О некоторых дифференциальных уравнениях математической

Статьи

23.03.02 09:10Роль теории дифференциальных уравнений в современной математике и ее приложениях

Роль теории дифференциальных уравнений в современной математике и ее приложениях

(Олейник О.А. , 1996)
Московский государственный университет
им. М.В. Ломоносова

В статье изложены характерные особенности теории дифференциальных уравнений. Эта теория возникла из приложений и в настоящее время самым тесным образом связана с приложениями. Она оказывает большое влияние на развитие других областей математики.

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Чтобы охарактеризовать ее место в современной математической науке, прежде всего необходимо подчеркнуть основные особенности теории дифференциальных уравнений, состоящей из двух обширных областей математики: теории обыкновенных дифференциальных уравнений и теории уравнений с частными производными.

Первая особенность — это непосредственная связь теории дифференциальных уравнений с приложениями. Характеризуя математику как метод проникновения в тайны природы, можно сказать, что основным путем применения этого метода является формирование и изучение математических моделей реального мира. Изучая какие-либо физические явления, исследователь прежде всего создает его математическую идеализацию или, другими словами, математическую модель, то есть, пренебрегая второстепенными характеристиками явления, он записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др.

Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее. Изучение математической модели математическими методами позволяет не только получить качественные характеристики физических явлений и рассчитать с заданной степенью точности ход реального процесса, но и дает возможность проникнуть в суть физических явлений, а иногда предсказать и новые физические эффекты. Бывает, что сама природа физического явления подсказывает и подходы, и методы математического исследования. Критерием правильности выбора математической модели является практика, сопоставление данных математического исследования с экспериментальными данными.

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать количественные оценки изменений, происходящих в нем с течением времени. Напомним, что на основе анализа дифференциальных уравнений так были открыты электромагнитные волны, и только после экспериментального подтверждения Герцем фактического существования электромагнитных колебаний стало возможным рассматривать уравнения Максвелла как математическую модель реального физического явления.

Как известно, теория обыкновенных дифференциальных уравнений начала развиваться в XVII веке одновременно с возникновением дифференциального и интегрального исчисления. Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Органическая связь физического и математического ясно проявилась в методе флюксий Ньютона. Законы Ньютона представляют собой математическую модель механического движения. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики; при этом удалось решить задачи, которые в течение долгого времени не поддавались решению. В небесной механике оказалось возможным не только получить и объяснить уже известные факты, но и сделать новые открытия (например, открытие Леверье в 1846 году планеты Нептун на основе анализа дифференциальных уравнений).

Обыкновенные дифференциальные уравнения возникают тогда, когда неизвестная функция зависит лишь от одной независимой переменной. Соотношение между независимой переменной, неизвестной функцией и ее производными до некоторого порядка составляет дифференциальное уравнение. В настоящее время теория обыкновенных дифференциальных уравнений представляет собой богатую, широко разветвленную теорию. Одними из основных задач этой теории являются существование у дифференциальных уравнений таких решений, которые удовлетворяют дополнительным условиям (начальные данные Коши, когда требуется определить решение, принимающее заданные значения в некоторой точке и заданные значения производных до некоторого конечного порядка, краевые условия и другие), единственность решения, его устойчивость. Под устойчивостью решения понимают малые изменения решения при малых изменениях дополнительных данных задачи и функций, определяющих само уравнение. Важными для приложений являются исследование характера решения, или, как говорят, качественного поведения решения, нахождение методов численного решения уравнений. Теория должна дать в руки инженера и физика методы экономного и быстрого вычисления решения.

Уравнения с частными производными начали изучаться значительно позже. Нужно подчеркнуть, что теория уравнений с частными производными возникла на основе конкретных физических задач, приводящих к исследованию отдельных уравнений с частными производными, которые получили название основных уравнений математической физики. Изучение математических моделей конкретных физических задач привело к созданию в середине XVIII века новой ветви анализа — уравнений математической физики, которую можно рассматривать как науку о математических моделях физических явлений.

Основы этой науки были заложены трудами Д’Аламбера (1717 — 1783), Эйлера (1707 — 1783), Бернулли (1700 — 1782), Лагранжа (1736 — 1813), Лапласа (1749 — 1827), Пуассона (1781 — 1840), Фурье (1768 — 1830) и других ученых. Интересно то, что многие из них были не только математиками, но и астрономами, механиками, физиками. Разработанные ими при исследовании конкретных задач математической физики идеи и методы оказались применимыми к изучению широких классов дифференциальных уравнений, что и послужило в конце XIX века основой для развития общей теории дифференциальных уравнений.

Важнейшими уравнениями математической физики являются: уравнение Лапласа, уравнение теплопроводности, волновое уравнение.

Здесь мы предполагаем, что функция u зависит от t и трех переменных x1 , x2 , x3. Уравнение с частными производными — это соотношение между независимыми переменными, неизвестной функцией и ее частными производными до некоторого порядка. Аналогично определяется система уравнений, когда имеется несколько неизвестных функций.

Разве не удивительным является тот факт, что такое простое по форме уравнение, как уравнение Лапласа, содержит в себе огромное богатство замечательных свойств, имеет самые разнообразные приложения, о нем написаны многие книги, ему посвящены многие сотни статей, опубликованных в течение последних столетий, и, несмотря на это, осталось еще много трудных связанных с ним нерешенных проблем.

К изучению уравнения Лапласа приводят самые разнообразные физические задачи совершенно разной природы. Это уравнение встречается в задачах электростатики, теории потенциала, гидродинамики, теории теплопередачи и многих других разделах физики, а также в теории функций комплексного переменного и в различных областях математического анализа. Уравнение Лапласа является простейшим представителем широкого класса так называемых эллиптических уравнений.

Здесь, может быть, уместно вспомнить слова А. Пуанкаре: «Математика — это искусство давать разным вещам одно наименование». Эти слова являются выражением того, что математика изучает одним методом, с помощью математической модели, различные явления действительного мира.

Так же как и уравнение Лапласа, важное место в теории уравнений с частными производными и ее приложениях занимает уравнение теплопроводности. Это уравнение встречается в теории теплопередачи, в теории диффузии и многих других разделах физики, а также играет важную роль в теории вероятностей. Оно является наиболее простым представителем класса так называемых параболических уравнений. Некоторые свойства решений уравнения теплопроводности напоминают свойства решений уравнения Лапласа, что находится в согласии с их физическим смыслом, так как уравнение Лапласа описывает, в частности, стационарное распределение температуры. Уравнение теплопроводности было выведено и впервые исследовано в 1822 году в знаменитой работе Ж. Фурье «Аналитическая теория тепла», которая сыграла важную роль в развитии методов математической физики и теории тригонометрических рядов.

Волновое уравнение описывает различные волновые процессы, в частности распространение звуковых волн. Оно играет важную роль в акустике. Это представитель класса так называемых гиперболических уравнений.

Изучение основных уравнений математической физики дало возможность провести классификацию уравнений и систем с частными производными. И.Г. Петровским в 30-е годы были выделены и впервые изучены классы эллиптических, параболических и гиперболических систем, которые теперь носят его имя. В настоящее время это наиболее хорошо изученные классы уравнений.

Важно отметить, что для проверки правильности математической модели очень важны теоремы существования решений соответствующих дифференциальных уравнений, так как математическая модель не всегда адекватна конкретному явлению и из существования решения реальной задачи (физической, химической, биологической) не следует существование решения соответствующей математической задачи.

В настоящее время важную роль в развитии теории дифференциальных уравнений играет применение современных электронных вычислительных машин. Исследование дифференциальных уравнений часто облегчает возможность провести вычислительный эксперимент для выявления тех или иных свойств их решений, которые потом могут быть теоретически обоснованы и послужат фундаментом для дальнейших теоретических исследований.

Вычислительный эксперимент стал также мощным средством теоретических исследований в физике. Он проводится над математической моделью физического явления, но при этом по одним параметрам модели вычисляются другие параметры и делаются выводы о свойствах изучаемого физического явления. Цель вычислительного эксперимента — построение с необходимой точностью с помощью ЭВМ за возможно меньшее машинное время адекватного количественного описания изучаемого физического явления. В основе такого эксперимента очень часто лежит численное решение системы уравнений с частными производными. Отсюда происходит связь теории дифференциальных уравнений с вычислительной математикой и, в частности, с такими ее важными разделами, как метод конечных разностей, метод конечных элементов и другие.

Итак, первая черта теории дифференциальных уравнений — ее тесная связь с приложениями. Другими словами, можно сказать, что теория дифференциальных уравнений родилась из приложений. В этом своем разделе — теории дифференциальных уравнений — математика прежде всего выступает как неотъемлемая часть естествознания, на которой основывается вывод и понимание количественных и качественных закономерностей, составляющих содержание наук о природе.

Именно естествознание является для теории дифференциальных уравнений замечательным источником новых проблем, оно в значительной мере определяет направление их исследований, дает правильную ориентацию этим исследованиям. Более того, дифференциальные уравнения не могут плодотворно развиваться в отрыве от физических задач. И не только потому, что природа богаче человеческой фантазии. Развитая в последние годы теория о неразрешимости некоторых классов уравнений с частными производными показывает, что даже очень простые по форме линейные уравнения с частными производными с бесконечно дифференцируемыми коэффициентами могут не иметь ни одного решения не только в обычном смысле, но также и в классах обобщенных функций, и в классах гиперфункций, и, следовательно, для них не может быть построена содержательная теория (теория обобщенных функций, обобщающая основное понятие математического анализа — понятие функции, была создана в середине нашего века трудами С.Л. Соболева и Л. Шварца).

Изучение уравнений с частными производными в общем случае — столь сложная задача, что если кто-нибудь наугад напишет какое-нибудь даже линейное дифференциальное уравнение с частными производными, то с большой вероятностью ни один математик не сможет о нем сказать что-либо и, в частности, выяснить, имеет ли это уравнение хотя бы одно решение.

Задачи физики и других естественных наук снабжают теорию дифференциальных уравнений проблемами, из которых вырастают богатые содержанием теории. Однако бывает и так, что математическое исследование, рожденное в рамках самой математики, через значительное время после его проведения находит приложение в конкретных физических проблемах в результате их более глубокого изучения. Таким примером может служить задача Трикоми для уравнений смешанного типа, которая спустя более четверти века после ее решения нашла важные применения в задачах современной газовой динамики при изучении сверхзвуковых течений газа.

Ф. Клейн в книге «Лекции о развитии математики в XIX столетии» писал, что «математика сопровождала по пятам физическое мышление и, обратно, получила наиболее мощные импульсы со стороны проблем, выдвигавшихся физикой».

Второй особенностью теории дифференциальных уравнений является ее связь с другими разделами математики, такими, как функциональный анализ, алгебра и теория вероятностей. Теория дифференциальных уравнений и особенно теория уравнений с частными производными широко используют основные понятия, идеи и методы этих областей математики и, более того, влияют на их проблематику и характер исследований. Некоторые большие и важные разделы математики были вызваны к жизни задачами теории дифференциальных уравнений. Классическим примером такого взаимодействия с другими областями математики являются исследования колебаний струны, проводившиеся в середине XVIII века.

Уравнение колебаний струны было выведено Д’Аламбером в 1747 году. Он получил также формулу, которая дает решение этого уравнения: u(t, x) = F1(x + t) + F2(x — t), где F1 и F2 — произвольные функции. Эйлер получил для него формулу, которая дает для него решение с заданными начальными условиями (задача Коши). (Эта формула в настоящее время называется формулой Д’Аламбера.) Возник вопрос, какие функции считать решением. Эйлер полагал, что это может быть произвольно начерченная кривая. Д’Аламбер считал, что решение должно записываться аналитическим выражением. Д. Бернулли утверждал, что все решения представляются в виде тригонометрических рядов. С ним не соглашались Д’Аламбер и Эйлер. В связи с этим спором возникли задачи об уточнении понятия функции, важнейшего понятия математического анализа, а также вопрос об условиях представимости функции в виде тригонометрического ряда, который позднее рассматривали Фурье, Дирихле и другие крупные математики и изучение которого привело к созданию теории тригонометрических рядов. Как известно, потребности развития теории тригонометрических рядов привели к созданию современной теории меры, теории множеств, теории функций.

При изучении конкретных дифференциальных уравнений, возникающих в процессе решения физических задач, часто создавались методы, обладающие большой общностью и применявшиеся без строгого математического обоснования к широкому кругу математических проблем. Такими методами являются, например, метод Фурье, метод Ритца, метод Галёркина, методы теории возмущений и другие. Эффективность применения этих методов явилась одной из причин попыток их строгого математического обоснования. Это приводило к созданию новых математических теорий, новых направлений исследований. Так возникла теория интеграла Фурье, теория разложения по собственным функциям и, далее, спектральная теория операторов и другие теории.

В первый период развития теории обыкновенных дифференциальных уравнений одной из основных задач было нахождение общего решения в квадратурах, то есть через интегралы от известных функций (этим занимались Эйлер, Риккати, Лагранж, Д’Аламбер и др.). Задачи интегрирования дифференциальных уравнений с постоянными коэффициентами оказали большое влияние на развитие линейной алгебры. В 1841 году Лиувилль показал, что уравнение Риккати y’ + a(x)y + b(x)y2 = c(x) не может быть в общем случае разрешено в квадратурах. Изучение непрерывных групп преобразований в связи с задачами интегрирования дифференциальных уравнений привело к созданию теории групп Ли.

Начало качественной теории дифференциальных уравнений было положено в работах знаменитого французского математика Пуанкаре. Эти исследования Пуанкаре по обыкновенным дифференциальным уравнениям привели его к созданию основ современной топологии.

Таким образом, дифференциальные уравнения находятся как бы на перекрестке математических дорог. С одной стороны, новые важные достижения в топологии, алгебре, функциональном анализе, теории функций и других областях математики сразу же приводят к прогрессу в теории дифференциальных уравнений и тем самым находят путь к приложениям. С другой стороны, проблемы физики, сформулированные на языке дифференциальных уравнений, вызывают к жизни новые направления в математике, приводят к необходимости совершенствования математического аппарата, дают начало новым математическим теориям, имеющим внутренние законы развития, свои собственные проблемы.

В своих «Лекциях о развитии математики в XIX столетии» Ф. Клейн писал: «Математика в наши дни напоминает оружейное производство в мирное время. Образцы восхищают знатока. Назначение этих вещей отходит на задний план.»

Несмотря на эти слова, можно сказать, что нельзя стоять за «разоружение» математики. Вспомним, например, что древние греки изучали конические сечения задолго до того, как было открыто, что по ним движутся планеты. Действительно, созданная древними греками теория конических сечений не находила своего применения почти две тысячи лет, пока Кеплер не воспользовался ею для создания теории движения небесных тел. Исходя из теории Кеплера, Ньютон создал механику, являющуюся основой всей физики и техники.

Другим таким примером может служить теория групп, зародившаяся в конце XVIII века (Лагранж, 1771 год) в недрах самой математики и нашедшая лишь в конце XIX века плодотворное применение сначала в кристаллографии, а позднее в теоретической физике и других естественных науках. Возвращаясь к современности, заметим, что важнейшие научно-технические задачи, такие, как овладение атомной энергией, космические полеты, были успешно решены в Советском Союзе также благодаря высокому теоретическому уровню развития математики в нашей стране.

Таким образом, в теории дифференциальных уравнений ясно прослеживается основная линия развития математики: от конкретного и частного через абстракцию к конкретному и частному.

Как уже говорилось, в XVIII и XIX веках изучались в основном конкретные уравнения математической физики. Из общих результатов теории уравнений с частными производными в этот период следует отметить построение теории уравнений с частными производными первого порядка (Монж, Коши, Шарпи) и теорему Ковалевской.

Теоремы о существовании аналитического (то есть представимого в виде степенного ряда) решения для обыкновенных дифференциальных уравнений, а также для линейных систем уравнений с частными производными были доказаны ранее Коши (Cauchy, 1789 — 1857). Эти вопросы рассматривались им в нескольких статьях. Но работы Коши не были известны Вейерштрассу, который предложил С.В. Ковалевской изучить вопрос о существовании аналитических решений уравнений с частными производными в качестве докторской диссертации. (Отмечу, что Коши опубликовал 789 статей и большое число монографий; его наследие огромно, поэтому неудивительно, что некоторые его результаты могли остаться некоторое время незамеченными.) С.В. Ковалевская в своей работе опиралась на лекции Вейерштрасса, где рассматривалась задача с начальными условиями для обыкновенных дифференциальных уравнений. Исследование Ковалевской придало вопросу о разрешимости задачи Коши для уравнений и систем с частными производными в определенном смысле завершающий характер. Пуанкаре высоко ценил эту работу Ковалевской. Он писал: «Ковалевская значительно упростила доказательство и придала теореме окончательную форму».

Теорема Ковалевской занимает важное место в современной теории уравнений с частными производными. Ей, пожалуй, принадлежит одно из первых мест по числу применений в различных областях теории уравнений с частными производными: теорема Хольмгрена о единственности решения задачи Коши, теоремы существования решения задачи Коши для гиперболических уравнений (Шаудер, Петровский), современная теория разрешимости линейных уравнений и многие другие результаты используют теорему Ковалевской.

Важным достижением теории уравнений с частными производными явилось создание на рубеже XIX века теории интегральных уравнений Фредгольма и решение основных краевых задач для уравнения Лапласа. Можно считать, что основные итоги развития теории уравнений с частными производными XIX века подведены в учебнике Э. Гурса «Курс математического анализа», изданном в 20-е годы нашего века. Следует отметить большой вклад, который внесли в теорию дифференциальных уравнений и математическую физику труды М.В. Остроградского по вариационным методам, труды А.М. Ляпунова по теории потенциала и по теории устойчивости движения, труды В.А. Стеклова по обоснованию метода Фурье и другие.

Тридцатые и последующие годы нашего века были периодом бурного развития общей теории уравнений с частными производными. В работах И.Г. Петровского были заложены основы общей теории систем уравнений с частными производными, выделены классы систем уравнений, которые в настоящее время носят название эллиптических, гиперболических и параболических по Петровскому систем, исследованы их свойства, изучены характерные для них задачи.

В теорию уравнений с частными производными все глубже стали проникать идеи функционального анализа. Было введено понятие обобщенного решения как элемента некоторого функционального пространства. Идея обобщенного решения систематически проводилась в работах С.Л. Соболева. В связи с исследованием дифференциальных уравнений Соболевым в 30-годы была создана теория обобщенных функций, играющая исключительно важную роль в современной математике и физике. С.Л. Соболевым была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач.

Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие.

Влияние на развитие теории уравнений с частными производными в нашей стране оказал семинар, которым в 40-е и 50-е годы руководили И.Г. Петровский, С.Л. Соболев, А.Н. Тихонов. Значительную роль в развитии теории уравнений с частными производными сыграла проблемно-обзорная статья И.Г. Петровского «О некоторых проблемах теории уравнений с частными производными», опубликованная в 1946 году в журнале «Успехи математических наук». В ней изложено состояние теории уравнений с частными производными того времени и намечены пути ее дальнейшего развития. Теперь, спустя почти 50 лет, можно сказать, что развитие теории уравнений с частными производными шло именно по тому пути, который был начертан в этой замечательной статье.

В настоящее время теория дифференциальных уравнений с частными производными представляет собой богатую, сильно разветвленную теорию. Построена теория краевых задач для эллиптических операторов на основе недавно созданного нового аппарата — теории псевдодифференциальных операторов, решена проблема индекса, изучены смешанные задачи для гиперболических уравнений. Важную роль в современных исследованиях гиперболических уравнений играют интегральные операторы Фурье, которые обобщают оператор преобразования Фурье на тот случай, когда фазовая функция в показателе экспоненты, вообще говоря, нелинейно зависит от независимых переменных и частот. С помощью интегральных операторов Фурье изучен вопрос о распространении особенностей решений дифференциальных уравнений, ведущий начало от классических работ Гюйгенса. В последние десятилетия найдены условия корректной постановки краевых задач, исследованы вопросы гладкости решений для эллиптических и параболических систем. Изучены нелинейные эллиптические и параболические уравнения второго порядка и широкие классы нелинейных уравнений первого порядка, исследована для них задача Коши, построена теория разрывных решений. Глубокому изучению были подвергнуты система Навье-Стокса, система уравнений пограничного слоя, уравнения теории упругости, уравнения фильтрации и многие другие важные уравнения математической физики.

Интересным примером привлечения идей и средств из других областей математики является решение в последние годы задачи Коши для уравнения Кортевега-де Фриса с помощью обратной задачи теории рассеяния. На основе возникшего при этом метода найдены новые классы интегрируемых нелинейных уравнений и систем. При этом существенную роль сыграло применение методов алгебраической геометрии, позволившее, в частности, проинтегрировать уравнения Янга-Миллса, играющие важную роль в квантовой теории поля.

В последние десятилетия возник и интенсивно развивается новый раздел теории уравнений с частными производными — теория усреднения дифференциальных операторов. Эта теория возникла под влиянием задач физики, механики сплошной среды и техники, в частности, связанных с изучением композитов (сильно неоднородных материалов, широко используемых в настоящее время в инженерной технике), пористых сред, перфорированных материалов. Такие задачи приводят к уравнениям с частными производными с быстро осциллирующими коэффициентами или в областях со сложной границей. Численное решение такого рода задач крайне затруднительно. Необходим асимптотический анализ задачи, что и приводит к задачам усреднения.

Много работ в последние годы посвящено изучению поведения решений эволюционных уравнений (то есть уравнений, описывающих процессы, развивающиеся во времени) при неограниченном возрастании времени и возникающих при этом так называемых аттракторов. Продолжает привлекать внимание исследователей вопрос о характере гладкости решений краевых задач в областях с негладкой границей, большое число работ в последние годы посвящено изучению конкретных нелинейных задач математической физики.

За последние полтора — два десятка лет сильно изменилось лицо качественной теории обыкновенных дифференциальных уравнений. Одним из важных достижений является открытие предельных режимов, которые получили название аттракторов.

Оказалось, что наряду со стационарными и периодическими предельными режимами возможны предельные режимы совершенно иной природы, а именно такие, в которых каждая отдельная траектория неустойчива, а само явление выхода на данный предельный режим структурно устойчиво. Открытие и подробное изучение для систем обыкновенных дифференциальных уравнений таких предельных режимов, называемых аттракторами, потребовало привлечения средств дифференциальной геометрии и топологии, функционального анализа и теории вероятностей. В настоящее время происходит интенсивное внедрение этих математических понятий в приложения. Так, например, явления, происходящие при переходе ламинарного течения в турбулентное при повышении чисел Рейнольдса, описываются аттрактором. Изучение аттракторов предпринято также и для уравнений с частными производными.

Другим важным достижением теории обыкновенных дифференциальных уравнений явилось изучение структурной устойчивости систем. При использовании любой математической модели возникает вопрос о корректности применения математических результатов к реальной действительности. Если результат сильно чувствителен к малейшему изменению модели, то сколь угодно малые изменения модели приведут к модели с совершенно иными свойствами. Такие результаты нельзя распространять на исследуемый реальный процесс, так как при построении модели всегда проводится некоторая идеализация и параметры определяются лишь приближенно.

Это привело А.А. Андронова и Л.С. Понтрягина к понятию грубости системы обыкновенных дифференциальных уравнений или понятию структурной устойчивости. Это понятие оказалось очень плодотворным в случае малой размерности фазового пространства (1 или 2), и в этом случае вопросы структурной устойчивости были детально изучены.

В 1965 году Смейл показал, что при большой размерности фазового пространства существуют системы, в некоторой окрестности которых нет ни одной структурно устойчивой системы, то есть такой, что при малом изменении векторного поля она остается в определенном смысле эквивалентной первоначальной. Этот результат имеет фундаментальное значение для качественной теории обыкновенных дифференциальных уравнений, так как показывает неразрешимость задачи топологической классификации систем обыкновенных дифференциальных уравнений, и может быть сравним по своему значению с теоремой Лиувилля о неразрешимости дифференциальных уравнений в квадратурах.

К важным достижениям можно отнести построение А.Н. Колмогоровым теории возмущений гамильтоновых систем, обоснование метода усреднения для многочастичных систем, развитие теории бифуркаций, теории возмущений, теории релаксационных колебаний, дальнейшее глубокое изучение показателей Ляпунова, создание теории оптимального управления процессами, описываемыми дифференциальными уравнениями.

Таким образом, теория дифференциальных уравнений в настоящее время представляет собой исключительно богатый содержанием, быстро развивающийся раздел математики, тесно связанный с другими областями математики и с ее приложениями.

Бурбаки, говоря об архитектуре математики, так характеризует ее современное состояние:
«Дать в настоящее время общее представление о математической науке — значит заниматься таким делом, которое, как кажется, с самого начала наталкивается на почти непреодолимые трудности благодаря обширности и разнообразию рассматриваемого материала. Статьи по чистой математике, публикуемые во всем мире в среднем в течение одного года, составляют многие тысячи страниц. Не все они, конечно, имеют одинаковую ценность; тем не менее, после очистки от неизбежных отбросов оказывается, что каждый год математическая наука обогащается массой новых результатов, приобретает все более разнообразное содержание и постоянно дает ответвления в виде теорий, которые беспрестанно видоизменяются, перестраиваются, сопоставляются и комбинируются друг с другом. Ни один математик не в состоянии проследить это развитие во всех подробностях, даже если он посвятит этому всю свою деятельность. Многие из математиков устраиваются в каком-либо закоулке математической науки, откуда они не стремятся выйти и не только почти полностью игнорируют все то, что не касается предмета их исследований, но не в силах даже понять язык и терминологию своих собратьев, специальность которых далека от них». (Н. Бурбаки, «Очерки по истории математики», М.: ИЛ, 1963 г.)

Однако нельзя, как мне кажется, отрицать значение для математических исследований даже тех, кто находится «в закоулке» математической науки. Основное русло математики, как и большой реки, питают прежде всего небольшие ручейки. Крупные открытия, прорыв фронта исследований очень часто обеспечиваются и подготавливаются кропотливым трудом очень многих исследователей. Все сказанное относится не только ко всей математике, но и к одному из самых обширных ее разделов — теории дифференциальных уравнений, которая в настоящее время представляет собой трудно обозримую совокупность фактов, идей и методов, очень полезных для приложений и стимулирующих теоретические исследования во всех других разделах математики.

Многие разделы теории дифференциальных уравнений так разрослись, что стали самостоятельными науками. Можно сказать, что большая часть путей, связывающих абстрактные математические теории и естественнонаучные приложения, проходит через дифференциальные уравнения. Все это обеспечивает теории дифференциальных уравнений почетное место в современной науке.

Ольга Арсеньевна Олейник,
академик РАН, зав. кафедрой дифференциальных уравнений Московского государственного университета им. М.В. Ломоносова,
главный научный сотрудник Математического института РАН им. В.А. Стеклова.
Лауреат Государственной премии, лауреат премий им. Ломоносова, Петровского, Чеботарева.
Автор 8 книг и более 340 других работ.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО И ВТОРОГО ПОРЯДКА КАК МАТЕМАТИЧЕСКИЕ МОДЕЛИ

ВВЕДЕНИЕ

Исследование поведения различных систем (сопротивления материалов, динамики, биологии, химии и других отраслей научных знаний) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными. Дифференциальные уравнения являются фундаментом для построения научных трудов и функционально используется в производстве, что не маловажно для современной экономики и других отраслей производства.

Теория дифференциальных уравнений (ДУ) является одним из самых больших разделов современной математики. Чтобы охарактеризовать ее место в современной математической науке, прежде всего необходимо подчеркнуть основные особенности теории дифференциальных уравнений, состоящей из двух обширных областей математики: теории обыкновенных дифференциальных уравнений и теории уравнений с частными производными.

Первая особенность – это непосредственная связь теории дифференциальных уравнений с приложениями. Характеризуя математику как метод проникновения в тайны природы, можно сказать, что основным путем применения этого метода является формирование и изучение математических моделей реального мира. Изучая какие – либо физические явления, исследователь прежде всего создает его математическую идеализацию или, другими словами, математическую модель, то есть, пренебрегая второстепенными характеристиками явления, он записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др.

Второй особенностью теории дифференциальных уравнений является ее связь с другими разделами математики, такими, как функциональный анализ, алгебра и теория вероятностей. Теория дифференциальных уравнений и особенно теория уравнений с частными производными широко используют основные понятия, идеи и методы этих областей математики и, более того, влияют на их проблематику и характер исследований. Некоторые большие и важные разделы математики были вызваны к жизни задачами теории дифференциальных уравнений.

Таким образом, теория дифференциальных уравнений в настоящее время представляет собой исключительно богатый содержанием, быстро развивающийся раздел математики, тесно связанный с другими областями математики и с ее приложениями. Исходя из этого, цель курсовой работы состоит в изучении практических приложений дифференциальных уравнений к решению задач математической модели.

Поставленная цель достигается путем решения следующих задач:

1. Изучение ДУ первого порядка, теоретические основы дифференциальных уравнений, ДУ с разделяющимися переменными;

2. Изучение линейных ДУ второго порядка с постоянными коэффициентами.

3. Решение задач математического моделирования, химии, динамики, сопротивления материалов, радиотехники и биологии.

Объект исследования – основные понятия теории дифференциального уравнения I и II порядка.

Предмет исследования – способы реализации решения задач с помощью математического моделирования на основе дифференциальных уравнений.

1.Анализ учебной и научной литературы; 2.Изучение способов и методов реализации математических моделей; 3.Обобщение результатов.

В соответствии с целью, задачами и логикой исследования работа состоит из введения, двух глав, заключения, списка использованной литературы.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО И ВТОРОГО ПОРЯДКА

Дифференциальные уравнения первого порядка

Общие понятия и определения

Обыкновенным дифференциальным уравнением называется соотношение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы).

Порядком дифференциального уравнения называется наивысший порядок входящей в него производной (или дифференциала).

Дифференциальным уравнением первого порядка называется соотношение вида

где x – независимая переменная; y = y ( x ) – искомая функция; y ´( x ) = – её производная.

Если уравнение (1.1) можно записать в виде

то говорят, что оно разрешимо относительно производной.

Часто встречается дифференциальная форма записи уравнения первого порядка

которая удобна тем, что в качестве искомой функции может быть как x = x ( y ) , так и y = y ( x ).

Решением ( интегралом ) дифференциального уравнения первого порядка называется любая функция y = y ( x ), превращающая это уравнение в тождество.

График функции y = y ( x ) называется интегральной кривой.

Процесс решения дифференциального уравнения называется его интегрированием.

На самом деле в процессе интегрирования определится целый класс решений:

где C – произвольная постоянная.

Класс (1.3) называется общим решением дифференциального уравнения;

В некоторых случаях общее решение дифференциального уравнения определяется в неявном виде: Ф ( x, y, C ) = 0.

Геометрически общее решение представляет собой семейство интегральных кривых на плоскости xOy .

При каждом конкретном значении С = получают частное решение

Задача о нахождении решения дифференциального уравнения (1.2), удовлетворяющего начальному условию y () = , называется задачей Коши.

Геометрически, такая задача предполагает поиск интегральной кривой, которая проходит через заданную точку с координатами ( , ).

Решение дифференциального уравнения, которое не может быть получено из общего решения ни при одном частном значении произвольной постоянной (включая «предельные» случаи C = ±∞), называется его особым решением .

При интегрировании дифференциального уравнения надо стремиться к тому, чтобы наряду с общим решением были найдены также и особые решения.

Среди всех дифференциальных уравнений особый интерес представляют некоторые классы уравнений, для которых существуют стандартные способы аналитического решения.

1.1.2. Дифференциальные уравнения с разделяющимися переменными

Дифференциальное уравнение вида:

называется уравнением с разделяющимися переменными.

Разделим переменные, учитывая, что y ´( x ) = .

При этом уравнение (1.4) преобразуется к виду = f ( x ) dx .

Интегрируя, получим общее решение: ʃ

1. Характерный признак дифференциальных уравнений с разделяющимися переменными – это наличие произведений (или частных) «блоков», зависящих только от « х » или только от « у ».

2. Если обе части уравнения делим на переменную величину, то необходимо отдельно рассмотреть также случай, когда она обращается в ноль. Так, постоянные у = , для которых g() = 0 , являются, очевидно, решениями уравнения (1.4).

3. Произвольная постоянная, возникающая при интегрировании, может быть записана в виде kC или klnC , где k – любой постоянный (ненулевой) множитель. В некоторых случаях такая запись удобна для упрощения ответа.

1.1.3. Линейные уравнения первого порядка. Уравнение Бернулли

Линейным дифференциальным уравнением первого порядка называется уравнение вида

где p ( x ), q ( x ) – непрерывные (на данном интервале) функции.

Характерный признак таких уравнений – функция y и её производная содержатся в уравнении в первой степени.

Уравнение Бернулли имеет вид

Существует несколько методов решения уравнений данных видов: метод вариации произвольных постоянных, метод интегрирующего множителя, метод Бернулли.

Рассмотрим метод Бернулли . При этом решение каждого из уравнений (1.5), (1.6) будем искать в виде

По правилу дифференцирования произведения получим = v + u

(аргумент « x » в дальнейшем опускаем).

В этом случае линейное уравнение (1.6), например, записывается следующим образом

Множитель v = v ( x ) можно выбрать как некоторое решение уравнения + pv = 0 .

Тогда исходное уравнение оказывается эквивалентным уравнению с разделяющимися переменными v = q , общее решение которого есть некоторая u = u ( x , C ).

Окончательно общий интеграл линейного дифференциального уравнения примет вид

Таким образом, в процессе решения приходится дважды решать уравнения с разделяющимися переменными.

По той же схеме решается и уравнение Бернулли.

1.2. Линейные дифференциальные уравнения второго порядка

1.2.1. Основные понятия, структура общего решения

Линейным дифференциальным уравнением ( ЛДУ) второго порядка называется уравнение вида

где функции p ( x ), q ( x ), f ( x ) непрерывны на некотором интервале ( a ; b ).

Если f ( x ) ≡ 0, то уравнение (2.1) называется линейным однородным дифференциальным уравнением ( ЛОДУ ):

а в противном случае – линейным неоднородным (ЛНДУ).

Общее решение линейного однородного дифференциального уравнения имеет вид

где ( x ), ( x ) – линейно независимые решения этого уравнения (фундаментальная система решений), , – произвольные постоянные.

При этом функции ( x ) и ( x ) называются линейно независимыми в промежутке ( a ; b ), если их отношение (в этом промежутке) не является постоянной величиной. В противном случае функции называются линейно зависимыми.

Для того, чтобы частные решения уравнения (2.2) ( x ) и ( x ) были линейно независимы в промежутке ( a ; b ), необходимо и достаточно, чтобы их определитель Вронского

был отличен от нуля хотя бы в одной точке ( a ; b ).

Общее решение н y линейного неоднородного дифференциального уравнения представляет собой сумму

где – общее решение соответствующего однородного уравнения (2.2);

– некоторое частное решение неоднородного уравнения (2.1).

Остановимся подробнее на линейных уравнениях с постоянными коэффициентами, для которых существуют стандартные алгоритмы решения.

1.2.2. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Если в уравнении (2.2) все коэффициенты постоянны, то оно называется линейным однородным уравнением с постоянными коэффициентами

где p , q – действительные числа.

Решение этого уравнения будем искать в виде y = . Значения параметра λ определяются как решения квадратного уравнения

которое называется характеристическим уравнением.

Чтобы получить общее решение уравнения (2.5), следует воспользоваться следующим алгоритмом :

– найти корни соответствующего характеристического уравнения

– записать фундаментальную систему решений (ФСР);

– использовать формулу (2.3) для записи .

При нахождении корней характеристического уравнения (2.6) и построении ФСР возникают следующие случаи, приведённые в табл.1.

Таким образом, решение линейного однородного дифференциального уравнения с постоянными коэффициентами сводится к вышеуказанной простой последовательности действий.

Таблица. 1. – нахождении корней характеристического уравнения

1.2.3. Системы дифференциальных уравнений

В нашей курсовой работе ограничимся рассмотрением систем двух дифференциальных уравнений. С подобными системами приходится встречаться часто в теоретической механике, сопротивлении материалов и в других приложениях математики.

Система дифференциальных уравнений первого порядка вида

где t – независимая переменная; x ( t ), y ( t ) – неизвестные функции, называется нормальной .

Пара функций x = x ( t ), y = y ( t ) является решением системы (2.7), если каждое из уравнений системы они обращают в тождество.

Класс функций вида

называется общим решением системы (2.7), если при всех значениях произвольных постоянных , , соответствующая пара функций < x , y > является решением системы.

Для системы дифференциальных уравнений (2.7) можно сформулировать задачу Коши : найти решение

удовлетворяющее начальным условиям

С точки зрения механики, решить систему – значит восстановить закон движения точки по известному вектору скорости

Иногда нормальную систему дифференциальных уравнений удаётся свести к одному уравнению второго порядка, содержащему одну неизвестную функцию. Это может быть достигнуто дифференцированием одного из уравнений системы и исключением всех неизвестных, кроме одной ( метод исключения ).

Если правые части уравнений системы (2.7) являются линейными функциями, то система называется линейной.

Ограничимся рассмотрением линейной однородной системы с постоянными коэффициентами

где a , b , p , q – некоторые числа.

Тогда система (2.13) примет вид

Пусть для определённости p ≠ 0 .

Выразим х из второго уравнения системы (2.14):

Дифференцируем второе уравнение системы (2.14) по переменной t :

Затем подставляем в него из первого уравнения системы:

В полученное равенство вместо x подставим выражение ( 2.10 ):

Соотношение (2.16) – это линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами, его характеристическое уравнение можно записать с помощью определителя

В соответствии с корнями , найдём фундаментальную систему решений и , а затем и общее решение уравнения (2.11):

Затем из равенства (2.15) находим функцию x ( t , , ). В результате будет получено общее решение системы (2.14).

2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО И ВТОРОГО ПОРЯДКА КАК МАТЕМАТИЧЕСКИЕ МОДЕЛИ.

В различных областях человеческой деятельности возникает большое число задач, которые сводятся к решению дифференциальных уравнений. Характер этих задач и методику их решения можно схематически описать примерно так. Происходит некоторый процесс, например физический, химический, биологический. Нас интересует определенная функциональная характеристика этого процесса, например закон изменения со временем температуры или давления, массы, положения в пространстве.

Если имеется достаточно полная информация о течении этого процесса, то можно попытаться построить его математическую модель. Во многих случаях такой моделью служит дифференциальное уравнение, одним из решений которого является искомая функциональная характеристика процесса.

Дифференциальное уравнение моделирует процесс в том смысле, что оно описывает эволюцию процесса, характер происходящих с материальной системой изменений, возможные варианты этих изменений в зависимости от первоначального состояния системы.

2.1. Математическое моделирование некоторых задач химии.

Задача 1. В результате химической реакции между веществами А и B образуется вещество C . Установить зависимость количества вещества C от времени, если в момент вступления в реакцию количества веществ A и B были равны соответственно a и b . Скорость реакции пропорциональна произведению реагирующих масс.

Решение. Пусть x = x ( t ) – количество вещества C через время t после начала реакции;

– скорость образования вещества (скорость реакции). По условию

= k ( ax ) ( bx ), где k > 0 – коэффициент пропорциональности. Разделяем переменные и решаем уравнение:

Из начального условия x (0) = 0 находим , тогда

Выразим из этого равенства x , получим:

Если количества веществ A и B равны, т.е. a = b , то уравнение реакции примет вид:

С учётом начального условия процесс реакции описывается зависимостью x ( t ) =

2.2. Математическое моделирование некоторых задач сопротивления материалов

Задача 2. В сопротивлении материалов доказывается, что дифференциальное уравнение изогнутой оси простой балки постоянного сечения, несущей сплошную равномерно распределённую нагрузку интенсивностью q , имеет вид

где ω – прогиб балки в сечении с абсциссой x ; EI – постоянная величина, так называемая «жёсткость на изгиб сечения балки»; l – длина балки.

Найти решение этого уравнения, удовлетворяющее краевым (граничным) условиям ω(0) = 0, ω( l ) = 0, т.е. в том случае, когда на концах балки прогиб равен нулю.

Решение. Уравнение (3.7) – это уравнение второго порядка, которое допускает понижение порядка. Решим его, последовательно (дважды) интегрируя:

Первое краевое условие даёт значение = 0 , второе – значение

Искомое решение краевой задачи есть

2.3. Математическое моделирование некоторых задач динамики

Задача 3. В последовательном контуре наблюдаются свободные колебания, если отсутствует внешний источник, и конденсатор был заряжен к моменту замыкания ключа S .

После замыкания ключа S в момент времени t = 0 конденсатор разряжается через цепь с коэффициентом самоиндукции L и сопротивлением R (рис. 1). Определить напряжение на обкладках конденсатора, если в начальный момент времени

Решение. На основании законов Кирхгофа имеем:

Таким образом, получаем дифференциальное уравнение, описывающее процессы в цепи:

где α = – коэффициент затухания; – частота собственных колебаний.

Уравнение (3.2) – это линейное однородное дифференциальное уравнение с постоянными коэффициентами. Поскольку в задании даны ещё начальные условия, то мы имеем задачу Коши.

Характеристическое уравнение, соответствующее (3.2):

Рассмотрим три случая для корней характеристического уравнения:

С учётом начальных условий решение задачи

Коши в этом случае будет иметь вид:

Если > 0 , то напряжение стремится к нулю. В контуре наблюдаются периодические, с периодом , затухающие по экспоненциальному закону колебания. Если R = 0 (т.е. отсутствует активная составляющая цепи), то напряжение на обкладках конденсатора изменяется периодически по гармоническому закону с периодом :

(гармонический колебательный процесс).

б) D = 4Решение задачи Коши в данном случае имеет

Напряжение ( t ) стремится к нулю при t → +∞ и изменяется без колебаний (затухающий апериодический процесс).

Напряжение ( t ) стремится к нулю при t → +∞ , колебаний нет, и конденсатор апериодически разряжается.

2.4. Математическое моделирование некоторых задач радиотехники

Задача 4. Найти решение системы дифференциальных уравнений

удовлетворяющее начальным условиям x (0) = y (0) = 0 , x ´(0) = μ , y ´(0) = ƞ (здесь k и g – постоянные величины).

Решение. Предложенная система описывает движение снаряда с учётом сопротивления среды. Каждое уравнение системы содержит только одну неизвестную функцию. Из первого уравнения системы имеем

Это линейное однородное уравнение второго порядка с постоянными коэффициентами. Его общее решение есть x ( t ) = + .

Для вычисления констант , используем начальные условия, в результате чего получим:

Итак, частное решение первого уравнения системы принимает вид:

Второе уравнение системы – это линейное неоднородное уравнение второго порядка с правой частью специального вида:

Общее решение второго уравнения системы:

Используя начальные условия, найдём значения , :

Тогда решение второго уравнения системы:

Окончательно получим параметрические уравнения траектории снаряда:

Если исключить параметр t из этих уравнений, то окажется, что:

Отсюда при y = 0 можно найти горизонтальную дальность стрельбы:

2.5. Математическое моделирование некоторых задач биологии

Живой организм представляет собой слишком сложную систему, чтобы его можно было рассматривать сразу во всех подробностях; поэтому исследователь всегда выбирает упрощённую точку зрения, подходящую для решения конкретно поставленной задачи. Это сознательное упрощение реальных биосистем и лежит в основе метода моделирования.

Обычно, модели, используемые в биологии, делят на три категории:

1.Биологические предметные модели, на которых изучаются общие закономерности, патологические процессы, действие различных препаратов и т. д. К этому классу моделей относят, например, лабораторных животных, изолированные органы. Культуры клеток, суспензии органелл и пр.

2.Физические ( аналоговые ) модели, т. е. физические модели, обладающие аналогичным с моделируемым объектом поведением. Например, деформации, возникающие в кости при различных нагрузках, могут быть изучены на специально подготовленном макете кости. Движение крови по крупным сосудам моделируется цепочкой резисторов, конденсаторов и индуктивных катушек.

3.Математические модели представляют собой системы математических выражений – формул, функций, уравнений и т. д., описывающих те или иные свойства изучаемого объекта, явления, процесса. При создании математической модели используют физические закономерности, выявленные при экспериментальном изучении объекта моделирования. Так, например, математическая модель кровообращения основано на законах гидродинамики.

Математическое моделирование, как метод исследования обладает рядом несомненных достоинств.

Во – первых, сам метод изложения количественных закономерностей математическим языком точен и экономичен.

Во–вторых, проверка гипотез, сформулированных на основе опытных данных, может быть осуществлена путём испытания математической модели, созданной на основе этой гипотезы. Наконец, математическая модель позволяет судить о поведении таких систем и в таких условиях, которые трудно создать в эксперименте или в клинике, изучать работу исследуемой системы целиком или работу её любой отдельной части.

Задача 5. Определить во сколько раз увеличится количество бактерий за 9 часов, если в течение 3 часов их количество изменилось от 100 да 200.

Решение. Опытным путём установлено, что скорость размножения бактерий, если для них имеется достаточный запас пищи и созданы другие необходимые внешние условия (например, отсутствие подавления бактерий другими видами), пропорциональна их количеству.

Пусть х – количество бактерий, имеющееся в данный момент, тогда скорость изменения их количества:

Так как скорость размножения бактерий пропорциональна их количеству, то существует такая k, что:

Разделяем в дифференциальном уравнении переменные:

что после потенцирования даёт:

Для нахождения С используем начальное условие: при t = 0 х = 100 . Имеем: Се˚ = 100, С = 100, и, значит , х = 100 е kt .

Коэффициент е k находим из условия: при t = 3 х = 200. Имеем:

Ответ: Количество бактерий за 9 часов увеличится в 8 раз.

Заметим, что закон, при котором скорость увеличения вещества пропорциональна наличному количеству вещества это, так называемый, закон «естественного роста».

Эта математическая модель процесса изменения количества микроорганизмов в колонии в зависимости от времени получена при очень больших предположениях (при неограниченных ресурсах питания и пространства для обитания и отсутствии межвидовой борьбы). В природе же, ни в одной из реально существующих колоний такой рост наблюдаться не может.

Ответ на вопрос, насколько закон «естественного роста» отвечает реальному процессу, даёт опытная проверка. Очевидно, что на каком-то подмножестве данные будут хорошо согласованы с моделью, а саму модель можно использовать для прогноза.

В 1845 году Ферхюлст – Перл получил уравнение, учитывающее внутривидовую борьбу микроорганизмов. В результате конкурентной борьбы внутри вида за пищу и место распространения, а так же за счёт болезней скорость роста снижается. В общем виде уменьшение прироста является некоторой новой функцией от х и Δх, которую обозначим через b ( х, Δх ) . Уменьшение количества особей в результате конкуренции тем больше, чем больше число встреч между особями, т. е. пропорционально произведению х-х т. е. х 2 . Таким образом,

Здесь ε – специфическая (врождённая) скорость размножения популяции, δ – коэффициент внутривидовой конкуренции. Разделим обе части последнего уравнения на Δt и переходя к пределу, получим

Это и есть уравнение Ферхюлста – Перла. Решением этого уравнения после математических преобразований и обозначения ε/ δ = h при t 0 = 0 и х(0) = х 0 является:

ЗАКЛЮЧЕНИЕ

Изучение большого круга задач сопротивления материалов, динамики, биологии и других отраслей научных знаний показывает, что решение многих из них сводится к математическому моделированию процессов в виде формулы, т.е. в виде функциональной зависимости.

Так, например, некоторые процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью уравнений, в которых кроме независимых переменных и неизвестных функций этих переменных, содержатся производные неизвестных функций (или их дифференциалы).

Такие уравнения называются дифференциальными.

Вот почему возможности применения дифференциальных уравнений для решения задач по дисциплинам естественно – научного цикла довольно широки.

В представленной работе:

– описаны теоретические основы дифференциальных уравнений;

– рассмотрены некоторые приёмы решения задач с помощью дифференциальных уравнений по химии, радиотехники, биологии, сопротивления материалов и динамики.

В ходе работы, возникла необходимость более полного, чем предполагалось, изучения основ моделирования реальных объектов.

Практическая ценность метода математического моделирования заключается в следующем:

– правильно составленная и всесторонне использованная математическая модель позволяет оптимизировать изучение реальной системы по времени;

– математическая модель позволяет облегчить прогнозирование хода и результатов экспериментов, проводимых в реальных системах.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Агафонов, С.А. Дифференциальные уравнения / С.А. Агафонов, А.Д. Герман, Т.В. Муратова. – МГТУ им. Н.Э. Баумана, 2004. (Сер. Математика в техническом университете; Вып. VII).

2. Берман, Г.Н. Сборник задач по курсу математического анализа: учебное пособие / Г.Н. Берман. – 22-е изд., перераб. – Спб. : Профессия, 2005.

3. Данко, П.Е. Высшая математика в упражнениях и задачах : учебное пособие для вузов. В 2 ч. Ч. 2 / П. Е. Данко, А.Г. Попов, Т.Я. Кожевникова. – 6-е изд. – М.: ООО «Издательство Оникс»; ООО Издательство «Мир и образование», 2006.

4. Каплан, И.А. Практикум по высшей математике : учебное пособие. В 2 т. Т. 2 / И.А. Каплан, В.И. Пустынников ; под общей ред. проф. В.И. Пустынникова. – 6-е изд., испр. и доп. – М. : Эксмо, 2008. (Образовательный стандарт XXI).

5. Мышкис, А.Д. Прикладная математика для инженеров. Специальные курсы / А.Д. Мышкис. – 3-е изд., доп. – М. : ФИЗМАТЛИТ, 2007.

6. Нахман, А.Д. Сборник задач по дифференциальным уравнениям и их приложениям : учебное пособие / А.Д. Нахман, С.В. Плотникова. – Тамбов : Издательство Тамб. гос. техн. ун-та, 2005.

7. Нахман, А.Д. Дифференциальные уравнения : методическое пособие / А.Д. Нахман. – Тамбов : ТОИПКРО, 2007.

8. Сборник задач по высшей математике. 2 курс / К.Н. Лунгу и др.; под ред. С.Н. Федина. – 5-е изд. – М. : Айрис-пресс, 2007.

9. Самойленко, А.М. Дифференциальные уравнения: примеры и задачи : учебное пособие / А.М. Самойленко, С.А. Кривошея, Н.А. Перестюк. – 2-е изд., перераб. – М. : Высшая школа, 1989.


источники:

http://infourok.ru/differencialnie-uravneniya-pervogo-i-vtorogo-poryadka-kak-matematicheskie-modeli-2065750.html