение:

n → , O M → = cos α · x + cos β · y + cos γ · z

При сопоставлении двух последних равенств получаем уравнение плоскости такого вида cos α · x + cos β · y + cos γ · z = p . Упростим выражения. Для этого необходимо перенести значение p в левую сторону, получим cos α · x + cos β · y + cos γ · z — p = 0 .

cos α · x + cos β · y + cos γ · z — p = 0 называют нормальным уравнением плоскости или уравнением плоскости в нормальном виде. Реже его называют нормированным уравнением заданной плоскости.

Теперь заданное в прямоугольной системе координат О х у z нормальное уравнение принимает вид cos α · x + cos β · y + cos γ · z — p = 0 . Р имеет значение расстояния положительного направления единичного нормального вектора плоскости n → = ( cos α , cos β , cos γ ) .

Чаще всего косинус не представляется явно в уравнении плоскости, потому как cos α , cos β и cos γ является некоторыми действительными числами, сумма квадратов которых равна единице.

Рассмотрим пример нормального уравнения плоскости.

Если имеется плоскость, заданная в прямоугольной системе координат O x y z при помощи уравнения нормального вида, — 1 4 · x — 3 4 · y + 6 4 · z — 7 = 0 .

Отсюда cos α = — 1 4 , cos β = — 3 4 , cos γ = 6 4 .

Из выражения находим, что — 1 4 , — 3 4 , 6 4 — координаты нормального вектора плоскости n → . Его длина вычисляется из формулы n → = — 1 4 2 + — 3 4 2 + 6 4 2 = 1 . Плоскость располагается относительно координат в направлении вектора n → на расстоянии 7 единиц, потому как p = 7 .

Отсюда ясно, что нормальное уравнение плоскости представляет собой общее уравнение плоскости A x + B y + C z + D = 0 , где A , B , C – некоторые действительные числа, при которых длина нормального вектора плоскости n → = ( A , B , C ) равняется 1 , причем D является неотрицательным числом.

Чтобы выявить, является представленное уравнение нормальным уравнением плоскости, необходимо выполнение обоих условий n → = cos 2 α + cos 2 β + cos 2 γ = 1 и p ≥ 0 , тогда получим уравнение плоскости нормального вида. При невыполнении хотя бы одного условия, уравнение не является нормальным.

Рассмотрим на примере.

Выявить уравнение плоскости нормального вида из заданных уравнений:

1 7 x — 4 7 y + 4 2 7 — 3 = 0 1 3 x + 7 6 y — 5 6 z + 2 5 = 0 1 3 x + 1 2 y + 1 4 z — 11 = 0

Начнем решение с первого уравнения. Для этого необходимо проверить, равняется ли длина нормального вектора n → = 1 7 , — 4 7 , 4 2 7 единице.

Вычисляем длину по формуле и получаем: n → = 1 7 2 + — 4 7 2 + 4 2 7 2 = 1 49 + 16 49 + 32 49 = 1

Необходимо поработать с числом p , так как его значение должно быть положительным. Это верно, так как p = 3 . Значит, первое заданное уравнение плоскости можно считать уравнением плоскости в нормальном виде.

Второе уравнение из заданных нельзя считать нормальным уравнением плоскости, так как условие p ≥ 0 не выполняется, ибо в данном уравнении p = — 2 5 .

Третье уравнение имеет нормальный вектор с координатами n → = 1 3 , 1 2 , 1 4 , длина которого не равняется единице из вычислений:

n → = 1 3 2 + 1 2 2 + 1 4 2 = 1 9 + 1 4 + 1 16 = 61 12 ≠ 1

Отсюда следует, что его нельзя считать за уравнение плоскости в нормальном виде.

Ответ: 1 7 x — 4 7 y + 4 2 7 z — 3 = 0 уравнение является нормальным уравнением плоскости.

Приведение общего уравнения плоскости к нормальному виду

Для приведения уравнения плоскости A x + B y + C z + D = 0 к нормальному виду, обе части умножаются на нормированный множитель ± 1 A 2 + B 2 + C 2 . Знак определятся по числу D , он должен быть противоположным значения числа D .

Когда D = 0 , знак может быть любым.

Нормальным уравнением плоскости считается общее уравнение плоскости после умножения на нормирующий множитель, потому как длина вектора с кооординатами ± A A 2 + B 2 + C 2 , ± B A 2 + B 2 + C 2 , ± C A 2 + B 2 + C 2 равна 1 .

Отсюда получаем, что ± A A 2 + B 2 + C 2 , ± B A 2 + B 2 + C 2 , ± C A 2 + B 2 + C 2 = A 2 + B 2 + C 2 A 2 + B 2 + C 2 = 1 .

Знак множителя необходим для того, что проверять выполнимость условия p ≥ 0 .

Привести уравнение 2 x — 3 y + z + 5 = 0 к нормальному виду.

Из условия имеем, что A = 2 , B = — 3 , C = 1 , D = 5 . Исходя из того, что D является положительным числом, нормирующий множитель дожжен иметь противоположный знак. Отсюда получим, что получим отрицательный результат.

— 1 A 2 + B 2 + C 2 = — 1 2 2 + ( — 3 ) 2 + 1 2 = — 1 14

Чтобы получить искомое нормальное уравнение плоскости, обе части уравнения необходимо умножить на нормирующий множитель. Получим:

— 1 14 · 2 x — 3 y + z + 5 = — 1 14 · 0 ⇔ ⇔ — 2 14 x + 3 14 y — 1 14 z — 5 14 = 0

Ответ: — 2 14 x + 3 14 y — 1 14 z — 5 14 = 0 .

Написать нормальное уравнение плоскости, если оно задано уравнением 3 x — 4 z = 0 прямоугольной системы координат O x y z .

Из условия видно, что A = 3 , B = 0 , C = — 4 , D = 0 . Знака перед множителем нет, потому как D = 0 . Значит, возьмем со знаком « + ». Получаем выражение вида:

1 A 2 + B 2 + C 2 = 1 3 2 + 0 2 + ( — 4 ) 2 = 1 5

При умножении обеих частей уравнения на нормирующий множитель, получаем уравнение плоскости нормального вида 3 5 x — 4 5 z = 0 .

Ответ: 3 5 x — 4 5 z = 0 .

Нахождение расстояния от точки до плоскости

Теперь раскроем тему нормального уравнения плоскости, где уравнение плоскости нормального вида применимо для нахождения расстояния от заданной точки в пространстве до плоскости.

При заданной системе координат О х у z трехмерного пространства имеем плоскость с уравнением cos α · x + cos β · y + cos γ · z — p = 0 , где необходимо определить расстояние от p до точки M 0 ( x 0 , y 0 , z 0 ) заданной плоскости. Его вычисляют по формуле p = cos α · x 0 + cos β · y 0 + cos γ · z 0 — p . Само расстояние является числом, которое получается при подстановке координат точки в левую сторону уравнения. Для вывода формулы необходимо обратиться к статье расстояния от точки до плоскости.

Имеется уравнение плоскости вида — 1 3 x + 2 3 y — 2 3 z — 1 = 0 , которое располагается в прямоугольной системе координат. Определить расстояние от точки с координатами M 0 ( 1 , — 3 , 0 ) до плоскости.

Координаты точки M необходимо подставить в левую часть уравнения плоскости. Тогда получаем:

— 1 3 · 1 + 2 3 · ( — 3 ) — 2 3 · 0 — 1 = 0

Искомое расстояние – величина абсолютная, значит p = — 3 1 3 = 3 1 3 .

Если плоскость задана другим уравнением, а необходимо произвести вычисление от заданной точки до плоскости, необходимо привести уравнение к виду нормального уравнения плоскости, используя формулу p = cos α · x 0 + cos β · y 0 + cos γ · z 0 — p .

Найти расстояние от заданной точки с координатами M 0 ( 5 , — 1 , 2 ) до плоскости x 5 + y — 2 + z 4 = 1 .

По условию имеем уравнение плоскости в отрезках. Это значит, что необходимо привести его к нормальному уравнению плоскости. Для этого переходим к общему уравнению, после чего приведем к нормальному виду.

Получаем: x 5 + y — 2 + z 4 = 1 ⇔ 1 5 x — 1 2 y + 1 4 z — 1 = 0

Для вычисления нормирующего множителя применяем: 1 1 5 2 + — 1 2 2 + 1 4 2 = 1 141 25 · 16 = 20 141

Обе части уравнения 1 5 x — 1 2 y + 1 4 z — 1 = 0 умножаем на нормирующий множитель. Теперь получено нормальное уравнение исходной плоскости вида:

4 141 x — 10 141 y + 5 141 z — 20 141 = 0

Отсюда видно, что cos α = 4 141 , cos β = — 10 141 , cos γ = 5 141 , p = — 20 141 , x 0 = 5 , y 0 = — 1 , z 0 = 2

Все имеющиеся данные помогут использовать формулу для нахождения искомого расстояния от точки до плоскости:

p = cos α · x 0 + cos β · y 0 + cos γ · z 0 — p = 4 141 · 5 — 10 141 · — 1 + 5 141 · 2 — 20 141 = 20 141


источники:

http://forany.xyz/t-206

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnoe-uravnenie-ploskosti/