Нормированное уравнение прямой на плоскости

Нормальное уравнение прямой на плоскости, расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведём через начало координат прямую n, перпендикулярно данной и назовём её нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L. На нормали введём направление от точки O к точке N.

Обозначим через угол, на которой нужно повернуть против часовой стрелки ось Ox до совмещения её положительного направления с направлением нормали, через p длину отрезка ON.

. (1)

будет нормальным уравнением прямой.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой. Пусть — точка, не лежащая на прямой, заданной нормальным уравнением. Требуется определить расстояние d от точки до прямой. Это расстояние определяется по формуле

. (2)

Общее уравнение прямой можно привести к нормальному виду. Пусть

— общее уравнение прямой, а

— её нормальное уравнение.

Так как оба уравнения определяют одну и ту же прямую, их коэффициенты пропорциональны.

Очевидно, для получения нормального уравнения следует все члены общего уравнения умножить на постоянный множитель , вычисляемый по формуле

. (3)

В этой формуле берётся знак, противоположный знаку C в общем уравнении прямой.

Таким образом, получаем уравнение

, (4)

которое и будет нормальным уравнением прямой на плоскости.

Пример 1. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 2. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 3. Найти расстояние от точки до прямой .

Решение. Приведём данное уравнение к нормальному виду. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем нормальное уравнение:

.

По формуле (2) находим искомое расстояние:

.

Нормальное уравнение прямой

В данной статье мы рассмотрим нормальное уравнение прямой на плоскости. Приведем примеры построения нормального уравнения прямой по углу наклона нормального вектора прямой от оси Ox и по расстоянию от начала координат до прямой. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть на плоскости задана декартова прямоугольная система координат. Тогда нормальное уравнение прямой L на плоскости представляется следующей формулой:

xcosφ+ysinφ−r=0,(1)

где r− расстояние от начала координат до прямой L, а φ− это угол между нормальным вектором n прямой L и осью Ox. (Если r>0, то нормальный вектор n направлен в сторону прямой L).

Выведем формулу (1). Пусть на плоскости задана декартова прямоугольная система координат и прямая L (Рис.1). Проведем через начало координат прямую Q, перпендикулярную прямой L, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение прямой L через два параметра: длину отрезка и угол φ между вектором n и осью Ox.

Так как вектор n является единичным вектором, то его проекции на Ox и Oy будут иметь следующие координаты:

n=<cosφ, sinφ>.(2)

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M(x,y). Точка M лежит на прямой L тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

,(4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

.(5)

Учитывая, что n=<cosφ, sinφ>, , мы получим:

.(6)

Тогда из уравнений (3), (5), (6) следует:

xcosφ+ysinφ=r
xcosφ+ysinφ−r=0.(7)

Мы получили нормальное уравнение прямой L. Уравнение (7) (или (1)) называется также нормированным уравнением прямой .

Пример 1. Построить нормальное уравнение прямой, нормальный вектор которого с осью Ox имеет угол φ=60°, а расстояние от начала координат до прямой составляет 4.

Решение. Имеем: φ=60°, r=4. Вычисляем:

,

Подставляя вычисленные значения в (7) получим:

.
.

Приведение общего уравнения прямой на плоскости к нормальному виду

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Замечание 1 статьи «Общее уравнение прямой на плоскости»), то существует такое число t, что

tAx=cosφ, tB=sinφ, tC=−r.(9)

Возвышая в квадрат первые два равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 =cos 2 φ+sin 2 φ=1.(10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 =t 2 (A 2 +B 2 )=1,
.(11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на третье равенство в (9). Так как r−это расстояние от начала координат до прямой, то r≥0. Тогда произведение tC должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку C.

Подставляя в (1) вместо cosφ, sinφ, и −r значения из (9), получим tAx+tBy+tC=0. Т.е. для приведения общего уравенения прямой к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение прямой

Построить нормальное уравнение прямой.

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=4. Вычислим t из равенства (11):

Так как C>0, то знак t отрицательный:

Умножим уравнение (12) на t:

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

Отметим, что число является расстоянием от начала координат до прямой (12).

Нормированное уравнение прямой

Пусть l — произвольная прямая (рис. 102).

Обозначим через p расстояние от начала координат до прямой l, а через φ — угол между осью Ох и нормальным вектором прямой l. Угол будем отсчитывать от оси Оx в направлении, противоположном движению часовой стрелки. Очевидно, что положение прямой на плоскости полностью определяется заданием величин p и φ. Выразим коэффициенты уравнения прямой l через p и φ.

Пусть M0 — точка пересечения прямой l и перпендикулярной ей прямой, проходящей через начало координат, n0 — единичный нормальный вектор прямой l, т. е. |n0| = 1. Координаты точки M0 и вектора n0 выражаются через заданные величины p и φ следующим образом:

Известно уравнение прямой, проходящей через точку (х0; у0) с нормальным вектором <А; В):

Подставив в это уравнение координаты точки M0 и вектора n0, получим

cos φ <x — p cos φ) + sin φ (у — р sin φ) = 0,

х cos φ + у sin φ — р (cos 2 φ + sin 2 φ) = 0.

В результате приходим к уравнению

х cos φ + у sin φ — р = 0.

Оно называется нормированным уравнением прямой.

В нормированном уравнении все коэффициенты имеют геометрический смысл: коэффициенты при переменных х и у — координаты единичного нормального вектора прямой; свободный член (-р) равен расстоянию от начала координат до прямой, взятому со знаком «минус». Подчеркнем еще раз, что в нормированном уравнении прямой свободный член меньше или равен нулю.

Рассмотрим, например, уравнение х — у + 5√ 2 = 0. Оно не является нормированным: вектор (1; -1) не единичный, так как | n | =√ 2 =/=1; свободный член уравнения положителен. Умножим обе части уравнения на (- 1 / 2 ). Тогда уравнение прямой примет вид

и станет нормированным, так как теперь вектор (- 1 / 2 ; 1 / 2 ) очевидно, единичный, а свободный член уравнения отрицателен. Нормальный вектор рассматриваемой прямой образует с осью Оx угол φ такой, что cos φ = — 1 / 2 , sin φ = 1 / 2 ,

т. е. φ = 135°. Прямая проходит на расстоянии 5 единиц длины от начала координат.

Общее уравнение прямой

всегда можно привести к нормированному виду (нормировать). Если С 0 сводится к предыдущему умножением обеих частей уравнения на -1. Поэтому, если С > 0, то за нормирующий множитель следует взять число \( -\frac<1><\sqrt> \)

Задача. Вычислить расстояние от начала координат до прямой 6x — 8y + 25 = 0.

Тaк как С = 25 > 0, то, умножив обе части уравнения на нормирующий множитель

получим нормированное уравнение данной прямой

Учитывая геометрический смысл свободного члена нормированного уравнения прямой, видим, что искомое расстояние равно 2,5.


источники:

http://matworld.ru/analytic-geometry/normalnoe-uravnenie-prjamoj.php

http://razdupli.ru/teor/115_normirovannoe-uravnenie-pryamoj.php