Нормирующий множитель для общего уравнения

Нормальное уравнение прямой на плоскости, расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведём через начало координат прямую n, перпендикулярно данной и назовём её нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L. На нормали введём направление от точки O к точке N.

Обозначим через угол, на которой нужно повернуть против часовой стрелки ось Ox до совмещения её положительного направления с направлением нормали, через p длину отрезка ON.

. (1)

будет нормальным уравнением прямой.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой. Пусть — точка, не лежащая на прямой, заданной нормальным уравнением. Требуется определить расстояние d от точки до прямой. Это расстояние определяется по формуле

. (2)

Общее уравнение прямой можно привести к нормальному виду. Пусть

— общее уравнение прямой, а

— её нормальное уравнение.

Так как оба уравнения определяют одну и ту же прямую, их коэффициенты пропорциональны.

Очевидно, для получения нормального уравнения следует все члены общего уравнения умножить на постоянный множитель , вычисляемый по формуле

. (3)

В этой формуле берётся знак, противоположный знаку C в общем уравнении прямой.

Таким образом, получаем уравнение

, (4)

которое и будет нормальным уравнением прямой на плоскости.

Пример 1. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 2. Привести общее уравнение прямой к нормальному виду.

Решение. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем:

.

Пример 3. Найти расстояние от точки до прямой .

Решение. Приведём данное уравнение к нормальному виду. Вычисляем нормирующий множитель:

(знак, противоположный C).

Умножаем все члены общего уравнения на нормирующий множитель и получаем нормальное уравнение:

.

По формуле (2) находим искомое расстояние:

.

Нормированное уравнение прямой

Пусть l — произвольная прямая (рис. 102).

Обозначим через p расстояние от начала координат до прямой l, а через φ — угол между осью Ох и нормальным вектором прямой l. Угол будем отсчитывать от оси Оx в направлении, противоположном движению часовой стрелки. Очевидно, что положение прямой на плоскости полностью определяется заданием величин p и φ. Выразим коэффициенты уравнения прямой l через p и φ.

Пусть M0 — точка пересечения прямой l и перпендикулярной ей прямой, проходящей через начало координат, n0 — единичный нормальный вектор прямой l, т. е. |n0| = 1. Координаты точки M0 и вектора n0 выражаются через заданные величины p и φ следующим образом:

Известно уравнение прямой, проходящей через точку (х0; у0) с нормальным вектором <А; В):

Подставив в это уравнение координаты точки M0 и вектора n0, получим

cos φ <x — p cos φ) + sin φ (у — р sin φ) = 0,

х cos φ + у sin φ — р (cos 2 φ + sin 2 φ) = 0.

В результате приходим к уравнению

х cos φ + у sin φ — р = 0.

Оно называется нормированным уравнением прямой.

В нормированном уравнении все коэффициенты имеют геометрический смысл: коэффициенты при переменных х и у — координаты единичного нормального вектора прямой; свободный член (-р) равен расстоянию от начала координат до прямой, взятому со знаком «минус». Подчеркнем еще раз, что в нормированном уравнении прямой свободный член меньше или равен нулю.

Рассмотрим, например, уравнение х — у + 5√ 2 = 0. Оно не является нормированным: вектор (1; -1) не единичный, так как | n | =√ 2 =/=1; свободный член уравнения положителен. Умножим обе части уравнения на (- 1 / 2 ). Тогда уравнение прямой примет вид

и станет нормированным, так как теперь вектор (- 1 / 2 ; 1 / 2 ) очевидно, единичный, а свободный член уравнения отрицателен. Нормальный вектор рассматриваемой прямой образует с осью Оx угол φ такой, что cos φ = — 1 / 2 , sin φ = 1 / 2 ,

т. е. φ = 135°. Прямая проходит на расстоянии 5 единиц длины от начала координат.

Общее уравнение прямой

всегда можно привести к нормированному виду (нормировать). Если С 0 сводится к предыдущему умножением обеих частей уравнения на -1. Поэтому, если С > 0, то за нормирующий множитель следует взять число \( -\frac<1><\sqrt> \)

Задача. Вычислить расстояние от начала координат до прямой 6x — 8y + 25 = 0.

Тaк как С = 25 > 0, то, умножив обе части уравнения на нормирующий множитель

получим нормированное уравнение данной прямой

Учитывая геометрический смысл свободного члена нормированного уравнения прямой, видим, что искомое расстояние равно 2,5.

Нормальное уравнение плоскости

В данной статье мы рассмотрим нормальное уравнение плоскости. Приведем примеры построения нормального уравнения плоскости по углу наклона нормального вектора плоскости от осей Ox, Oy, Oz и по расстоянию r от начала координат до плоскости. Представим метод приведения общего уравнения прямой к нормальному виду. Рассмотрим численные примеры.

Пусть в пространстве задана декартова прямоугольная система координат. Тогда нормальное уравнение плоскости Ω представляется следующей формулой:

xcosα+ycosβ+zcosγ−r=0,(1)

где r− расстояние от начала координат до плоскости Ω, а α,β,γ− это углы между единичным вектором n, ортогональным плоскости Ω и координатными осьями Ox, Oy, Oz, соответственно (Рис.1). (Если r>0, то вектор n направлен в сторону плоскости Ω, если же плоскость проходит через начало координат, то направление вектора n выбирается произвольной).

Выведем формулу (1). Пусть в пространстве задана декартова прямоугольная система координат и плоскость Ω (Рис.1). Проведем через начало координат прямую Q, перпендикулярную плоскости Ω, и точку пересечения обозначим через R. На этой прямой выделим единичный вектор n, с направлением, совпадающим с вектором . (Если точки O и R совпадают, то направление n можно взять произвольным).

Выразим уравнение плоскости Ω через следующие параметры: длину отрезка и углы наклона α, β, γ между вектором n и осьями Ox, Oy, Oz, соответственно.

Так как вектор n является единичным вектором, то его проекции на Ox, Oy, Oz будут иметь следующие координаты:

n=<cosα, cosβ, cosγ>.(2)

Обозначим через r расстояние от начала координат до точки R. Рассмотрим, теперь, точку M (x,y, z). Точка M лежит на плоскости Ω тогда и только тогда, когда проекция вектора на прямую R равна r, т.е.

(3)

Скалярное произведение векторов n и имеет следующий вид:

,(4)

где − обозначен скалярное произведение векторов n и , а | · |− норма (длина) вектора, α−угол между векторами n и .

Поскольку n единичный вектор, то (4) можно записать так:

.(5)

Учитывая, что n=<cosα, cosβ, cosγ>, , мы получим:

.(6)

Тогда из уравнений (3), (5), (6) следует:

xcosα+ycosβ+zcosγ=r,
xcosα+ycosβ+zcosγ−r=0.(7)

Мы получили нормальное уравнение плоскости Ω. Уравнение (7) (или (1)) называется также нормированным уравнением плоскости . Вектор n называется нормальным вектором плоскости .

Как было отмечено выше, число r в уравнении (1) показывает расстояние плоскости от начала координат. Поэтому, имея нормальное уравнение плоскости легко определить расстояние плоскости от начала координат. Для проверки, является ли данное уравнение плоскости уравнением в нормальном виде, нужно проверить длину нормального вектора этой плоскости и знак числа r, т.е. если |n|=1 и r>0, то данное уравнение является нормальным (нормированным) уравнением плоскости.

Пример 1. Задано следующее уравнение плоскости:

.(7)

Определить, является ли уравнение (7) нормальным уравнением плоскости и если да, то определить расстояние данной плоскости от начала координат.

Решение. Нормальный вектор плоскости имеет следующий вид:

Определим длину вектора n:

Ответ: Длина вектора n равна 1, , следовательно уравнение (7) является нормальным уравнением плоскости, а − это расстояние плоскости от начала координат.

Приведение общего уравнения плоскости к нормальному виду

Ax+By+Cz+D=0.(8)

Так как уравнения (1) и (8) должны определять одну и ту же прямую (Утрерждение 2 статьи «Общее уравнение плоскости»), то существует такое число t, что

tA=cosα, tB=cosβ, tC=cosγ, tD=−r.(9)

Возвышая в квадрат первые три равенства в (9) и складывая их, получим:

(tA) 2 +(tB) 2 +() 2 =cos 2 α+cos 2 β+cos 2 γ=1.(10)

Упростим выражение и найдем t:

t 2 A 2 +t 2 B 2 +t 2 C 2 =t 2 (A 2 +B 2 +C 2 )=1,
.(11)

Знаменатель в (11) отличен от нуля, т.к. хотя бы один из коэффициентов A, B, C не равен нулю (в противном случае (8) не представлял бы уравнение прямой).

Выясним, какой знак имеет t. Обратим внимание на четвертое равенство в (9). Так как r−это расстояние от начала координат до плоскости, то r≥0. Тогда произведение tD должна иметь отрицательный знак. Т.е. знак t в (11) должен быть противоположным знаку D.

Подставляя в (1) вместо cosα, cosβ, cosγ и −r значения из (9), получим tAx+tBy+tCz+tD=0. Т.е. для приведения общего уравенения плоскости к нормальному виду, нужно заданное уравнение умножить на множитель (11). Множитель (11) называется нормирующим множителем .

Пример 2. Задано общее уравнение плоскости

2x−3y+6z+4=0.(12)

Построить нормальное уравнение плоскости (12).

Решение. Из уравнения (12) можно записать: A=2, B=−3, C=6, D=4. Вычислим t из равенства (11):

.

Так как D>0, то знак t отрицательный:

.

Умножим уравнение (12) на t:

.

Ответ. Нормальное уравнение прямой (12) имеет следующий вид:

.

Отметим, что число является расстоянием от начала координат до прямой (12).


источники:

http://razdupli.ru/teor/115_normirovannoe-uravnenie-pryamoj.php

http://matworld.ru/analytic-geometry/normalnoe-uravnenie-ploskosti.php