Об интегральных кривых решение дифференциального уравнения

Особые решения дифференциальных уравнений

Решение дифференциального уравнения

называется особым , если в каждой его точке нарушается свойство единственности, т. е. если через каждую его точку кроме этого решения проходит и другое решение, имеющее в точке ту же касательную, что и решение , но не совпадающее с ним в сколь угодно малой окрестности . График особого решения будем называть особой интегральной кривой уравнения (1). Если функция и ее частные производные и непрерывны по всем аргументам , то любое особое решение уравнения (1) удовлетворяет также уравнению

Значит, чтобы отыскать особые решения (1), надо исключить из уравнений (1) и (2).

Полученное после исключения из (1) и (2) уравнение

Часто бывает так, что распадается на несколько ветвей . Тогда нужно установить, является ли каждая в отдельности ветвь решением уравнения (1), и если является, то будет ли оно особым решением, т.е. нарушается ли единственность в каждой его точке.

Пример 1. Найти особые решения дифференциального уравнения

а) Находим p-дискриминантную кривую. В данном случае и условие (2) принимает вид , отсюда . Подставляя это выражение для в уравнение (4), получаем

Кривая (5) есть p-дискриминантная кривая уравнения (4): она состоит из одной ветви — параболы.

б) Проверяем, является ли p-дискриминантная кривая решением заданного уравнения. Подставляя (5) и ее производную в (4), убеждаемся, что есть решение уравнения (4).

в) Проверяем, является ли решение (S) особым решением уравнения (4). Для этого найдем общее решение уравнения (4). Перепишем (4) в виде . Это уравнение Клеро. Его общее решение

Выпишем условие касания двух кривых и в точке с абсциссой :

Первое равенство выражает совпадение ординат кривых, а второе выражает совпадение угловых коэффициентов касательных к этим кривым в точке с абсциссой .

Полагая , находим, что условия (7) принимают вид

Подставляя в первое из равенств (8), получаем или т.е. при первое равенство выполняется тождественно, так как есть абсцисса произвольной точки.

Итак, в каждой точке кривой (5) ее касается некоторая другая кривая семейства (6), а именно та, для которой . Значит, есть особое решение уравнения (4).

г) Геометрическое истолкование.
Общее решение уравнения (4) есть семейство прямых (6), а особое решение (5) является огибающей этого семейства прямых (рис. 19).

Огибающей семейства кривых

называется такая кривая, которая в каждой своей точке касается некоторой кривой семейства (9) и каждого отрезка которой касается бесконечное множество кривых из (9). Будем говорить, что кривые и касаются в точке , если они имеют в этой точке общую касательную.

Если (9) есть общий интеграл уравнения (1), то огибающая семейства кривых (9), если она существует, будет особой интегральной кривой этого уравнения. В самом деле, в точках огибающей значения совпадают со значениями для интегральной кривой, касающейся огибающей в точке , и, следовательно, в каждой точке огибающей значения удовлетворяют уравнению , т.е. огибающая является интегральной кривой.

Далее, в каждой точке огибающей нарушена единственность, так как через точки огибающей по одному направлению проходит, по крайней мере, две интегральные кривые: сама огибающая и касающаяся ее в рассматриваемой точке интегральная кривая семейства (9). Следовательно, огибающая является особой интегральной кривой.

Из курса математического анализа известно, что огибающая входит в состав C-дискриминантной кривой (коротко СДК), определяемой системой уравнений

Некоторая ветвь СДК заведомо будет огибающей, если на ней:

1) существуют ограниченные по модулю частные производные

где и — постоянные;

Замечание. Условия 1) и 2) лишь достаточны, а потому ветви СДК, на которых нарушено одно из этих условий, тоже могут быть огибающими.

Пример 2. Найти особые решения дифференциального уравнения

а) Находим C-дискриминантную кривую. Имеем , так что отсюда . Подставляя это значение в (14), получаем откуда

Это и есть C-дискриминантная кривая: она состоит из двух прямых и .

б) Непосредственной подстановкой убеждаемся, что каждая из ветвей СДК является решением уравнения (13).

в) Докажем, что каждое из решений (15) является особым решением уравнения (13). В самом деле, так как и , то на каждой ветви СДК имеем (предполагаем, что решение уравнения (13) рассматривается на отрезке

где — область допустимых значений .

Заметим, что на любой из ветвей СДК в области 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQCAMAAABncAyDAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAMRDQiiHowAFBoWFRoLFx3eb7ogAAAMZJREFUKM+1UksSwyAIVUHAX+T+p602mTYkdqZd1AUL5fk+4NzfjiQvv/QXwkz++/6kyblOYfXmMd4vNxglaF//xu0KEeJZdVYXkDFUbhaSDCDqDtDhO3ASgOypGJbMyVh4A3A8bBpQq1URM1exAEcTUHaF4R5ZzFQXDE+FuDIfET4AiqZFe+PykiQHYIbb8rAgTsAM3lvTjvc5DCVeORANFjSxbhfOqn6ux5wPICRojOf2fJ81Uscj+bmEUc5q4jKCXucmPQAaYQaRCPmIUQAAAABJRU5ErkJggg==» />, так дх что выполняется одно из условий (12). Значит, условия (11) и (12) выполняются, а, следовательно, прямые (15) являются огибающими парабол (14).

Итак, установлено, что каждое из решений (15) есть особое решение.

В вопросах отыскания особых решений оказываются полезными следующие символические схемы:

Схема (16) означает, что уравнение p-дискриминантной кривой может распадаться на три уравнения:

1) — уравнение огибающей;

2) — уравнение геометрического места точек заострения (возврата);

3) — уравнение геометрического места точек прикосновения интегральных линий, причем множитель входит в в квадрате.

Схема (17) означает, что уравнение C-дискриминантной кривой может распадаться на три уравнения:

1) — уравнение огибающей;

2) — уравнение геометрического места узловых точек, причем множитель входит в в квадрате;

3) — уравнение геометрического места точек заострения, причем множитель входит в в кубе.

Не обязательно, чтобы для каждой задачи все составные части и фигурировали в соотношениях (16) и (17).

Из всех геометрических мест только огибающая есть особое решение дифференциального уравнения. Отыскание огибающей упрощается тем, что в схемы (16) и (17) она входит в первой степени.

В отношении других геометрических мест (точек заострения, узловых точек и точек прикосновения) требуется дополнительный анализ в каждом конкретном случае. То обстоятельство, что некоторый множитель входит в в квадрате (и совсем не входит в ) указывает на то, что здесь может быть геометрическое место точек прикосновения интегральных линий. Аналогично, если некоторый множитель входит в в квадрате (и совсем не входит в ), то здесь может быть геометрическое место узловых точек. Наконец, если множитель входит в в первой степени, а в — в третьей, то возможно наличие геометрического места точек заострения.

Пример 3. Найти особое решение дифференциального уравнения

Решение. Особое решение, если оно существует, определяется системой

где второе уравнение (19) получено из (18) дифференцированием его по . Исключив , получим p-дискриминантную кривую , которая распадается на две ветви

Подстановкой убеждаемся, что обе функции являются решениями уравнения (18).

Чтобы установить, являются ли решения (20) и (21) особыми или нет, найдем огибающую семейства

являющегося общим интегралом для (18).

Выпишем систему для определения C-дискриминантной кривой откуда, исключая , получаем , или и , что совпадает с (20) и (21). В силу того, что на линиях (20) и (21) условия (11) и (12) выполняются, заключаем, что линии и являются огибающими, а значит (20) и (21) есть особые решения заданного уравнения.

Интегральные кривые (22) суть параболы , а линии — огибающие этого семейства парабол (рис. 20).

Пример 4. Найти особые решения дифференциального уравнения

Решение. Дифференцируем (23) по

Исключая из (23) и (24), получим . Дискриминантная кривая есть ось ординат. Она не является интегральной кривой уравнения (23), но согласно схеме (16) может быть геометрическим местом точек прикосновения интегральных кривых.

Решениями уравнения (23) являются параболы и те гладкие кривые, которые можно составить из их частей (рис. 21).

Из чертежа видно, что прямая действительно есть геометрическое место точек прикосновения интегральных кривых уравнения (23).

Пример 5. Найти особые решения дифференциального уравнения

Решение. Найдем . Исключая из системы уравнений получаем

Преобразовав уравнение (25) к виду , находим его общий интеграл .

Найдем . Исключая из системы уравнений будем иметь

Итак, из (26) и (27) имеем

Множитель входит в p-дискриминант и в C-дискриминант в первой степени и дает огибающую, т. е. функция есть особое решение дифференциального уравнения (25). Непосредственной подстановкой убеждаемся, что действительно удовлетворяет уравнению.

Уравнение , входящее во второй степени в p-дискриминант и совсем не входящее в C-дискриминант, дает место точек прикосновения .

Наконец, уравнение , входящее в C-дискриминант во второй степени и совсем не входящее в p-дискриминант, дает место узловых точек (рис.22).

Пример 6. Найти особые решения дифференциального уравнения

а) Ищем p-дискриминантную кривую. Дифференцируя (28) по , получаем , откуда

Подставляя (29) в (28), найдем уравнение :

б) Ищем общий интеграл уравнения (28). Обозначив у’ через р, перепишем (28) в виде

Дифференцируя обе части (28) по и учитывая, что , будем иметь

Приравнивая нулю первый множитель , получаем (29), а соотношение дает

Исключая параметр из уравнений (31) и (32), найдем общее решение уравнения (28):

в) Находим C-дискриминантную кривую. Дифференцируя (33) по C, будем иметь

Подставляя (34) в (33), получаем уравнение .

Согласно символическим схемам (16) и (17) заключаем, что есть огибающая семейства полукубических парабол (33), а есть геометрическое место точек заострения (множитель входит в уравнение в кубе) (рис. 23). Подстановкой в уравнение (28) убеждаемся, что есть решение, а решением не является (при уравнение (28) не имеет смысла). Таким образом, решение есть особое (огибающая семейства интегральных линий).

Об интегральных кривых решение дифференциального уравнения

Многие процессы в природе можно описать с помощью функции. Дифференциальное исчисление позволяет по данной функции исследовать ее свойства. Не менее важна и обратная задача: по данным свойствам функции найти эту функцию. Иными словами, исследуя процесс, найти функцию, которая его описывает.

В алгебре для нахождения неизвестных величин пользуются уравнениями: по условию задачи составляют соотношение, связывающее неизвестную величину с данными и, решая его, находят неизвестную. Аналогично в анализе для нахождения неизвестной функции по данным ее свойствам составляют уравнение, связывающее неизвестную величину с величинами, задающими ее свойство. Поскольку свойства выражаются через производные или дифференциалы того или иного порядка, приходят к соотношению, связывающему функцию, ее производные или дифференциалы. Это соотношение называется дифференциальным уравнением, решая его, находят искомую функцию.

Рассмотрим задачи, приводящие к понятию дифференциального уравнения.

Задача 1. На плоскости XOY найти кривую, которая в каждой своей точке имеет касательную, образующую с положительным направлением оси Ox угол, тангенс которого равен удвоенной абсциссе точки касания.

Решение. Пусть уравнение искомой кривой y = f (x).

Обозначим через α угол, образованный касательной МТ с положительным направлением оси Ох. Как известно, угловой коэффициент касательной МТ есть tg α, и он равен производной от y по x, так что

С другой стороны, по условию задачи имеем

Приравнивая значения tg α, определяемые формулами (1.1) tg α = y ‘ и (1.2) tg α = 2x получим

Решением дифференциального уравнения (1.3) y ‘ = 2x является любая первообразная для функции 2x. Например, решением будет

Как известно из интегрального исчисления, все первообразные для функции 2x и, следовательно, все решения дифференциального уравнения (1.3) y ‘ = 2x даются формулой

где С — произвольная постоянная.

Дифференциальное уравнение имеет бесчисленное множество решений, т.е. условию задачи удовлетворяет не одна кривая, а целое семейство кривых — парабол. Но если в условие задачи добавить точку M0 (x0, y0), через которую проходит искомая кривая, то получим единственную кривую. Для этого достаточно заменить в уравнении (1.5) y = x 2 + С координаты x и y координатами точки M0

и, найдя из полученного уравнения значение произвольной постоянной С, подставить его в уравнение (1.5) y = x 2 + С . Выполняя указанные выкладки, имеем:

С = y0, y = x 2 – + y0.

Таким образом, искомой кривой будет парабола

y = x 2 – + y0.

Задача 2. Предположим, что материальная точка P движется по прямой, которую принимаем за ось Ox. Пусть известна скорость движения как функция от времени t; обозначим ее через f (t) и будем предполагать, что она непрерывна при всех рассматриваемых значениях времени t. Требуется найти закон движения точки, т. е. зависимость x от t, х = x(t), если известно, что в некоторый момент времени t0 точка занимает положение x0, так что x(t0) = x0.

Решение. Известно, что скорость движения рассматриваемой точки в момент времени t равна производной от x по t. С другой стороны, эта скорость равна f (t). Поэтому

= f (t). (1.7)

Равенство (1.7) = f (t) есть дифференциальное уравнение движения рассматриваемой точки. Оно задает закон движения в дифференциальной форме. Интегрируя уравнение (1.7) = f (t) , найдем закон движения в конечной форме.

Интегрирование уравнения (1.7) = f (t) состоит в нахождении всех первообразных для функции f (t), которые, как известно из интегрального исчисления, могут быть записаны в виде

x = f (t) dt + C. (1.8)

Выделим решение (движение), в котором

Для этого положим в формуле (1.8) x = f (t) dt + C t = t0, x = x0. Получим

x0 = f (t) dt + C,

откуда C = x0; следовательно, искомым решением (движением) будет

x = f (t) dt + x0. (1.10)

Формула (1.10) x = f (t) dt + x0 дает искомый закон движения материальной точки. Других движений, определяемых дифференциальным уравнением (1.7) = f (t) и условием (1.9) x = x0 при t = t0 , нет.

Условие (1.9) x = x0 при t = t0 называется начальным условием, а числа t0 и x0начальными данными решения (движения).

3.2. Определение дифференциального уравнения и связанных с ним общих понятий.

x = 0, z = z (x, y),

то оно называется уравнением с частными производными.

В дальнейшем будем рассматривать только обыкновенные дифференциальные уравнения.

Не всегда удается получать решения в явном виде, например

Аналогично определяются общий интеграл и частный интеграл дифференциального уравнения.

Например, все решения уравнения

y’ =

y = dx + C.

3.3. Дифференциальные уравнения первого порядка как поле направлений.

Если его возможно разрешить относительно производной y ‘, то оно приводится к виду y ‘ = f (x, y). (3.1)

Такая форма дифференциального уравнения первого порядка называется нормальной, а уравнение является разрешимым относительно производной от искомой функции.

Выясним геометрический смысл дифференциального уравнения первого порядка вида (3.1) y ‘ = f (x, y) .

Общее решение геометрически задает однопараметрическое семейство интегральных кривых.

Решение y = y (x) уравнения (3.1) y ‘ = f (x, y) представляет собой на плоскости XOY кривую, а y ‘ — угловой коэффициент касательной к этой кривой в точке M (x, y). Уравнение (3.1) y ‘ = f (x, y) дает, таким образом, соотношение между координатами точки и угловым коэффициентом касательной к интегральной кривой в этой точке.

Задание уравнения (3.1) y ‘ = f (x, y) означает, что в каждой точке M (x, y) области, где определена функция f (x, y), задано направление касательной к интегральной кривой в точке M (x, y). Значит, имея уравнение (3.1) y ‘ = f (x, y) мы получаем поле направлений. Это поле графически можно изобразить, поместив в каждой точке M (x, y) черточку, наклоненную к оси Ox под углом, тангенс которого равен f (x, y).

Задача интегрирования уравнения (3.1) y ‘ = f (x, y) заключается в том, чтобы найти семейство кривых, у которых касательная к каждой точке совпадает с направлением поля в этих точках. Такое истолкование уравнения (3.1) y ‘ = f (x, y) дает графический способ построения его решения.

y ‘ = = p. (3.2)

Это значит, что интегральные кривые пересекают эту линию под одним и тем же углом

= tg α = p,

т.е. все черточки параллельны для всех точек изоклины.

Давая p различные значения, получим ряд изоклин или линий постоянного наклона касательных. Чтобы получить, приближенный график решения, проходящий через данную точку M0 (x0, y0), проводим кривую так, чтобы она пересекала изоклину под углами, указанными черточками и проходила через точку M0 (x0, y0).

Установим связь между уравнением (3.2) y ‘ = = p и его интегральными кривыми. Предположим, что правая часть уравнения (3.2) y ‘ = = p определена и непрерывна в области G , и пусть

есть интегральная кривая этого уравнения, проходящая через точку M (x, y). Проведем касательную к интегральной кривой (3.3) y = y (x) в точке M и обозначим через α угол, образованный касательной MT с положительным направлением оси x.

Таким образом, если через точку M(x, y) проходит интегральная кривая (3.3) y = y (x) , то наклон касательной к ней в этой точке определяется формулой

так что наклон касательной к интегральной кривой определен заранее самим дифференциальным уравнением.

Наклоны касательных можно указать, не находя интегральных кривых. Для этого построим в каждой точке M области G отрезок (для определенности — единичной длины) с центром в точке M, составляющий с положительным направлением оси Ox угол α, тангенс которого определяется формулой (3.4) tg α = f (x, y) . Получим так называемое поле направлений, определяемое уравнением (3.2) y ‘ = = p . Всякая интегральная кривая этого уравнения обладает тем свойством, что направление касательной в каждой ее точке совпадает с направлением поля, определяемым уравнением (3.2) y ‘ = = p в этой точке.

Чтобы ответить на вопрос, под каким углом интегральные кривые могут пересекать ось x, достаточно подставить в правую часть уравнения (3.2) y ‘ = = p y = 0, и получим тангенс угла α:

Например, интегральные кривые уравнения

= x 2 + y 2 . (3.5)

пересекают ось x под углом α, тангенс которого равен x 2 . Аналогично интегральные кривые уравнения (3.2) y ‘ = = p в точках их пересечения с осью y образуют с осью x угол α:

Вообще, если надо узнать, какой угол с осью x образуют интегральные кривые уравнения (3.2) y ‘ = = p в точках их пересечения с заданной кривой y = φ(x), то достаточно подставить y = φ(x) в правую часть уравнения (3.2) y ‘ = = p . Получим

Например, для интегральных кривых уравнения

= yx

в точках их пересечения с прямой y = y имеем tg α = 0, так что касательные к этим интегральным кривым параллельны оси x.

Кривая ω (x, y) = 0, в каждой точке которой направление поля, определяемое дифференциальным уравнением (3.2) y ‘ = = p , одно и то же, называется изоклиной этого уравнения.

Уравнения изоклин дифференциального уравнения (3.2) y ‘ = = p имеют вид

где k = tg α = const. Например, для уравнения (3.5) = x 2 + y 2 изоклинами будут окружности

вырождающиеся в точку (0,0) при k = 0. При k = 1 получаем изоклину

Интегральные кривые в каждой точке этой окружности наклонены к оси x под углом α. С увеличением k наклон интегральных кривых возрастает, и интегральные кривые имеют вид, указанный схематически на рисунке. Построив достаточно «густое» семейство изоклин (в нашем случае — окружностей); можно получить методом изоклин сколь угодно точное представление об интегральных кривых.

Если в точке M(x, y) правая часть уравнения (3.2) y ‘ = = p обращается в бесконечность, то естественно считать, что направление ноля в такой точке параллельно оси y. В этом случае надо рассматривать перевернутое уравнение

= . (3.6)

Таким образом, во всякой точке M(x, y), в которой правая часть уравнения (3.2) y ‘ = = p имеет конечное значение или обращается в бесконечность, это уравнение задает вполне определенное направление поля. Интегральные кривые перевернутого уравнения (3.6) = , которое всегда будем рассматривать наряду с уравнением (3.2) y ‘ = = p в окрестности точек, где f (x, y) обращается в бесконечность, будем присоединять к интегральным кривым уравнения (3.2) y ‘ = = p .

3.4. Задача Коши.

Дифференциальное уравнение обычно имеет бесчисленное множество решений. Для того, чтобы из всех решений выделить одно, надо задать какое-либо конкретное значение функции при некотором значении независимого переменного. Задать значение y0 искомой функции при некотором значении x0 независимого переменного — это значит задать начальное условие

= y0.

С геометрической точки зрения задача отыскания решения дифференциального уравнения с заданным начальным условием равносильна тому, чтобы найти ту интегральную кривую, которая проходит через точку M0 (x0, y0) на плоскости XOY.

Естественно возникает вопрос: всегда ли существует решение дифференциального уравнения, удовлетворяющее данному начальному условию, и, если существует, то будет ли оно единственным?

Ответ на поставленные вопросы дает теорема существования и единственности решения дифференциального уравнения первого порядка.

Пусть дано уравнение y’ = f (x, y) с начальным условием = y0, и относительно функции f (x, y) выполнены следующие условия:

    В прямоугольнике R, определенном неравенствами

функция f (x, y) непрерывна. Из этого условия вытекает, что в замкнутой области R функция f (x, y) ограничена, т.е. существует действительное число M > 0 такое, что для любой точки (x, y) ∈ R | f (x, y)| ≤ M.

  • В области R функция f (x, y) относительно аргумента y удовлетворяет условию Липшица, т.е. существует такое действительное число A > 0, что | f (x, y1) – f (x, y2)| ≤ A|y1y2|.
  • Обозначим через h меньшее из двух чисел a, .

    При данных условиях существует единственное решение y = y(x), где x0hxx0 + h, удовлетворяющее начальному условию = y0.

    3.5. Основные методы интегрирования дифференциальных уравнений первого порядка.

    Дифференциальные уравнения первого порядка

    I. Уравнения с разделяющимися переменнымиII. Уравнения, однородные относительно переменныхIII. Уравнения в полных дифференциалахIV. Линейные дифференциальные уравненияy’ = f (x) g ( y)y’ = f (x, y), где f (x, y) — однородная функция нулевого порядкаM(x, y) dx + N(x, y) dy = 0,

    где y’ + P(x) y = Q(x)

    1. y’ = .
    2. Разделить переменные.
    3. Проинтегрировать.
    1. Замена = u, где u = u(x).
    2. После подстановки получим уравнение с разделяющимися переменными.
    3. Решив его, заменим u = .
    1. Проверяем

      .
      Решением дифференциального уравнения является u(x, y), где

      = M(x, y),

      = N(x, y).

      y’ + P(x) y = 0 — линейное однородное дифференциальное уравнение с разделяющимися переменными.

    1. y’ + P(x) y = Q(x)
    • метод вариации произвольной постоянной;
    • метод Бернулли:
      y = u(x) · v(x).

    I. Уравнения с разделяющимися переменными

    Дифференциальное уравнение вида y’ = f (x) g ( y) или M(x) N( y) dx + P(x) Q ( y) dy = 0 называется уравнением с разделяющимися переменными.

    Можно сделать преобразование так, чтобы в одной части была одна переменная, в другой — другая.

    dx + dy = 0,

    где dx — дифференциал некоторой функции от x,

    dy — дифференциал некоторой функции от y.

    Общий интеграл, выраженный в квадратурах:

    dx + dy = C.

    Частный интеграл, удовлетворяющий условию = y0, выражается

    dx + dy = 0.

    Если работать с уравнением y’ = f (x) g ( y), то = f (x) dx — уравнение с разделенными переменными.

    Замечание. Необходимо учесть, что при делении на P(x) и N(y), мы могли потерять решение уравнения, поэтому нужно проверить, не являются ли решениями данного уравнения, не вошедшие в общее решение, решения уравнений P(x) = 0 и N(y) = 0.

    Действительно, всякое решение, например y = y0, уравнения N(y) = 0 является решением уравнения

    Значит решения y = y0, x = x0 являются интегралами уравнения (5.1) M(x) N( y) dx + P(x) Q ( y) dy , даже если они не содержатся в общем решении.

    II. Уравнения, однородные относительно переменных

    Пусть имеем дифференциальное уравнение y’ = f (x, y), однородное относительно переменных x и y. Положив t = в тождестве f (tx, ty) = f (x, y), получим f (x, y) = f 1, , т.е. однородная функция нулевого измерения зависит только от отношения аргументов.

    Обозначив f 1, = φ, получим, что однородное относительно переменных x и y дифференциальное уравнение всегда можно представить в виде

    = φ.

    Как интегрируется уравнение y’ = φ?

    Оно сводится к уравнению с разделяющимися переменными. Для этого делают замену

    = u,

    где u — новая искомая функция от независимой переменной x, т.е. u = u(x).

    Дифференцируя по x, имеем:

    тогда данное уравнение примет вид:

    x = φ(u) – u.

    Это есть дифференциальное уравнение с разделяющимися переменными, преобразовав которое, получим:

    = .

    = + C,

    = ln x + ln C

    = ln Cx,

    причем |x| не пишем, т.к. –1 войдет в постоянную C.

    После взятия квадратуры, подставляем u = .

    Замечание. Мы делили на φ(u) – u, предполагая, что оно отлично от нуля.

    1. Если φ(u) ≡ u, то уравнение y’ = φ(u) примет вид: y’ = — уравнение с разделяющимися переменными.
    2. Если φ(u) = u при некоторых значениях u = u0, то функция y = u0x — решение уравнения y’ = φ(u), которое может и не вытекать из общего.

    y’ = u0 и φ= φ(u0) равны, тогда u0 = φ, xdx = [φ(u) – u] dx.

    III. Уравнения в полных дифференциалах

    Если существует функция u(x, y) такая, что

    M(x, y) = , N(x, y) = ,

    то дифференциальное уравнение

    можно переписать в форме

    dx + dy = 0, т.е. d[u(x, y)] = 0.

    В этом случае, данное уравнение имеет решение

    Другой вопрос, как найти эту функцию u(x, y)?

    Это можно сделать с помощью криволинейного интеграла, но на практике поступают следующим образом.

    Т.к. = M(x, y), то

    u(x, y) = M(x, y) dx + C(y), (5.3)

    где C(y) — функция, зависящая только от y и пока нам неизвестная. Будем ее искать из условия, что = N(x, y), но

    = M(x, y) dx + C(y).

    M(x, y) dx + C’(y) = N(x, y).

    Отсюда находим C’(y), а интегрированием найдем C(y), которое затем подставляем в (5.3) и получаем u(x, y). Тогда общий интеграл уравнения (5.2) M(x, y) dx + N(x, y) dy = 0 имеет вид

    IV. Линейные дифференциальные уравнения

    Рассмотрим линейное однородное дифференциальное уравнение y’ + P(x) y = 0. Это и уравнение с разделяющимися переменными, значит,

    = – P(x) y

    = – P(x) dx.

    Проинтегрируем последнее уравнение:

    = – P(x) dx + C,

    ln y = ln CP(x) dx.

    Общее решение линейного однородного дифференциального уравнения имеет вид

    y = C.

    Общее решение линейного неоднородного уравнения можно найти:

    его общее решение y = C.
    Ищем решение данного линейного неоднородного дифференциального уравнения в виде

    y = C(x), (5.4)

    где C(x) — искомая функция от x.

    Так как это решение дифференциального уравнения, то найдем y’:

    y’ = C’(x) + C(x) (– P(x))

    и, подставив в данное уравнение, получим

    C’(x) = Q(x).

    Интегрированием находим C(x):

    C(x) = Q(x) + C.

    Найденную функцию C(x) подставляем в (5.4) y = C(x) и получаем общее решение линейного неоднородного дифференциального уравнения первого порядка.

    2. Методом Бернулли.

    На примере решения уравнения y’= x.

    Пусть решение имеет вид:

    u’v + v’u= x.

    u’v + uv’. ( ∗ )

    Пусть v’= 0.

    = ,

    = ,

    v = x 3 , подставим в уравнение ( ∗ ),

    u’ = .

    Интегрированием находим u:

    u = = – + C,

    y = + C x 3 — общее решение линейного неоднородного дифференциального уравнения первого порядка.

    3.6. Особое решение дифференциального уравнения. Уравнение Клеро.

    Решение y = y(x), в каждой точке которого нарушается единственность решения задачи Коши, называется особым решением. Особое решение не может быть получено из формулы общего решения y = φ(x, C) (6.1) при конкретном числовом значении произвольной постоянной C (но может быть получено при C = C(x)).

    Если правая часть уравнения = f (x, y) (6.2) удовлетворяет во всей области задания условиям теоремы Пикара, то это уравнение, очевидно, не имеет особых решений. Если функция f (x, y), стоящая в правой части уравнения , непрерывна относительно x и y во всей области задания и имеет частную производную по y (ограниченную или нет), то особыми решениями могут быть только те кривые y = φ(x), во всех точках которых обращается в бесконечность:

    y = φ(x) = ∞.

    Кривые, подозрительные на особые решения, могут быть иногда найдены по уравнению семейства интегральных кривых.

    Огибающая семейства интегральных кривых уравнения (6.2) = f (x, y) всегда является особым решением этого уравнения, ибо, во-первых, она является решением (интегральной кривой) уравнения (6.2) = f (x, y) , так как в каждой ее точке направление касательной совпадает с направлением поля, направлений, определяемого дифференциальным уравнением (6.2) = f (x, y) в этой точке, и, во-вторых, в каждой ее точке, очевидно, нарушается единственность решения задачи Коши.

    Отметим, наконец, что особые решения всегда можно обнаружить в процессе нахождения общего решения (общего интеграла) дифференциального уравнения. Дело в том, что когда делим обе части данного дифференциального уравнения на некоторую функцию ω(x, y), то получаем уравнение, вообще говоря, не равносильное данному, ибо можем при этом потерять решения вида y = φ(x) при x = ψ(y), при которых делитель ω(x, y) обращается в нуль, если эти решения не содержатся в общем решении, т. е. не получаются из него ни при каких числовых значениях произвольной постоянной (включая ± ∞). Решения, о которых идет речь, очевидно, являются особыми.

    Вообще всегда при интегрировании дифференциального уравнения нужно иметь в виду следующее замечание Н. М. Гюнтера: «Внимательно относясь к процессу, переводящему дифференциальное уравнение в его общий интеграл, можно без всяких интегрирований найти все особые решения, ни одного не пропустив». В дальнейшем будем систематически пользоваться этим указанием для нахождения особых решений всех уравнений, общий интеграл которых удается построить в элементарных функциях или в квадратурах.

    Рассмотрим случай полного уравнения (6.3) F(x, y, y’) = 0 , в котором функция F линейно зависит от y и x. Такое уравнение можно, разрешив относительно y, записать в виде

    Если φ(y’) ≠ y’, то уравнение (6.4) y = φ(y’)x + ψ(y’) называется уравнением Лагранжа. Найдем его общее решение в параметрической форме.

    Воспользуемся основным соотношением:

    приняв y’ за параметр, который на этот раз (по традиции) обозначим буквой p (y’ = p). Тогда уравнение Лагранжа (6.4) y = φ(y’)x + ψ(y’) будет равносильно системе двух уравнений

    (6.4, а)

    Пользуясь основным соотношением (6.5) dy = y’dx с учетом (6.4, а) , получим (вычисляя dy как дифференциал функции от двух аргументов p и x)

    Это есть дифференциальное уравнение с неизвестной функцией x от независимой переменной p. Замечая, что искомая функция x входит в коэффициент при dp линейно, перепишем его в виде

    .

    Это есть линейное уравнение с искомой функцией x. Интегрируя его, получим

    Подставляя эту функцию в первое из уравнений (6.4, а) выразим y через p. Общим решением уравнения Лагранжа (6.4) y = φ(y’)x + ψ(y’) в параметрической форме будет

    Если уравнение φ(p) – p = 0 имеет действительные решения p = pi (i = 1, 2 , …, n), то, подставляя их в первое из уравнений (6.4, а) и принимая во внимание, что φ(pi) = pi, получим

    Эти прямые линии могут оказаться особыми решениями уравнения Лагранжа (6.4) y = φ(y’)x + ψ(y’) .

    Это уравнение называется уравнением Клеро.

    Применяя тот же алгоритм, что и при интегрировании уравнения Лагранжа, имеем

    Это уравнение распадается на два:

    Первое из них дает p = C = const. Подставляя это значение в первое из уравнений (6.7) y = xp + ψ(p), y’ = p , получим

    Это семейство прямых линий и есть общее решение уравнения Клеро (6.6) y = xy’ + ψ(y’) . Заметим, что оно получается из (6.6) y = xy’ + ψ(y’) формальной заменой y’ на C.

    Второе из уравнений (6.8) dp = 0 и x + ψ’(p) = 0 вместе с первым из уравнений (6.7) y = xp + ψ(p), y’ = p дает решение уравнения Клеро (6.6) y = xy’ + ψ(y’) в параметрической форме:

    (6.10)

    которое обычно является особым и представляет наибольший (если не исключительный) интерес для приложений. Геометрически это решение чаще всего является огибающей семейства (6.9) y = xC + ψ(C) и в этом случае представляет собой заведомо особое решение.

    Действительно, разыскивая кривую, подозрительную на огибающую семейства (6.9) y = xC + ψ(C) , по правилу, указанному выше, имеем систему

    где второе уравнение получено из первого, дифференцированием по C. Из этой системы находим

    Но эти уравнения отличаются от (6.10) только обозначением параметра.

    Таким образом, приходим к очень простому алгоритму интегрирования уравнения Клеро:

    1. Общее решение получается заменой у’ на C.
    2. Особое решение ищется как огибающая семейства прямых, образующих общее решение.

    В случае уравнения Клеро наибольший интерес представляет не общее, а особое решение.

    3.7. Уравнение Бернулли.

    Рассмотрим одно нелинейное уравнение, которое всегда приводится к линейному. Это уравнение Бернулли:

    Для приведения уравнения Бернулли к линейному уравнению избавимся сначала в правой части от множителя y m , разделив на него обе части уравнения. Получим

    Это уравнение можно переписать в виде

    ( y 1 – m ) + p(x)y 1 – m = q(x).

    Введя новую неизвестную функцию z:

    придем к уравнению

    z’ + p(x)z = q(x),

    Это есть линейное уравнение. Найдя его общее решение, получим общее решение уравнения Бернулли по формуле

    y = .

    Заметим, что если m > 0, то уравнение Бернулли имеет решение y ≡ 0. Это решение будет особым, если 0 (8.2) = 0 видно, что всякое дифференциальное уравнение второго порядка выражает некоторое общее свойство его интегральных кривых y = y(x), устанавливая в каждой точке интегральной кривой зависимость между координатами точки, наклоном касательной к интегральной кривой и кривизной интегральной кривой в этой точке.

    Рассмотрим теперь вопрос о механическом истолковании уравнения второго порядка и его решений. Пусть материальная точка массой m движется по прямой, которую примем за ось x, под действием силы F (t, x, ), зависящей от времени t, положения x и скорости в момент времени t. Тогда согласно второму закону Ньютона имеем

    m = F (t, x, ), (8.3)

    где есть ускорение точки в момент времени t. Перепишем уравнение (8.3) m = F (t, x, ) в виде

    = f (t, x, ), (8.4)

    где f = .

    соответствует, как и в случае уравнения первого порядка, определенный закон движения. Поэтому часто решение (8.5) x = x(t) называют движением, определяемым уравнением (8.5) x = x(t) . Задача, теории интегрирования уравнения (8.4) = f (t, x, ) состоит в нахождении всех движений, определяемых этим уравнением, и изучении их свойств. Так как уравнение (8.4) = f (t, x, ) удается проинтегрировать в конечном виде лишь в редких случаях, то весьма важно уметь устанавливать свойства движений, определяемых этим дифференциальным уравнением непосредственно по свойствам самого дифференциального уравнения.

    Для уравнения n-го порядка

    (n > 1) задача Коши ставится так: найти решение

    удовлетворяющее начальным условиям (условиям Коши)

    y = y0, y ‘ = , …, y (n – 1) = при x = x0, (8.8)

    где x0, y0, , …, — заданные числа (начальные данные решения (8.7) y = y(x) . В отличие от уравнения первого порядка здесь при заданном значении независимой переменной задается значение не только искомой функции, но и ее производных до порядка на единицу ниже, чем порядок дифференциального уравнения.

    В частности, для уравнения второго порядка (8.1) F (x, y, y ‘, y ») = 0 начальные условия (8.8) y = y0, y ‘ = , …, y (n – 1) = при x = x0 принимают вид

    y = y0, y ‘ = при x = x0.

    Геометрически речь идет о нахождении интегральной кривой y = y(x), проходящей через заданную точку M0 (x0, y0) и имеющей в этой точке касательную M0T, которая образует с положительным направлением оси x заданный угол α0:

    tg α0 = .

    Наряду с задачей Коши большое значение имеет задача, в которой условия на искомую функцию (и ее производные) налагаются не к одной точке, а на концах некоторого промежутка. Такая задача называется краевой задачей, а налагаемые условия — краевыми условиями.

    Теорема существования и единственности решения уравнения n-го порядка

    Рассмотрим уравнение n-го порядка в нормальной форме

    Для этого уравнения, как и в случае уравнения первого порядка, имеет место следующая теорема существования и единственности решения задачи Коши.

    Случай линейного уравнения. Выбор начальных данных. Интервал существования решения

    Рассмотрим линейное уравнение n-го порядка

    Предположим, что все коэффициенты p1, …, pn и правая часть f (x) заданы и непрерывны в интервале (a, b). Тогда условия сформулированной выше теоремы Пикара заведомо выполняются в окрестности начальной точки (x0, y0, , …, ), где x0 ∈ (a, b), а y0, , …, — любые заданные числа. Поэтому для линейного уравнения (8.10) y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) имеет место следующая теорема существования и единственности решения задачи Коши.

    Теорема. Если функции p1, …, pn и f (x) непрерывны в интервале (a, b), то уравнение (8.10) y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) имеет единственное решение (8.7) y = y(x) , удовлетворяющее начальным условиям (8.8) y = y0, y ‘ = , …, y (n – 1) = при x = x0 , причем y0, , …, можно задавать произвольно, а x0 можно брать любым из интервала (a, b).

    Можно доказать, что решение (8.7) y = y(x) определено во всем интервале (а,b).

    В частности, если функции p1, …, pn и f (x) — полиномы (или другие функции, непрерывные при всех x), то все начальные данные y0, , …, можно задавать произвольно. Решение существует, единственно и определено при всех x.

    Если функции p1, …, pn, f (x) суть рациональные функции, т. е. являются отношениями полиномов

    (8.11)

    то при постановке задачи Коши начальные значения y0, , …, можно задавать любыми, а можно брать любым, кроме действительных нулей знаменателей Q1, …, Qn, Qn + 1. Решение с такими начальными данными будет заведомо определено в окрестности точки x0, не содержащей нулей знаменателей Q1, …, Qn, Qn + 1.

    3.9. Дифференциальные уравнения, допускающие понижение порядка.

    Дифференциальное уравнение n-го порядка имеет вид

    Если уравнение (9.1) F (x, y, y ‘, …, y (n) ) = 0 разрешимо относительно старшей производной y (n) , то оно примет вид

    Рассмотрим некоторые типы уравнений, допускающие понижение порядка.

    Уравнение вида y (n) = f (x).Уравнение вида
    F (x, y, y ‘, …, y (n) ) = 0,
    не содержащее явно неизвестную функцию y.Уравнение вида
    F (x, y (k) , y (k + 1) , …, y (n) ) = 0,
    не содержащее явно неизвестную функцию, а также несколько ее первых производных.Уравнение вида
    F (x, y, y ‘, …, y (n) ) = 0,
    не содержащее явно независимую переменную x.Решение дифференциального уравнения сводится к последовательному применению квадратур. Общее решение содержит n произвольных постоянных.Сделав замену y ‘ = z, где z = z(x), сводим данное уравнение к уравнению более низкого порядка. Решив его, заменяем z = y ‘ и находим y.Производим замену y (k) = z, где z = z(x). Решив полученное уравнение, заменяем z = y (k) и интегрированием находим y.Сделав замену y ‘ = z, где z = z(y), получим дифференциальное уравнение (n – 1)-го порядка, связывающее y, z и производные от z по y.
    Например, в дифференциальном уравнении вида F ( y, y ‘, y » ) делается замена y ‘ = z, тогда
    y » = = = z.
    Заменяя y ‘ = z, y » = z, получим дифференциальное уравнение первого порядка
    F y, z, y ‘, z = 0.

    3.10. Линейные дифференциальные уравнения n-го порядка. Общая теория.

    Однородные и неоднородные линейные уравнения n-го порядка

    Линейное уравнение n-го порядка имеет следующий общий вид:

    и называется однородным. Если f (x) ≠ 0, то уравнение (10.1) y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) называется неоднородным. Ниже показано, что, как и в случае линейного уравнения первого порядка, интегрирование неоднородного линейного уравнения (10.1) y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) приводится к интегрированию однородного уравнения.

    Будем предполагать, что функции p1, …, pn, f (x) непрерывны в интервале (a, b). Это предположение обеспечит существование и единственность решения задачи Коши с любыми y0, , …, при любом x ∈ (a, b). В частности, единственным решением однородного уравнения (10.2) y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = 0 с нулевыми начальными условиями y0 (x0) = 0, (x0) = 0, …, (x0) = 0 — будет только очевидное нулевое решение y = 0.

    Понятие о линейном дифференциальном операторе n-го порядка

    Таким образом, L(y) есть результат выполнения над функцией y операций, указанных в правой части формулы (10.3) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y , а именно: вычисление производных от функции y вплоть до порядка т включительно, умножение y0, , …, , на заданные функции p1, …, pn, 1 и сложение полученных произведений. Совокупность этих операций обозначим символом L:

    L+ p1 (x) + pn – 1 (x) + pn (x)

    и будем называть его линейным дифференциальным оператором n-го порядка. В частности, линейный дифференциальный оператор второго порядка имеет вид

    L+ p1 (x) + p2 (x).

    Линейный дифференциальный оператор L обладает следующими основными свойствами (линейность оператора L):

    1) постоянный множитель можно выносить за знак оператора

    2) оператор от суммы двух функций равен сумме операторов от этих функций

    Из этих основных свойств оператора L следует, что

    L Ck yk = Ck L(yk).

    т. е. оператор от линейной комбинации m функций равен линейной комбинации операторов от этих функций.

    Если функция y = y(x) является решением уравнения (10.4) L(y) = f (x) или (10.5) L(y) = 0 в некотором интервале (a, b), то значение оператора L от этой функции равно f (x) или нулю при всех x из (a, b):

    Функции cos x и sin x являются действительной и мнимой частями комплексной функции e ix . Так как они определены при всех значениях x, то и функция e ix определена при всех значениях x.

    Аналогично определяется показательная функция более общего вида e αx , где α = a + ib; причем a и b — действительные числа:

    Здесь действительная и мнимая части e ax cos bx, ie ax sin bx, а вместе с ними и функция e αx определены при всех значениях x.

    Введем понятие о производной комплексной функции действительной переменной. Предположим, что действительная и мнимая части комплексной функции (10.6) y(x) = u(x) + iv(x) (i = ) имеют производную k-го порядка. Тогда производная k-го порядка этой функции определяется так:

    Используя формулу (10.7) y (k) (x) = u (k) (x) + iv (k) (x) , можем вычислить значение оператора L от комплексной функции действительной независимой переменной. При этом получим

    т. е. значение оператора L от комплексной функции (10.6) y(x) = u(x) + iv(x) (i = ) является комплексной функцией действительной переменной x; причем действительной и мнимой частями этой функции являются значения оператора L от действительной и мнимой частей функции (10.6) y(x) = u(x) + iv(x) (i = ) .

    Дадим теперь понятие о комплексном решении однородного линейного уравнения L(y) = 0. Функция (10.6) y(x) = u(x) + iv(x) (i = ) называется комплексным решением уравнения L(y) = 0 в интервале (a, b), если она обращает это уравнение в тождество

    откуда вытекает, что

    ≠ const (a (11.2) y1, y2, …, ym (a линейно зависимы в интервале (a, b), то одна из них является линейной комбинацией остальных.

    α1, α2, …, αn (a (11.3) α1, α2, …, αn (a однородного линейного уравнения n-го порядка. С этой целью введем в рассмотрение определитель, составленный из данных частных решений и их производных до порядка n – 1 включительно:

    W(x) =

    Этот определитель называется определителем Вронского решений y1, y2, …, yn.

    Теорема. Для того чтобы решения (11.3) α1, α2, …, αn (a были линейно независимы в (a, b), т. е. в интервале непрерывности коэффициентов уравнения L(y) = 0, необходимо и достаточно, чтобы W(x) не обращался в нуль ни в одной точке из (a, b).

    Значение определителя Вронского n решений однородного линейного уравнения L(y) = 0 тесно связано с самим уравнением, а именно: имеет место следующая формула Остроградского—Лиувилля:

    W(x) = W(x0) . (11.4)

    Из формулы (11.4) W(x) = W(x0) видно, что определитель Вронского n решений уравнения L(y) = 0 обладает двумя замечательными свойствами:

    1. Если W(x) обращается в нуль в одной точке из интервала (a, b), то он равен нулю во всех точках этого интервала.
    2. Если W(x) не равен нулю в одной точке из интервала (a, b), то он отличен от нуля во всех точках этого интервала.

    Таким образом, для того, чтобы n решений (11.3) α1, α2, …, αn (a составляли фундаментальную систему решений уравнения L(y) = 0 в интервале (a, b), достаточно, чтобы их определитель Вронского был отличен от нуля в одной точке x0 ∈ (a, b).

    Построение общего решения однородного линейного уравнения по фундаментальной системе решений

    Знание фундаментальной системы решений уравнения L(y) = 0 дает возможность построить общее решение этого уравнения.

    a (n – 1) | (11.5) a (n – 1) | имеет место существование и единственность решения задачи Коши. Покажем, что функция (11.1) Ckyk удовлетворяет обоим условиям, указанным в определении общего решения уравнения n-го порядка.

    1. Система уравнений

    (11.6)

    разрешима в области (11.5) a (n – 1) | относительно произвольных постоянных C1, C2, …, Cn так как определитель этой системы, будучи равен определителю Вронского для фундаментальной системы решений (11.3) α1, α2, …, αn (a , отличен от нуля.

    2. Функция (11.1) Ckyk по третьему свойству решений однородного линейного уравнения является решением уравнения L(y) = 0 при всех значениях произвольных постоянных C1, C2, …, Cn.

    Поэтому функция (11.1) Ckyk является общим решением уравнения L(y) = 0 в области (11.5) a (n – 1) | .

    Формула (11.1) Ckyk содержит в себе все решения уравнения L(y) = 0, ибо она дает возможность найти решение, удовлетворяющее начальным условиям

    y = y0, y ‘ = , …, y (n – 1) = при x = x0 (11.7)

    где y0, , …, можно задавать произвольно, а x0 брать любым из интервала (a, b). Для этого достаточно подставить в систему (11.6) вместо x, y, y ‘, …, y (n – 1) начальные данные x0, y0, , …, и разрешить полученную систему

    (11.8)

    относительно произвольных постоянных C1, C2, …, Cn. Так как определитель системы (11.8) есть W(x0) и он отличен от нуля вследствие того, что система решений (11.3) α1, α2, …, αn (a фундаментальная, то эта система имеет единственное решение

    C1 = , C2 = , …, Cn =

    Подставляя найденные значения произвольных постоянных в общее решение (11.1) Ckyk , получим искомое решение:

    y = yk.

    Таким образом, фундаментальная система решений (11.3) α1, α2, …, αn (a является базисом n–мерного линейного пространства решений уравнения L(y) = 0.

    3.12. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

    Рассмотрим линейное уравнение n-го порядка

    где коэффициенты a1, a2, …, an суть действительные числа, а правая часть f (x) непрерывна в некотором интервале (a, b) (a ≥ – ∞, b ≤ + ∞).

    Так как интегрирование неоднородного линейного уравнения приводится к интегрированию соответствующего однородного уравнения, то рассмотрим сначала вопрос о построении общего решения однородного уравнения

    Для нахождения общего решения этого уравнения достаточно знать фундаментальную систему решений. Так как коэффициенты уравнения постоянны и, следовательно, заведомо непрерывны при всех значениях x, то согласно теореме Пикара и все решения уравнения (12.2) L(y) ≡ y (n) + a1 y (n – 1) + … + an – 1 y ‘ + an y = 0 определены при всех значениях x. Поэтому в дальнейшем мы не будем указывать ни интервал существования частных решений, ни область задания общего решения.

    Эйлер доказал, что для однородного линейного уравнения с постоянными коэффициентами всегда можно построить фундаментальную систему решений, состоящую из элементарных функций, и, следовательно, это уравнение всегда интегрируется в элементарных функциях. Ниже это утверждение доказывается для уравнения второго порядка и распространяется на уравнение n-го порядка.

    Рассмотрим уравнение второго порядка

    где p и q — действительные числа. Будем, следуя Эйлеру, искать частное решение уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 в виде

    где λ — подлежащее определению число (действительное или комплексное). Согласно определению решения функция (12.4) y = e λx будет решением уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 , если λ выбрано так, что функция (12.4) y = e λx обращает это уравнение в тождество

    Вычисляя L(e λx ), т. е. подставляя функцию (12.4) y = e λx в левую часть уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 , и принимая во внимание, что

    Из формулы (12.7) L(e λx ) = (λ 2 + pλ + q)e λx следует, что интересующее нас тождество (12.5) L(e λx ) ≡ 0 будет выполняться тогда и только тогда, когда P(λ) = 0, т. е. когда λ является корнем уравнения

    Заметим, что характеристическое уравнение (12.8) λ 2 + pλ + q = 0 может быть составлено по данному дифференциальному уравнению (12.3) L(y) ≡ y » + py ‘ + qy = 0 заменой y », y ‘ и y на λ 2 , λ и 1, т. е. степень λ совпадает с порядком производной, если условиться считать, что производная нулевого порядка от функции есть сама функция y (0) ≡ y.

    Структура фундаментальной системы решений, а вместе с ней и общего решения уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 зависит от вида корней характеристического уравнения (12.8) λ 2 + pλ + q = 0 .

    Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами в случае различных корней характеристического уравнения

    Рассмотрим сначала случаи, когда эти корни различные и действительные. Обозначим их через λ1 и λ2. Тогда, подставляя в формулу (12.4) y = e λx вместо λ числа λ1 и λ2, получим два частных решения уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0

    y1 = , y1 = . (12.9)

    Эти решения, очевидно, линейно независимы, так как их отношение

    =

    не равно тождественно постоянной величине. В линейной независимости решений (12.9) y1 = , y1 = можно убедиться также при помощи определителя Вронского. Имеем

    W(x) = = (λ2λ1) ≠ 0.

    Следовательно, частные решения y1 = , y1 = образуют фундаментальную систему решений. Тогда общим решением уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 будет

    y = C1 + C2 .

    Предположим теперь, что корни характеристического уравнения комплексные. Так как коэффициенты этого уравнения действительные, то эти комплексные корни являются сопряженными, так что они имеют вид

    Подставляя корень λ1 = a + bi в формулу (12.4) y = e λx , получим комплексное решение

    поэтому решение (12.10) y = e (a + bi)x можно записать так:

    Отделяя в комплексном решении (12.11) y = e ax cos ax + i e ax sin bx действительную и мнимую части, получим два действительных частных решения

    Эти решения, очевидно, независимы, так как

    ≠ const.

    Аналогично убеждаемся, что сопряженному корню λ2 = abi соответствуют действительные частные решения

    Решения (12.13) e ax cos ax, – e ax sin bx , очевидно, линейно зависимы с решениями (12.12) y1 = e ax cos ax, y2 = e ax sin bx .

    Таким образом, паре сопряженных комплексных корней λ1, 2 = a ± bi соответствуют два действительных линейно независимых частных решения (12.12) y1 = e ax cos ax, y2 = e ax sin bx .

    Решения (12.12) y1 = e ax cos ax, y2 = e ax sin bx образуют фундаментальную систему решений уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 . Поэтому

    будет общим решением уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 .

    Если корни λ1 и λ2 чисто мнимые, т. е. λ1 = ib и λ2 = – ib, то им соответствуют линейно независимые частные решения вида

    Эти решения образуют фундаментальную систему решений уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 , а

    есть общее решение этого уравнения.

    Случай кратных корней характеристического уравнения

    Предположим теперь, что характеристическое уравнение (12.8) λ 2 + pλ + q = 0 имеет равные корни λ1 = λ2 = – . Нам надо найти два линейно независимых частных решения. Одним частным решением, очевидно, будет

    y1 = (12.15)

    y1 = . (12.15, а)

    Убедимся непосредственной подстановкой в уравнение (12.3) L(y) ≡ y » + py ‘ + qy = 0 в том, что

    y2 = x (12.16)

    есть второе частное решение уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 , линейно независимое с решением (12.15) y1 = :

    = x,

    = – p + x. (12.17)

    L(x) = – px + x + px x + qx = + q x ≡ 0 (12.18)

    так как q = 0.

    Общим решением уравнения (12.3) L(y) ≡ y » + py ‘ + qy = 0 будет

    y = (C1 + C2x).

    3.13. Неоднородное линейное дифференциальное уравнение, структура общего решения. Принцип наложения.

    Структура общего решения неоднородного линейного уравнения

    Покажем, что, как и в случае линейного неоднородного уравнения первого порядка, интегрирование неоднородного уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) приводится к интегрированию однородного уравнения, если известно одно частное решение неоднородного уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) .

    z = Ck zk (13.5)

    Подставляя это значение z в формулу (13.3) y = y1 + z , получим

    y = y1 + Ck zk (13.6)

    Эта формула содержит в себе все решения неоднородного линейного уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) . Функция (13.6) y = y1 + Ck zk , как нетрудно убедиться, является общим решением уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) .

    Таким образом мы доказали следующую теорему о структуре общего решения неоднородного линейного уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) .

    Теорема. Общее решение неоднородного линейного уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) равно сумме какого-нибудь частного решения этого уравнения и общего решения соответствующего однородного уравнения (13.4) L(z) = 0 .

    Общее решение (13.6) y = y1 + Ck zk дает возможность решить задачу Коши с любыми начальными данными x0, y0, , …, из области (11.5) a (n – 1) | за счет выбора соответствующих значений произвольных постоянных.

    Задача нахождения частного решения неоднородного уравнения (13.1) L(y) ≡ y (n) + p1 (x) y (n – 1) + … + pn – 1 (x) y ‘ + pn (x) y = f (x) во многих случаях облегчается, если воспользоваться замечательным свойством частных решений, выражаемым следующей теоремой.

    и известно, что y1 есть частное решение уравнения

    а y2 — частное решение уравнения

    3.14. Подбор частных решений линейного неоднородного дифференциального уравнения с постоянными коэффициентами и со специальной правой частью.

    Случай для линейного неоднородного дифференциального уравнения с постоянными коэффициентами и с правой частью имеющей вид полинома от x степени m

    Для уравнения с постоянными коэффициентами в случае, когда правая часть имеет специальный вид, удается найти частное решение методом неопределенных коэффициентов (методом подбора частных решений).

    Рассмотрим этот метод для уравнения n-го порядка вида

    где a1, …, an — действительные числа, α — действительное число, Pm (x) — полином от x степени m, которая может быть равной нулю, так что этот полином может вырождаться в число, отличное от нуля.

    Метод неопределенных коэффициентов состоит в том, что задается вид частного решения с неопределенными коэффициентами, которые определяются подстановкой в данное уравнение. Вид частного решения уравнения зависит от того, совпадает ли число α с корнями характеристического уравнения:

      Если α не является корнем характеристического уравнения, то частное решение имеет вид

    где Qm (x) — полином степени m с коэффициентами, подлежащими определению.
    Если α является корнем характеристического уравнения кратности k, то

    т. е. частное решение приобретает множитель xk .

    Случай для линейного неоднородного дифференциального уравнения с постоянными коэффициентами и с правой частью имеющей вид:

    где α и b — действительные числа, P1 и P2 — полиномы от x, старшая степень которых равна m, так что один из них обязательно имеет степень m, а степень другого не превосходит m, и он может быть даже тождественно равен нулю.

    Составим комплексное число α + ib, где действительная часть α есть коэффициент показателя множителя e αx , а мнимая часть b — коэффициент аргумента bx функций cos bx и sin bx.

    где Q1 и Q2 — полиномы степени m с неопределенными коэффициентами; причем надо брать оба эти полинома даже в том случае, когда один из полиномов P1 и P2 тождественно равен нулю.
    Если число α + ib есть корень характеристического уравнения кратности k, то

    т. е. частное решение приобретает множитель xk .

    3.15. Метод вариации произвольных постоянных.

    Пусть дано неоднородное линейное уравнение второго порядка

    где коэффициенты p(x), q(x) и правая часть f (x) есть функции от x, непрерывные в некотором интервале (a, b).

    Рассмотрим наряду с уравнением (15.1) L(y) ≡ + p(x)y’ + q(x)y = f (x) соответствующее ему однородное уравнение

    W(x) = ≠ 0 (15.4)

    Тогда, как известно, общее решение уравнения (15.3) L(z1) ≡ 0, L(z2) ≡ 0 имеет вид

    Оно содержит производные второго порядка от искомых функций C1(x) и C2(x), так что на первый взгляд задача усложнилась: вместо уравнения второго порядка (15.1) L(y) ≡ + p(x)y’ + q(x)y = f (x) с одной неизвестной функцией y мы получили уравнение того же порядка, но уже с двумя неизвестными функциями — C1(x) и C2(x). Однако мы покажем, что искомые функции можно подчинить такому дополнительному условию, что в уравнение (15.6) L(C1(x)z1 + C2(x)z2) = f (x) не войдут производные второго порядка от этих функций.

    Дифференцируя обе части равенства (15.5) z = C1(x)z1 + C2(x)z2 , имеем y’ = C1(x) + C2(x) + (x)z1 + (x)z2.

    Чтобы при вычислении не появились производные второго порядка от C1(x) и C2(x), положим

    (x)z1 + (x)z2 = 0.

    Это и есть то дополнительное условие на искомые функции C1(x) и C2(x), о котором говорилось выше. При этом условии выражение для y’ примет вид

    y’ = C1(x) + C2(x). (15.7)

    Вычисляя теперь , получим

    = C1(x) + C2(x) + (x) + (x). (15.8)

    Подставим выражения для y, y’ и из формул (15.5) z = C1(x)z1 + C2(x)z2 , (15.7) y’ = C1(x) + C2(x) и (15.8) = C1(x) + C2(x) + (x) + (x) в уравнение (15.1) L(y) ≡ + p(x)y’ + q(x)y = f (x) . Для этого умножим левые и правые части этих формул соответственно на q, p и 1, сложим почленно и приравняем сумму правой части уравнения (15.1) L(y) ≡ + p(x)y’ + q(x)y = f (x) . Получим

    C1(x)L(z1) + C1(x)L(z2) + (x) + (x) = f (x).

    Здесь в силу (15.3) L(z1) ≡ 0, L(z2) ≡ 0 первые два слагаемых равны нулю, поэтому

    (x) + (x) = f (x).

    Таким образом мы получили систему дифференциальных уравнений

    Эта система в силу (15.4) W(x) = ≠ 0 однозначно разрешима относительно (x) и (x). Решая ее, получим

    (x) = φ1(x) и (x) = φ2(x),

    где φ1(x) и φ2(x) суть вполне определенные функции от x. Их можно найти, например, по правилу Крамера. При этом, так как z1, z2, и непрерывны в интервале (a, b), то в силу (15.4) W(x) = ≠ 0 функции φ1(x) и φ2(x) будут непрерывны в интервале (a, b). Поэтому

    C1(x) = φ1(x)dx + C1, C2(x) = φ2(x)dx + C2,

    y = z1φ1(x)dx + z2φ2(x)dx + C1z1 + C2z2. (15.9)

    Полагая здесь C1 = C2 = 0, получим частное решение

    y1 = z1φ1(x)dx + z2φ2(x)dx

    так что формулу (15.9) y = z1φ1(x)dx + z2φ2(x)dx + C1z1 + C2z2 можно записать в виде

    откуда в силу теоремы о структуре общего решения неоднородного линейного уравнения следует, что формула (15.9) y = z1φ1(x)dx + z2φ2(x)dx + C1z1 + C2z2 дает общее решение уравнения (15.1) L(y) ≡ + p(x)y’ + q(x)y = f (x) . Все решения, входящие в формулу (15.9) y = z1φ1(x)dx + z2φ2(x)dx + C1z1 + C2z2 , заведомо определены в интервале (a, b).

    Изложенный метод вариации произвольных постоянных легко распространяется на уравнение n-го порядка. Пусть дано неоднородное линейное уравнение n-го порядка

    где коэффициенты p1 (x), …, pn (x) и правая часть f (x) суть функции от x, непрерывные в некотором интервале (a, b).

    Рассмотрим соответствующее однородное уравнение.

    Пусть z1, z2, …, zn — фундаментальная система решений этого уравнения. Тогда

    z = Ckzk

    Решение данного неоднородного уравнения ищется в виде

    y = Ck(x)zk, (15.11)

    где функции Ck(x) определяются из системы уравнений

    Решая эту систему относительно (k = 1, 2, …, n), находим

    = φk(x) (k = 1, 2, …, n),

    Ck(x) = φk(x)dx + Ck (k = 1, 2, …, n).

    Подставляя найденные значения Ck(x) в формулу (15.11) y = Ck(x)zk , получаем

    y = zkφk(x)dx + Ckzk. (15.12)

    Это и есть общее решение уравнения. Все решения, входящие в формулу (15.12) y = zkφk(x)dx + Ckzk , заведомо определены в интервале (a, b).

    Дифференциальные уравнения первого порядка (стр. 1 )

    Из за большого объема этот материал размещен на нескольких страницах:
    1 2

    Дифференциальные уравнения первого порядка

    Дифференциальным уравнением называется уравнение, связывающее независимую переменную x, искомую функцию y(x) и производную искомой функции.

    Символически дифференциальное уравнение можно написать так

    .

    Неизвестной здесь является функция y, входящая под знак производных (или дифференциалов).

    Если искомая функция y(x) есть функция одной независимой переменной, то дифференциальное уравнение называется обыкновенным. В этой главе мы будем рассматривать только обыкновенные дифференциальные уравнения.

    Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение.

    Например, уравнение есть уравнение первого порядка,

    а уравнение — уравнение второго порядка.

    Решением дифференциального уравнения называется всякая функция y(x), которая будучи подставленной в уравнение, обращает его в тождество. Решение еще называется интегралом дифференциального уравнения.

    Пример

    Рассмотрим уравнение .

    Функция является решением этого уравнения.

    Действительно,

    и уравнение обращается в тождество:
    .
    Решением рассматриваемого уравнения будут и функции

    и вообще функции
    , где и — произвольные постоянные.
    В самом деле

    и уравнение обращается в тождество
    .

    Заметим, что рассматриваемое уравнение имеет бесчисленное множество решений вида: .

    Решение дифференциальных уравнений первого порядка

    Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную x, искомую функцию y(x) и производную первого порядка искомой функции.

    Дифференциальное уравнение первого порядка имеет вид .

    Общее и частное решение

    Общим решением дифференциального уравнения первого порядка называется решение , зависящее от одной произвольной постоянной C, придавая конкретное значение которой , можно получить решение , удовлетворяющее любому заданному начальному условию .

    Равенство вида , неявно задающее общее решение, называется общим интегралом дифференциального уравнения.
    Заметим, что в практике чаще всего бывает нужным не общее решение, а так называемое частное решение,отвечающее определенным начальным условиям, вытекающим из условия данной конкретной задачи.
    Частным решением называется любая функция , которая получается из общего решения ,если в последнем произвольной постоянной C придать определенное значение . Соотношение называется в этом случае частным интегралом.
    Задача отыскания решения дифференциального уравнения y I = f(x, y) , удовлетворяющего заданным начальным условиям y(xo ) = yo, называется задачей Коши.

    Теорема Коши
    Если функция f(x, y) — правая часть дифференциального уравнения y I = f(x, y) — непрерывна в некоторой замкнутой области D плоскости xOy и имеет в этой области ограниченную частную производную f Iy (x, y), то каждой внутренней точке области D соответствует, и притом единственное, решение, удовлетворяющее начальным условиям.

    Пример

    Рассмотрим уравнение
    .

    Общим решением этого уравнения является семейство функций
    .

    Действительно, при любом значении C эта функция удовлетворяет уравнению: .
    Кроме того, всегда можно найти такое значение C, что соответствующее частное решение будет удовлетворять заданному начальному условию.

    Найдем, например, частное решение, удовлетворяющее начальному условию y(1)=-2. Подставляя эти значения в уравнение
    ,
    получим
    .
    Решая это уравнение относительно C получим C = — 3.
    Следовательно, искомым частным решением будет функция: Y = X

    Это решение можно получить, используя нижеприведенный апплет для построения поля направлений и интегральных кривых для уравнения первого порядка.

    С геометрической точки зрения общее решение уравнения первого порядка представляет собой семейство кривых на плоскости xOy, зависящее от одной произвольной постоянной C. Эти кривые называются интегральными кривыми данного дифференциального уравнения.
    Частному решению соответствует одна интегральная кривая, проходящая через некоторую заданную точку. Так, в последнем примере общее решение геометрически изобразится семейством парабол, причем каждому значению параметра C будет соответствовать вполне определенная кривая. Частное решение изобразится параболой (рис. 1. ) проходящей через точку Заметим, что задать начальное условие для уравнения первого порядка с геометрической точки зрения означает задать точку , через которую должна пройти соответствующая интегральная кривая.

    Решить или проинтегрировать данное дифференциальное уравнение это значит:

    а) найти его общее решение или общий интеграл, если не заданы начальные условия,

    б) найти частное решение, удовлетворяющее заданным начальным условиям.

    Геометрическая интерпретация дифференциального уравнения первого порядка

    Пусть дано дифференциальное уравнение, разрешенное относительно производной: .
    Это уравнение для каждой точки определяет значение производной , т. е. определяет угловой коэффициент касательной к интегральной кривой, проходящей через эту точку.
    Таким образом, рассматриваемое дифференциальное уравнение дает совокупность направлений или, как говорят, определяет поле направлений или поле линейных элементов. Задача интегрирования такого уравнения, с геометрической точки зрения, заключается в нахождении кривых, направление касательных к которым совпадает с направлением поля линейных элементов в соответствующих точках .

    Рассмотрим уравнение
    .
    В каждой точке (x, y), отличной от точки (0,0), угловой коэффициент касательной к интегральной кривой равен отношению , т. е. совпадает с угловым коэффициентом прямой, проходящей через начало координат и точку с координатами (x, y). Очевидно, что интегральными кривыми будут прямые y=Cx, где C — произвольная постоянная, т. к. направление этих прямых всюду совпадает с направлением поля.

    Теорема существования и единственности решения дифференциального уравнения.

    Рассматривая уравнение первого порядка , разрешенное относительно производной, мы ставили вопрос об отыскании его общего решения и, если задано начальное условие частного решения, удовлетворяющего этому условию.
    Возникает вопрос: всегда ли существует частное решение, удовлетворяющее заданному начальному условию и если существует, будет ли оно единственным.
    Рассмотрим, например, уравнение
    .
    Общим решением является функция , а интегральными кривыми — семейство гипербол, причем через каждую точку , не лежащую на оси Oy проходит одна и только одна интегральная кривая, т. е. рассматриваемое уравнение имеет единственное решение, проходящее через точку, не лежащую на оси Oy, но оно не имеет решения, проходящего через точку, взятую на оси Oy.
    Этот пример показывает, что не всегда существует решение, удовлетворяющее заданному начальному условию.
    В некоторых случаях решение может оказаться не единственным.
    Так, например, уравнение

    имеет бесконечное множество решений, проходящих через точку (0,0).
    В самом деле, функция является общим решением этого уравнения, а при любом значении C прямая проходит через начало координат. На вопрос, при каких условиях для уравнения можно гарантировать существование и единственность решения, удовлетворяющего заданному начальному условию , отвечает следующая теорема.

    Теорема.
    Пусть функция и ее частная производная непрерывны в некоторой области D на плоскости xOy. Тогда, если точка принадлежит этой области, существует, и притом единственное, решение уравнения , удовлетворяющее начальному условию .

    Геометрически это означает, что через каждую точку области D проходит одна и только одна интегральная кривая рассматриваемого уравнения. Данная теорема называется теоремой существования и единственности решения дифференциального уравнения .
    Возвращаясь к рассмотренным нами примерам, мы видим, что функции

    и

    не определены при и, следовательно, не являются непрерывными. Это обстоятельство и привело, в первом случае, к отсутствию решений, проходящих через точки оси Ox , во втором — к нарушению единственности в точке (0,0).

    1.1. Уравнения с разделяющимися переменными

    Рассмотрим уравнение первого порядка, разрешенное относительно производной:

    или
    .

    Это уравнение можно переписать так:

    или в симметричной форме

    ,

    дающей соотношение между переменными x и y и их дифференциалами.

    Если в этом уравнении функция P зависит только от x , а функция Q — только от y, то уравнение называется уравнением с разделенными переменными.

    Таким образом, уравнением с разделенными переменными называется уравнение вида

    .

    Решение такого уравнения получается прямым интегрированием. Так как слева стоит сумма дифференциалов двух функций, которая равна нулю, то сумма их интегралов равняется постоянной

    .

    Пример

    Уравнение — уравнение с разделенными переменными. Интегрируя, получим общий интеграл: .
    Уравнение вида

    называется уравнением с разделяющимися переменными.

    Это уравнение может быть приведено к уравнению с разделенными переменными путем деления обеих его частей на выражение

    или
    .

    Общий интеграл полученного уравнения имеет вид:

    .

    Пример

    Дано уравнение
    или .
    Разделим переменные и интегрируем .

    В результате вычисления получим:

    .
    Это выражение можно записать в иной форме:

    т. к. всякое число можно представить в виде логарифма другого.

    Таким образом, общий интеграл данного уравнения будет иметь вид

    .

    1.2. Однородные уравнения первого порядка

    Рассмотрим сначала понятие однородной функции двух переменных.
    Функция двух переменных называется однородной функцией измерения n, если при любом t справедливо тождество f (tx, ty) = t n f(x, y) .

    Пример

    Функция есть однородная функция измерения 2, т. к.
    .

    С понятием однородной функции связано понятие однородного дифференциального уравнения.

    называется однородным дифференциальным уравнением первого порядка,
    если функции и являются однородными функциями одного и того же измерения.

    Для однородного уравнения имеем:

    .

    Полагая в последних равенствах , получаем

    .

    Подставив эти выражения в исходное уравнение, получим

    и далее .

    Для разделения переменных введем новую переменную V = y/x или y = Vx. Так как в этом случае dy = xdV +Vdx, то последнее уравнение принимает вид:

    M(1,V)dx + N(1,V)(xdV + Vdx) = 0,

    Последнее уравнение является уравнением с разделяющимися переменными x и V, из него определяется V, а затем искомая функция y = Vx.

    Если уравнение может приведено к виду: dy/dx = F(x, y) = F(v), где V = y/x, то оно называется однородным дифференциальным уравнением первого порядка.

    Для приведения его к уравнению с разделяющимися переменными используется подстановка
    V = y/x, отсюда y = Vx и dy/dx = xdV/dx + V.
    В итоге получается уравнение с разделяющимися переменными: xdV/dx = F(V) — V, которое и интегрируется.

    Пример

    Решить уравнение (y 2 — 3x 2)dx + 2xydy = 0, при начальном условии: y(0) = 0 .

    Здесь M(x, y) = (y 2 — 3x 2) и N(x, y) = 2xy — однородные функции измерения 2.

    Применим подстановку y = vx, при этом dy = xdv +vdx.

    Получим: x 2(v 2 — 3)dx + 2x 2v(xdv +vdx) = 0.
    Сгруппируем слагаемые x 2(v 2 — 3)dx + 2x 2v(xdv +vdx) = 0 относительно dx и dv и разделим переменные:

    .

    После интегрирования получим: x 3(v = C или

    общий интеграл: x(y 2 — x 2) = C

    Используя начальные условия y(0) = 0 имеем = C, отсюда C = 0.

    Частное решение данного уравнения: x(y 2 — x 2) = 0

    или x = y и x = — y

    1.3. Линейные уравнения первого порядка

    ,

    где и

    — заданные непрерывные функции, называется линейным дифференциальным уравнением первого порядка.

    Если функция , стоящая в правой части уравнения, тождественно равна нулю, т. е. ,
    то уравнение называется линейным однородным, в противном случае — линейным неоднородным.
    Таким образом, — линейное однородное уравнение, а — линейное неоднородное уравнение.

    Рассмотрим два метода интегрирования линейных уравнений.

    I метод — метод Бернулли

    Для решения уравнения применим подстановку y=UV, причем функцию U=U(x) будем считать новой неизвестной функцией, а функцию мы выберем произвольно, подчинив некоторому условию. Так как при этом , то эта подстановка дает:


    и
    .

    Используя произвольный выбор функции V, подчиним ее условию: .

    Разделяя переменные и интегрируя в последнем равенстве, получаем:

    .
    Поэтому исходное уравнение после подстановки полученной функции V(x) имеет вид: .
    Это уравнение также является уравнением с разделяющимися переменными.
    Решая его, получаем:
    , а после интегрирования .

    Возвращаясь к переменной y=UV имеем общее решение линейного неоднородного уравнения:
    .

    Пример

    Решить уравнение .
    Здесь .
    Имеем:


    — общее решение линейного уравнения.

    II метод — метод вариации произвольной постоянной — метод Лагранжа

    В линейном однородном уравнении переменные разделяются и его общее решение, которое мы обозначим через Y , легко находится:

    .

    Будем теперь находить общее решение неоднородного линейного уравнения , считая, что общее решение неоднородного уравнения y имеет такую же форму, как и общее решение cоответствующего однородного уравнения Y , но где C есть не постоянная величина, а неизвестная функция от x , т. е. считая, что

    .

    Дифференцируя это выражение

    и подставляя в рассматриваемое неоднородное уравнение, получим:

    или .
    Откуда находим функцию C(x) :

    .

    .

    Полученное общее решение состоит из двух слагаемых, из которых второе является общим решением соответствующего однородного уравнения, а первое является частным решением неоднородного уравнения, получаемым из общего при .

    Пример

    Найти общее решение уравнения
    .

    Интегрируем соответствующее однородное уравнение: .
    Считаем C функцией x :
    Подставляем в исходное уравнение:
    .

    1.4. Уравнение Бернулли

    Уравнением Бернулли называется уравнение вида dy/dx + P(x)y = Q(x)y n.

    При n = 0 или n = 1 уравнение становится линейным, методы интегрирования которого рассматривались в предыдущем пункте.

    Есть следующие два способа интегрирования этого уравнения.

    1. Уравнение приводится к линейному.

    Разделив все члены такого уравнения на y n, получим:

    y — n(dy/dx) + P(x)y — n+1 = Q(x).

    После подстановки этих выражений в уравнение оно примет вид:

    Это линейное уравнение относительно функции z. После его интегрирования возвращаемся к переменной y, подставив вместо z выражение y 1-n. Получим общий интеграл уравнения Бернулли.

    2. Уравнение решается по методу Бернулли с подстановкой y = UV, уже использованному для решения линейных неоднородных уравнений.

    Пример

    Найти общее решение уравнения .


    Разделив обе части уравнения на y 2, получим:

    .


    Введем новую переменную , тогда .


    Подставляя в уравнение, получим:

    Это линейное уравнение относительно функции z(x) .

    Применим метод вариации произвольной постоянной:



    Интегрируя по частям, находим ,

    следовательно , .

    Заменяя теперь z на ,
    получим: или .
    Это и есть общее решение исходного уравнения.

    1.5. Уравнения в полных дифференциалах

    Уравнением в полных дифференциалах называется уравнение вида

    ,

    левая часть которого есть полный дифференциал некоторой функции , т. е.

    .

    Переписав исходное уравнение в виде , заключим, что общий интеграл этого уравнения определяется формулой .

    Как известно, полный дифференциал функции выражается формулой

    .

    .

    Необходимое и достаточное условие того, что левая часть уравнения является полным дифференциалом некоторой функции, выражается равенством

    .

    Функция , входящая в формулу , находится интегрированием функций P(x, y) и Q(x, y) соответственно по x и y при этом вторая переменная считается величиной постоянной (соответственно y или x).

    Пример

    Проинтегрировать дифференциальное уравнение

    .

    Для данного уравнения

    .

    Так как выполнено условие (#), то данное уравнение является уравнением в полных дифференциалах, следовательно,

    .

    Интегрируя первое из этих уравнений ( y при этом считается постоянным), находим

    ,

    где — функция подлежащая определению.

    Дифференцируя по y функцию U(x, y) = C и принимая во внимание значение ,
    получаем
    ,
    откуда
    .
    Подставив выражение для

    в равенство
    ,
    найдем
    .
    В соответствии с формулой

    получаем

    или
    ,
    где
    .

    Итак, общий интеграл данного уравнения:

    Это уравнение является также однородным и его можно проинтегрировать другим способом.

    Найти общее решение или общий интеграл уравнения с разделяющимися переменными


    источники:

    http://fmf.bigpi.biysk.ru/matan/files/3.html

    http://pandia.ru/text/78/014/6708.php