Нормированное уравнение прямой и плоскости

Нормированное уравнение прямой

Пусть l — произвольная прямая (рис. 102).

Обозначим через p расстояние от начала координат до прямой l, а через φ — угол между осью Ох и нормальным вектором прямой l. Угол будем отсчитывать от оси Оx в направлении, противоположном движению часовой стрелки. Очевидно, что положение прямой на плоскости полностью определяется заданием величин p и φ. Выразим коэффициенты уравнения прямой l через p и φ.

Пусть M0 — точка пересечения прямой l и перпендикулярной ей прямой, проходящей через начало координат, n0 — единичный нормальный вектор прямой l, т. е. |n0| = 1. Координаты точки M0 и вектора n0 выражаются через заданные величины p и φ следующим образом:

Известно уравнение прямой, проходящей через точку (х0; у0) с нормальным вектором <А; В):

Подставив в это уравнение координаты точки M0 и вектора n0, получим

cos φ <x — p cos φ) + sin φ (у — р sin φ) = 0,

х cos φ + у sin φ — р (cos 2 φ + sin 2 φ) = 0.

В результате приходим к уравнению

х cos φ + у sin φ — р = 0.

Оно называется нормированным уравнением прямой.

В нормированном уравнении все коэффициенты имеют геометрический смысл: коэффициенты при переменных х и у — координаты единичного нормального вектора прямой; свободный член (-р) равен расстоянию от начала координат до прямой, взятому со знаком «минус». Подчеркнем еще раз, что в нормированном уравнении прямой свободный член меньше или равен нулю.

Рассмотрим, например, уравнение х — у + 5√ 2 = 0. Оно не является нормированным: вектор (1; -1) не единичный, так как | n | =√ 2 =/=1; свободный член уравнения положителен. Умножим обе части уравнения на (- 1 / 2 ). Тогда уравнение прямой примет вид

и станет нормированным, так как теперь вектор (- 1 / 2 ; 1 / 2 ) очевидно, единичный, а свободный член уравнения отрицателен. Нормальный вектор рассматриваемой прямой образует с осью Оx угол φ такой, что cos φ = — 1 / 2 , sin φ = 1 / 2 ,

т. е. φ = 135°. Прямая проходит на расстоянии 5 единиц длины от начала координат.

Общее уравнение прямой

всегда можно привести к нормированному виду (нормировать). Если С 0 сводится к предыдущему умножением обеих частей уравнения на -1. Поэтому, если С > 0, то за нормирующий множитель следует взять число \( -\frac<1><\sqrt> \)

Задача. Вычислить расстояние от начала координат до прямой 6x — 8y + 25 = 0.

Тaк как С = 25 > 0, то, умножив обе части уравнения на нормирующий множитель

получим нормированное уравнение данной прямой

Учитывая геометрический смысл свободного члена нормированного уравнения прямой, видим, что искомое расстояние равно 2,5.

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

xcosφ+ysinφ−r=0,(1)

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

n=<cosφ, sinφ>.(2)

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

,(4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

.(5)

Учитывая, что n=<cosφ, sinφ>, , мы получим:

.(6)

Тогда из уравнений (3), (5), (6) следует:

xcosφ+ysinφ=r
xcosφ+ysinφ−r=0.(7)

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой .

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

,

Подставляя вычисленные значения в (7) получим:

.
.

Приведение общего уравнения прямой на плоскости к нормальному виду

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

tAx=cosφ, tB=sinφ, tC=−r.(9)

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 =cos 2 φ+sin 2 φ=1.(10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 =t 2 (A 2 +B 2 )=1,
.(11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Нормальное уравнение прямой на плоскости, расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведём через начало координат прямую n, перпендикулярно данной и назовём её нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L. На нормали введём направление от точки O к точке N.

Обозначим через угол, на которой нужно повернуть против часовой стрелки ось Ox до совмещения её положительного направления с направлением нормали, через p длину отрезка ON.

. (1)

будет нормальным уравнением прямой.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой. Пусть — точка, не лежащая на прямой, заданной нормальным уравнением. Требуется определить расстояние d от точки до прямой. Это расстояние определяется по формуле

. (2)

Общее уравнение прямой можно привести к нормальному виду. Пусть

— общее уравнение прямой, а

— её нормальное уравнение.

Так как оба уравнения определяют одну и ту же прямую, их коэффициенты пропорциональны.

Очевидно, для получения нормального уравнения следует все члены общего уравнения умножить на постоянный множитель , вычисляемый по формуле

. (3)

В этой формуле берётся знак, противоположный знаку C в общем уравнении прямой.

Таким образом, получаем уравнение

, (4)

которое и будет нормальным уравнением прямой на плоскости.

Пример 1. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 2. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 3. Найти расстояние от точки до прямой .

Решение. Приведём данное уравнение к нормальному виду. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем нормальное уравнение:

.

По формуле (2) находим искомое расстояние:

.


источники:

http://matworld.ru/analytic-geometry/normalnoe-uravnenie-prjamoj.php

http://function-x.ru/line6.html