Объединение решений в тригонометрических уравнениях

Отбор корней в тригонометрических уравнениях

Практика приемных экзаменов в вузы показывает, что при решении тригонометрических уравнений абитуриенты нередко затрудняются как в выборе способа решения уравнения, так и при отборе его корней.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений специфична. Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнения. Запись ответа тригонометрического уравнения часто связана с понятиями объединения и пересечения множеств. Обычно при решении таких уравнений получают серии корней, и в окончательном варианте ответ записывают в виде объединения этих серий. Но как быть, если эти серии пересекаются? Надо ли исключать повторяющиеся корни решения или этого можно не делать?

С понятием пересечения множеств связан и еще один важный вопрос: в ответе не должно быть значений переменной, при которых выражения в левой или правой частях уравнения не определены. Такие значения надо исключить. Для этого надо уметь находить пересечение различных серий.

В предлагаемой работе на конкретных примерах рассматриваются различные способы и приемы при выборе ответа. Надеемся, что данная работа поможет учителям старших классов и самим учащимся при подготовке к вступительным экзаменам в вузы.

1. Отбор чисел на тригонометрическом круге

Проблему отбора корней, отсеивания лишних корней при решении тригонометрических уравнений часто можно решить с помощью изображения чисел на тригонометрическом круге. В ряде случаев этот прием, на наш взгляд, более наглядный и убедительный.

Пример 1. cos x + cos 2x – cos 3x = 1.

2sin x sin 2x – 2sin 2 x = 0,

.

Из рис. 1 видно, что серия x3(*) включает в себя один из корней серии x1( · ).

Ответ:

Пример 2. tg x + tg 2x – tg 3x = 0.

Серия x2(*) не удовлетворяет ОДЗ (рис. 2). Серия x1( o ) входит в серию x3( · ), поэтому ответ можно записать одной формулой:

Пример 3.

sin 2x (2cos 2x cos x + cos 7x) = 0,

sin 2x (cos 3x + cos x + cos 7x) = 0,

sin 2x (cos 3x + 2cos 4x cos 3x) = 0,

sin 2x cos 3x (1 + 2cos 4x) = 0,

Объединяя все три серии корней, ответ можно записать так:

Пример 4. sin 2 x + sin 2 2x = sin 2 3x.

– (cos 2x + cos 4x) + 1 + cos 6x = 0,

– 2cos 3x cos x + 2cos2 3x = 0,

cos 3x (cos 3x – cos x) = 0,

cos 3x sin 2x sin x = 0,

Серия корней x2 содержится в серии x1 и x3, в чем легко убедиться, изобразив их различными точками на круге, поэтому

ответ:

Пример 5. sin x + sin 7x – cos 5x + cos (3x – 2 p ) = 0.

2sin 4x cos 3x + 2sin 4x sin x = 0,

sin 4x (cos 3x + sin x) = 0,

Серия x2 содержится в серии корней x1, а на круге (рис. 4) изобразим точками серии x1( · ) и x3(О), которые не совпадают.

Пример 6. ctg 2x + 2ctg x – tg 2x = sin 5x.

ОДЗ

Учитывая ОДЗ, получим

Пример 7.

Иногда случается, что часть серии входит в ответ, а часть нет.
Нанесем на тригонометрический круг (рис. 6) все числа серии
и выбросим корни, удовлетворяющие условию

Оставшиеся решения из серии x1 можно объединить в формулу

2. Отбор корней в тригонометрическом уравнении алгебраическим способом

Изображение корней на тригонометрическом круге не всегда удобно, когда период меньше 2 p .

Пример 8. sin 2 2x + sin 2 3x + sin 2 4x + sin 2 5x = 2.

cos 4x + cos 6x + cos 8x + cos 10x = 0,

2cos 5x cos x + 2cos 9x cos x = 0,

cos x cos 2x cos 7x = 0.

«Период» серий равен p. Рассмотрим те корни из серий x1, x2, x3, которые попадают в промежуток [0; p ]. Это будут:

Сразу видно, что серия x1 содержится в серии x3, а серии x2 и x3 не пересекаются. Значит, ответ можно записать в виде .

Способ алгебраический. Общим знаменателем в сериях x1 и x2 будет 4:

Если x1 = x2, то 2 + 4k = 1 + 2l, но слева – четное число, а справа – нечетное. Равенство невозможно, серии x1 и x2 не пересекаются. Аналогично получаем, что серии х3 и х2 тоже не пересекаются, а вот для серий x1 и x3 получаются формулы

Из равенства 7 + 14k = 1 + 2m получаем m = 7k + 3. Это означает, что для всякого k найдется целое m такое, что будет выполняться равенство 7 + 14k = 1 + 2m, т. е. всякий корень из серии x1 встретится и в серии x3, поэтому серия x1 содержится в серии x3, и в ответе писать ее не надо.

При решении некоторых тригонометрических уравнений их заменяют эквивалентной системой уравнений, а затем находят пересечение множеств решений. Эти пересечения часто найти легко. Но иногда для нахождения решений необходимо решать диафантово уравнение (ax + by = c).

Пример 9.

В данном случае сделать отбор решений на тригонометрическом круге неудобно, так как периоды серий разные. Найдем такие целые k, при которых x = p + 2 p k имеет посторонние корни, удовлетворяющие условию x № 3 p n, n О Z. Пусть p + 2 p k = 3 p n; 1 + 2k = 3n. Отсюда n = 2m + 1 Ю k = 3m + 1. Итак, посторонние корни в серии x = p + 2 p k будет при k = 3m + 1, m О Z.

Пример 10. cos 7x (sin 5x – 1) = 0.

Пересекаются ли эти серии? Из равенства

следует 5k = 14n + 1. Выразим ту неизвестную, коэффициент при которой меньше по абсолютной величине:

– целое число.

Ответ можно записать в виде

.

Пример 11.

Поскольку наибольшее значение функции y = cos t равно 1, уравнение равносильно системе

Решением уравнения является пересечение серий x1 и x2, т. е. нам надо решить уравнение

Из него получаем уравнение, имеющее решение k = 8t, n = 3t.

Пример 12.

Решением уравнения является пересечение серий x1 и x2;

,

где – целое число;

Пример 13.

sin 2x sin 4x = 2sin x sin 3x cos x,

sin 2x sin 4x = sin 2x sin 3x,

sin 2x (sin 4x – sin 3x) = 0,

Остается проверить, лежат ли они в области x О R,

Серию x1 проверить легко: поскольку ,

а при n, кратных 8, n = 8l (l О Z), получается как раз x № 2 p l, вся серия x1 исключается. Сложнее обстоит дело с серией x2. Здесь надо выяснить, при каких целых k найдется такое n, что выполняется равенство ,

и исключить такие k. Последнее уравнение приводится к виду 8k + 4 = 7n, причем решать это уравнение надо в целых числах. Из него следует, что n = 4l, поскольку левая часть уравнения делится на 4. Подставляя n = 4l в уравнение, получаем 8k + 4 = 28l, откуда 2k + 1 = 7l. Далее, l должно быть нечетно, l = 2t + 1; поэтому 2k + 1 = 14t + 7, k = 7t + 3. Вот решение и получилось:

Ответ:

3. Отбор корней в тригонометрическом уравнении с некоторыми условиями

Изложенные выше способы отбора корней в тригонометрических уравнениях не всегда применяются в чистом виде: выбор способа зависит от конкретных условий, но иногда эти способы комбинируются.

Пример 14. Найти корни уравнения sin 2x = cos x | cos x |,

удовлетворяющие условию x О [0; 2 p ].

Условию cos x і 0 удовлетворяют

из серии

из серии

Наконец,

Пример 15. Найти все решения уравнения

удовлетворяющие условию

так как то

Пример 16. Найти все решения уравнения

принадлежащие отрезку .

Отметим ОДЗ на тригонометрическом круге (рис. 9):

Отрезку принадлежит только один промежуток из ОДЗ, а именно .

Решим уравнение и выберем корни, принадлежащие этому промежутку:

1 + sin 2x = 2cos 2 3x Ю sin 2x = cos 6x,

Из серии при n = 2 имеем

Из серии при n = 5 имеем

Пример 17.

Ответ:

Пример 18. Найти все корни уравнения

которые удовлетворяют условию .

10sin 2 x = – cos 2x + 3 Ю 10sin 2 x = 2sin 2 x – 1 + 3,

Выберем корни, удовлетворяющие условию задачи. Из серии

При

при .

Аналогично выберем корни, удовлетворяющие условию задачи, из второй серии. Это будут .

Пример 19.

sin x и cos x должны быть одинакового знака, а, учитывая первое неравенство, только при sin x > 0 и cos x > 0 система совместна. Значит, x оканчивается в первой четверти. Имеем

1 + 2sin x cos x = 4sin x cos x Ю sin 2x = 1,

Ответ:

Пример 20.

Ответ:

Пример 21.

а)

Но ctg x 0. Решений нет.

б)

Ответ:

.

Примеры для самостоятельного решения

7. Найти все решения уравнения, принадлежащие указанным промежуткам:

Л. Максименко,
Р. Зинченко,
г. Ангарск

Основные методы решения тригонометрических уравнений

п.1. Разложение на множители

Алгоритм простого разложения на множители

Шаг 1. Представить уравнение в виде произведения \(f_1(x)\cdot f_2(x)\cdot . \cdot f_n(x)=0\) где \(f_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить совокупность уравнений: \( \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right. \)
Шаг 3. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2cosx cos2x=cosx\) \begin 2cosx cos2x-cosx=0\\ cosx(2cos2x-1)=0\\ \left[ \begin cosx=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \end

Мы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые \(60^<\circ>=\frac\pi3\)
Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

Возможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара \(\frac\pi2+\pi k,\ \ \pm\frac\pi6+\pi k\), равнозначная c \(\frac\pi6+\frac<\pi k><3>\).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.

Алгоритм разложения на множители со знаменателем

Шаг 1. Представить уравнение в виде произведения $$ \frac=0 $$ где \(f_i(x),\ g_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить смешанную систему уравнений: \( \begin \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right.\\ g_1(x)\ne 0\\ g_2(x)\ne 0\\ . \\ g_m(x)\ne 0\\ \end \)
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.

Например:
Решим уравнение \(ctgx-tgx=\frac<\frac12 sin2x>\)
Левая часть уравнения: $$ ctgx-tgx=\frac-\frac=\frac=\frac<(cosx-sinx)(cosx+sinx)> <\frac12sin2x>$$ Подставляем, переносим правую часть влево: $$ \frac<(cosx-sinx)(cosx+sinx)><\frac12sin2x>-\frac<\frac12sin2x>=0 $$ Выносим общий множитель, умножаем на \(1/2\) слева и справа, получаем: $$ \frac<(cosx-sinx)(cosx+sinx-1)>=0 $$ В этом уравнении учтено ОДЗ для \(ctgx\) и \(tgx\). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: \begin \begin \left[ \begin cosx-sinx=0\\ cosx+sinx=1 \end \right.\\ sin2x\ne 0 \end \end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): \begin cosx-sinx=0\ \ |: cosx\\ 1-tgx=0\Rightarrow tgx=1\Rightarrow x=\frac\pi4+\pi k \end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): \begin cosx-sinx=1\ \ | \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>cosx+\frac<\sqrt<2>><2>sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4\right)cosx+sin\left(\frac\pi4\right)sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4-x\right)=cos\left(x-\frac\pi4\right)=cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>> <2>\Rightarrow x-\frac\pi4=\pm\frac\pi4+2\pi k\Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Решаем исключающее уравнение для знаменателя: $$ sin2x\ne 0\Rightarrow 2x\ne \pi k\Rightarrow x\ne\frac<\pi k> <2>$$

Записываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: \begin \begin \left[ \begin x=\frac\pi4+\pi k\\ x=2\pi k\\ x=\frac\pi2+2\pi k\Leftrightarrow x=\frac\pi4+\pi k \end \right.\\ x\ne\frac<\pi k> <2>\end \end

За счет требования \(x\ne\frac<\pi k><2>\) исключаются семейства \(x=\frac\pi2+2pi k\) и \(x=2\pi k\).
Остается только \(x=\frac\pi4+\pi k\).
Ответ: \(\frac\pi4+\pi k\)

п.2. Приведение к квадратному уравнению

Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где \(f(x)\) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: \(t=f(x)\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Если \(f(x)\) — синус или косинус, проверить условие \(-1\leq t_<1,2>\leq 1\). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений \( \left[ \begin f(x)=t_1\\ f(x)=t_2 \end \right. \) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(3sin^2x+10cosx-6=0\)
Заменим \(sin^2x=1-cos^2x\). Получаем: \begin 3(1-cos^2x)+10cosx-6=0\\ -3cos^2x+10cosx-3=0\\ 3cos^2x-10cosx+3=0\\ \text<Замена:>\ t=cosx,\ \ -1\leq t\leq 1\\ 3t^2-10t+3=0\\ D=(-10)^2-4\cdot 3\cdot 3=64\\ t=\frac<10\pm 8><6>= \left[ \begin \frac13\\ 3\gt 1 — \text <не подходит>\end \right. \end Решаем \(cosx=\frac13\Rightarrow x=\pm arccos\frac13+2\pi k\)
Ответ: \(\pm arccos\frac13+2\pi k\)

п.3. Приведению к однородному уравнению

Алгоритм решения однородного тригонометрического уравнения 1-й степени

Например:
Решим уравнение \(sinx+cosx=0\)
Делим на \(cosx\). Получаем: \(tgx+1=0\Rightarrow tgx=-1\Rightarrow x=-\frac\pi4+\pi k\)
Ответ: \(-\frac\pi4+\pi k\)

Алгоритм решения однородного тригонометрического уравнения 2-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^2x\) \begin \frac=\frac<0>\\ Atg^2x+Btgx+C=0 \end Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2 \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(6sin^2x-sinxcosx-cos^2x=3\)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): \begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\\ 3sin^2x-sinxcosx-4cos^2x=0\ |:\ cos^2x\\ 3tg^2x-tgx-4=0\\ \text<Зaмена:>\ t=tgx\\ 3t^2-t-4=0\\ D=(-1)^2-4\cdot 3\cdot(-4)=49\\ t=\frac<1\pm 7><6>= \left[ \begin -1\\ \frac43 \end \right. \end Решаем совокупность: \( \left[ \begin tgx=-1\\ tgx=\frac43 \end \right. \Rightarrow \left[ \begin x=-\frac\pi4+\pi k\\ x=arctg\frac43+\pi k \end \right. \)
Ответ: \(-\frac\pi4+\pi k,\ \ arctg\frac43+\pi k\)

Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:

Алгоритм решения однородного тригонометрического уравнения n-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^n x\)
Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное алгебраическое уравнение: \begin a_0t^n+a_1t^+. +a_n=0 \end Найти корни \(t_1, t_2. t_k,\ k\leq n\)
Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2\\ . \\ tgx=t_k \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2sin^3x=cosx\)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: \begin 2sin^3x=cosx(sin^2x+cos^2x)\\ 2sin^3x-sin^2xcosx-cos^3x=0\ |:\ cos^3x\\ 2tg^x-tg^2x-1=0\\ \end Замена \(t=tgx\) дает кубическое уравнение: \(2t^3-t^2-1=0\)
Раскладываем на множители: \begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\\ =(t-1)(2t^2+t+1) \end Вторая скобка на множители не раскладывается, т.к. \(D=1-4\cdot 2=-7 \lt 0\).
Получаем: \(2t^3-t^2-1=0\Leftrightarrow t-1=0\)
Возвращаемся к исходной переменной:
\(tgx=1\Rightarrow x=\frac\pi4+\pi k\)
Ответ: \(\frac\pi4+\pi k\)

п.4. Введение вспомогательного угла

Например:
Решим уравнение \(\sqrt<3>sin3x-cos3x=1\)
Делим уравнение на \( p=\sqrt<3+1>=2: \) \begin \sqrt<3>sin3x-cos3x=1 |:\ 2\\ \frac<\sqrt<3>><2>sin3x-\frac12cos3x=\frac12\\ sin\left(\frac\pi3\right)sin3x-cos\left(\frac\pi3\right)cos3x=\frac12\\ cos\left(\frac\pi3\right)cos3x-sin\left(\frac\pi3\right)sin3x=-\frac12\\ cos\left(3x+\frac\pi3\right)=-\frac12\Rightarrow 3x+\frac\pi3=\pm\frac<2\pi><3>+2\pi k\Rightarrow 3x= \left[ \begin -\pi+2\pi k\\ \frac\pi3+2\pi k \end \right. \Rightarrow x= \left[ \begin -\frac\pi3+\frac<2\pi k><3>\\ \frac\pi9+\frac<2\pi k> <3>\end \right. \end
Ответ: \(-\frac\pi3+\frac<2\pi k><3>,\ \ \frac\pi9+\frac<2\pi k><3>\)

п.5. Преобразование суммы тригонометрических функций в произведение

При решении уравнений вида \begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 \end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).

Например:
Решим уравнение \(cos3x+sin2x-sin4x=0\)
Заметим, что: $$ sin2x-sin4x=2sin\frac<2x-4x><2>cos\frac<2x+4x>=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: \begin cos3x-2sinxcos3x=0\\ cos3x(1-2sinx)=0\\ \left[ \begin cos3x=0\\ 1-2sinx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ sinx=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=(-1)^k\frac\pi6+\pi k= \left[ \begin x=\frac\pi6+2\pi k\\ \frac<5\pi><6>+2\pi k \end \right. \end \right. \end Чтобы было понятней, распишем полученные множества в градусах: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k\\ x=\frac\pi6+2\pi k=30^<\circ>+360^<\circ>k\Leftrightarrow x=30^<\circ>+60^<\circ>k=\frac\pi6+\frac<\pi k><3>\\ x=\frac<5\pi><6>+2\pi k=150^<\circ>+360^<\circ>k \end \right. \end

Получаем, что семейства решений \(\frac\pi6+2\pi k\) и \(\frac<5\pi><6>+2\pi k\) уже содержатся во множестве \(\frac\pi6+\frac<\pi k><3>\).

п.6. Преобразование произведения тригонометрических функций в сумму

При решении уравнений вида \begin sinax\cdot cosbx=sincx\cdot cosdx,\ \ sinax\cdot sinbx=sincx\cdot cosdx\ \ \text <и т.п.>\end используются формулы, выведенные в §18 данного справочника.

Например:
Решим уравнение \(sin5xcos3x=sin6xcos2x\)
Заметим, что: \begin sin5xcos3x=\frac<2>=\frac<2>\\ sin6xcos2x=\frac<2>=\frac <2>\end Подставляем: \begin \frac<2>=\frac<2>\ |\times 2\\ sin8x-sin2x=sin8x-sin4x\\ sin4x-sin2x=0\\ 2sin2xcos2x-sin2x=0\\ sin2x(2cos2x-1)=0\\ \left[ \begin sin2x=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin 2x=\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \end

Семейства решений не пересекаются.

Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: \( \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pi k \end \right. \)

п.7. Понижение степени

При решении уравнений вида \begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A \end используются формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>,\ \ cos^2x=\frac<1+cos2x> <2>\end (см. формулы половинного аргумента, §15 данного справочника).

Например:
Решим уравнение \(sin^2x+sin^22x=1\)
Расписываем квадраты синусов через формулу понижения степени: \begin \frac<1-cos2x><2>+\frac<1-cos4x><2>=1\\ cos2x+cos4x=0\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=0\\ cos3xcosx=0\\ \left[ \begin cos3x=0\\ cosx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ x=\frac\pi2+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \end

\(x=\frac\pi2+\pi k\) является подмножеством \(x=\frac\pi6+\frac<\pi k><3>\)
Поэтому \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

п.8. Замена переменных

При решении уравнений вида \(f(sinx\pm cosx,\ sinxcosx)=0\) используется замена \begin t=cosx\pm sinx \end

Например:
Решим уравнение \(sinx+cosx=1+sinxcosx\)
Замена: \(t=sinx+cosx\)
Тогда \(t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosx\Rightarrow sinxcosx=\frac<2>\)
Подставляем: \begin t=1+\frac<2>\Rightarrow 2(t-1)=t^2-1\Rightarrow t^2-2t+1=0\Rightarrow (t-1)^2=0\Rightarrow t=1\\ sinx+cosx=1\ |\ \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>sinx+\frac<\sqrt<2>><2>cosx=\frac<\sqrt<2>><2>\\ sin\frac\pi4 sinx+cos\frac\pi4 cosx=\frac<\sqrt<2>><2>\\ cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>><2>\Rightarrow x-\frac\pi4=\pm\frac\pi4 + 2\pi k\Rightarrow \Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Ответ: \(2\pi k,\ \ \frac\pi2+2\pi k\)

п.9. Использование ограничений области значений функций

Уравнения вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: \( \begin sinax=1\\ sinbx=1\\ . \\ cosdx=1\\ . \end \)
Находим пересечение (!) полученных семейств решений и записываем ответ.

Аналогично, уравнение вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно -1.

Например:
Решим уравнение \(sinx+cos4x=2\)
Для этого нужно решить систему: \begin \begin sinx=1\\ cos4x=1 \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ 4x=2\pi k \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \end

Пересечением двух семейств решений будет только \(\frac\pi2+2\pi k\).
Поэтому \begin \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \Leftrightarrow x=\frac\pi2+2\pi k \end

п.10. Примеры

Пример 1. Используя различные методы, решите уравнения:
a) \(4sin\left(\frac\pi2\right)+5sin^2x=4\)
Приводим уравнение к квадратному:
\(5sin^x+4cosx-4=0\)
\(5(1-cos^2x)+4cosx-4=0\)
\(-5cos^2x+4cosx+1=0\)
\(5cos^2x-4cosx-1=0\)
Замена: \(t=cosx,\ \ -1\leq t\leq 1\) \begin 5t^2-4t-1=0\Rightarrow (5t+1)(t-1)=0\Rightarrow \left[ \begin t_1=-\frac15\\ t_2=1 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin cosx=-\frac15\\ cosx=1 \end \right. \Rightarrow \left[ \begin x=\pm arccos\left(-\frac15\right)+2\pi k\\ x=2\pi k \end \right. \end Ответ: \(\pm arccos\left(-\frac15\right)+2\pi k,\ \ 2\pi k\)

б) \(6sinxcosx=5cos2x\)
\(6sinxcosx=3\cdot 2sinxcosx=3sin2x\)
Приводим уравнение к однородному 1-й степени:
\(3sin2x=5cos2x\ |\ :\ cos2x\)
\(3tg2x=5\Rightarrow tg2x=\frac53\Rightarrow 2x=arctg\frac53+\pi k\Rightarrow x=\frac12 arctg\frac53+\frac<\pi k><2>\)
Ответ: \(\frac12 arctg\frac53+\frac<\pi k><2>\)

в) \(9cos^2x-5sin2x=-sin^2x\)
\(5sin2x=5\cdot 2sinxcosx=10sinxcosx\)
Приводим уравнение к однородному 2-й степени:
\(sin^2x-10sinxcosx+9cos^2x=0\ |:\ cos^2x\)
\(tg^2x-10tgx+9=0\)
Замена: \(t=tgx\) \begin t^2-10+9=0\Rightarrow (t-1)(t-9)=0\Rightarrow \left[ \begin t_1=1\\ t_2=9 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin tgx=1\\ tgx=9 \end \right. \Rightarrow \left[ \begin x=\frac\pi4+\pi k\\ x=arctg9+\pi k \end \right. \end Ответ: \(\frac\pi4+\pi k,\ \ arctg9+\pi k\)

г) \(cos3x-1=cos6x\)
Косинус двойного угла: \(cos6x=2cos^2 3x-1\)
Подставляем и раскладываем на множители:
\(cos3x-1=2cos^2 3x-1\)
\(cos3x-2cos^2 3x=0\)
\(cos3x(1-2cos3x)=0\) \begin \left[ \begin cos3x=0\\ 1-2cos3x=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ cos3x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ 3x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pm\frac\pi9+\frac<2\pi k> <3>\end \right. \end Чтобы проверить пересечения, распишем семейства решений через градусы: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k=<. -90^<\circ>,-30^<\circ>,30^<\circ>,90^<\circ>,150^<\circ>. >\\ x=\pm\frac\pi9+\frac<2\pi k><3>= \left[ \begin -20^<\circ>+120^<\circ>k=<. -140^<\circ>,-20^<\circ>,100^<\circ>. >\\ 20^<\circ>+120^<\circ>k=<. -100^<\circ>,20^<\circ>,140^<\circ>. > \end \right. \end \right. \end Семейства не пересекаются.
Ответ: \(\frac\pi6+\frac<\pi k><3>,\ \ \pm\frac\pi9+\frac<2\pi k><3>\)

д) \(\sqrt<3>sin2x-cos2x=-\sqrt<3>\)
Разделим на \(p=\sqrt<3+1>\) и введем дополнительный угол:
\(\frac<\sqrt<3>><2>sin2x-\frac12 cos2x=-\frac<\sqrt<3>><2>\)
\(\frac12cos2x-\frac<\sqrt<3>><2>sin2x=\frac<\sqrt<3>><2>\)
\(cos\left(2x-\frac\pi3\right)=\frac<\sqrt<3>><2>\)
\(2x-\frac\pi3=\pm\frac\pi6+2\pi k\)
\(2x=\frac\pi3\pm\frac\pi6+2\pi k= \left[ \begin -\frac<\pi><6>+2\pi k\\ \frac\pi2+2\pi k \end \right. \)
\( \left[ \begin x=-\frac<\pi><12>+\pi k\\ x=\frac\pi4+\pi k \end \right. \) Семейства решений не пересекаются.
Ответ: \(-\frac<\pi><12>+\pi k,\ \ \frac\pi4+\pi k\)

е) \(cos^2x+cos^2 2x=cos^2 3x+cos^2 4x\)
Формула понижения степени: \(cos^2x=\frac<1+cos2x><2>\)
Подставляем: \begin \frac<1+cos2x><2>+\frac<1+cos4x><2>=\frac<1+cos6x><2>+\frac<1+cos8x><2>\\ cos2x+cos4x=cos6x+cos8x\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=2cos\frac<6x+8x><2>cos\frac<6x-8x><2>\ |:\ 2\\ cos3xcosx=cos7xcosx=0\\ cos3xcosx-cos7xcosx=0\\ cosx(cos3x-cos7x)=0\\ cosx\left(-2sin\frac<3x+7x><2>sin\frac<3x-7x><2>\right)=0\\ -2cosxsin5xsin(-2x)=0\\ 2cosxsin5xsin2x=0\\ cosxsin5xsin2x=0\\ \left[ \begin cosx=0\\ sin5x=0\\ sin2x=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 5x=\pi k\\ 2x=\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Семейство решений \(x=\frac\pi2+\pi k\) (базовые точки 90°, 270° на числовой окружности) является подмножеством для \(x=\frac<\pi k><2>\) (базовые точки 0°, 90°, 180°, 270°). Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \Rightarrow \left[ \begin x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Ответ: \(\frac<\pi k><5>,\ \ \frac<\pi k><2>\)

Пример 2*. Решите уравнения:
a) \begin \frac<4>-\frac<18>+\frac=0 \end ОДЗ: \(tgx\ne \pm 3\)
1) Если \(cosx\ne 0\), то последнее слагаемое \(\frac=\frac<\frac><\frac>=\frac\)
Получаем: \begin \frac<4>-\frac<18>+\frac=0\\ \frac<4(tgx-3)-18+tgx(tgx+3)><(tgx+3)(tgx-3)>=0\\ \frac<(tgx+3)(tgx-3)>=0\\ \end Замена: \(t=tgx\) \begin \frac<(t+3)(t-3)>\Rightarrow \begin t^2+7t-30=0\\ t\ne\pm3 \end \Rightarrow \begin (t+10)(t-3)=0\\ t\ne\pm3 \end \Rightarrow \begin \left[ \begin t=-10\\ t=3 \end \right.\\ t\ne\pm3 \end \Rightarrow\\ t=-10 \end Получаем: \begin tgx=-10\\ x=arctg(-10)+\pi k=-arctg10+\pi k \end
2) Проверим, является ли \(cosx=0\) решением.
При \(cosx=0,\ x=\frac\pi2+\pi k,\ tgx\rightarrow\infty\). Первое слагаемое \(\frac<4>\rightarrow\frac<4><\infty>\rightarrow 0\)
Второе слагаемое \(\frac<18>\rightarrow\frac<18><\infty>\rightarrow 0\)
Третье слагаемое \(\frac\rightarrow\frac<1><1-0>=1\ne 0\)
Сумма слагаемых в пределе \(tgx\rightarrow\infty\) равна \(0+0+1=1\ne 0\)
\(cosx=0\) решением не является.
Ответ: \(-arctg10+\pi k\)

б) \(\frac<3>+1=7\frac<|cosx|>\)
ОДЗ: \(cosx\ne 0,\ x\ne\frac\pi2+\pi k\) \begin |cosx|= \begin cosx,\ -\frac\pi2+2\pi k\leq x\lt \frac\pi2+2\pi k\\ -cosx,\ \frac\pi2+2\pi k\leq x\lt \frac<3\pi2><2>+2\pi k \end \end 1) Решаем для положительного косинуса (1-я и 4-я четверти) \begin \frac<3>+1=7\frac\\ 3(1+tg^2x)+1-7tgx=0\\ 3tg^2-7tgx+4=0\\ (3tgx-4)(tgx-1)=0\\ \left[ \begin tgx=\frac43\\ tgx=1 \end \right. \Rightarrow \left[ \begin x=arctg\frac43+\pi k\\ x=\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(\frac\pi4,\ arctg\frac43,\ \frac<5\pi><4>\) и \(\pi+arctg\frac43\), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
\(\frac\pi4\) и \(arctg\frac43\).
Это означает, что в записи решения период будет не \(\pi k\), а \(2\pi k\). \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k \end \right. \end

2) Решаем для отрицательного косинуса (2-я и 3-я четверти) \begin \frac<3>+1=-7\frac\\ 3(1+tg^2x)+1+7tgx=0\\ 3tg^2x+7tgx+4=0\\ (3tgx+4)(tgx+1)=0\\ \left[ \begin tgx=-\frac43\\ tgx=-1 \end \right. \Rightarrow \left[ \begin x=-arctg\frac43+\pi k\\ x=-\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(-\frac\pi4,\ -arctg\frac43,\ \frac<3\pi><4>\) и \(\pi-arctg\frac43\), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
\(\frac<3\pi><4>\) и \(\pi-arctg\frac43\).
Это означает, что в записи решения будут выбранные точки с периодом \(2\pi k\). \begin \left[ \begin x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

3) Объединяем полученные решения: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k\\ x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

По аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\pi-arctg\frac43+2\pi k \end \right. \Leftrightarrow x=(-1)^k arctg\frac43+\pi k\\ \left[ \begin x=\frac\pi4+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^k \frac\pi4+\pi k\\ \end

Окончательно получаем: \( \left[ \begin x=(-1)^k arctg\frac43+\pi k\\ x=(-1)^k \frac\pi4+\pi k \end \right. \).
Ответ: \((-1)^k arctg\frac43+\pi k,\ \ (-1)^k \frac\pi4+\pi k\)

г) \(3sinx-4cosx=5\)
Способ 1. Вводим дополнительный угол:
\(p=\sqrt<3^2+4^2>=5\)
\(\frac35sinx-\frac45 cosx=1\)
\(sin\alpha=\frac35,\ cos\alpha=\frac45\)
\(sin\alpha sinx-cos\alpha cosx=1\)
\(cos\alpha cosx-sin\alpha sinx=-1\)
\(cos(x+\alpha)=-1\)
\(x+\alpha=\pi+2\pi k\)
\(x=-\alpha+\pi+2\pi k=-arcsin\frac35+\pi+2\pi k\)

Способ 2. Делаем универсальную подстановку: \begin sin\alpha=\frac<2tg\frac<\alpha><2>><1+tg^2\frac\alpha2>,\ \ cos\alpha=\frac<1-tg^2\frac\alpha2><1+tg^2\frac\alpha2>\\ 3\cdot \frac<2tg\frac<2>><1+tg^2\frac<2>>-4\cdot\frac<1-tg^2\frac<2>><1+tg^2\frac<2>>=5\\ \frac<6tg\frac<2>-4\left(1-tg^2\frac<2>\right)-5\left(1+tg^2\frac<2>\right)><1+tg^2\frac<2>>=0 \end \(1=tg^2\frac<2>\geq 1\), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: \begin -tg^2\frac<2>+6tg\frac<2>-9=0\Rightarrow tg^2\frac<2>-6tg\frac<2>+9=0\Rightarrow\left(tg\frac<2>-3\right)^2=0\Rightarrow tg\frac<2>=3\\ \frac<2>=arctg3+\pi k\Rightarrow x= 2arctg3+2\pi k \end

Докажем, что полученные ответы: $$ x=-arcsin\frac35+\pi+2\pi k\ \ \text<и>\ x=2arctg3+2\pi k $$ равнозначны, т.е. \(-arcsin\frac35+\pi=2arctg3\), и равны углы: $$ arcsin\frac35=\pi-2arctg3\ \ (*) $$ Пусть в правой части равенства (*) \(2arctg3=\varphi\). Тогда \(arctg3=\frac\varphi2\) и \(tg\frac\varphi2=3\).
А в левой части равенства (*) \(arcsin\frac35=\alpha\) и \(sin\alpha=\frac35\)
Угол \(0\lt arcsin\frac35\lt \frac\pi2\) расположен в 1-й четверти.
Угол \(\varphi=2arctg3\) расположен во 2-й четверти \((cos\varphi\lt 0,\ sin\varphi\gt 0)\). $$ cos\varphi=\frac<1-tg^2\frac\varphi2><1+tg^2\frac\varphi2>=\frac<1-3^2><1+3^2>=-\frac45,\ \ sin\varphi=\frac<2tg\frac\varphi2><1+tg^2\frac\varphi2>=\frac<2\cdot 3><1+3^2>=\frac35 $$ Получаем, что для угла \(\alpha:\ sin\alpha=\frac35,\ cos\alpha=\frac45\)
Для угла \(\varphi:\ sin\varphi=\frac35,\ cos\varphi=-\frac45\)
Откуда следует, что \(\alpha=\pi-\varphi\). Что и требовалось доказать.
Ответ: \(-arcsin\frac35+\pi+2\pi k\) или \(2arctg3+2\pi k\) (т.к. \(-arcsin\frac35+\pi=2arctg3)\)

Объединение решений в тригонометрических уравнениях

Чтобы решить тригонометрическое уравнение надо путём тригонометрических преобразований свести его к простейшему тригонометрическому уравнению. Напомним формулы решений простейших тригонометрических уравнений.

1. `sinx=a`. Если `|a|>1`, решений нет. Если `|a| 1`, решений нет. Если `|a| Уравнение распадается на два:

1) `2sinx-1=0`, `sinx=1/2` и `x=(-1)^npi/6+pin,n in Z`.

2) `3cosx+1=0`, `cosx=-1/3` и `x=+- arccos(-1/3)+2pin,n in Z`.

Отметим, что в сериях решений 1) и 2) не было бы ошибкой использовать разные буквы (например, `n` и `m`), т. к. идёт перечисление решений.

Используя формулу приведения `sin2x=cos(pi/2-2x)`, преобразуем наше уравнение `cos(pi/2-2x)+cos(5x-pi/6)=0` или `2cos((3x+pi/3)/2)*cos((7x-(2pi)/3)/2)=0`.

Уравнение распадётся на два:

1) `cos((3x+pi/3)/2)=0`; `(3x+pi/3)/2=pi/2+pin,ninZ`;

II. Сведение уравнения к алгебраическому от одного переменного

Решить уравнение `4sin^3x=3cos(x+(3pi)/2)`.

По формуле приведения `cos(x+(3pi)/2)=sinx`,

поэтому уравнение запишется: `4sin^3x=3sinx`.

Отметим, что в случае двух уравнений `sinx=+-(sqrt3)/2` мы записали не объединение стандартных формул `(-1)^n(+-pi/3)+pin,ninZ`, а более простую, которая получается, если изобразить решения этих уравнений на тригонометрическом круге (рис. 1). (Две верхние точки – решения уравнения `sinx=(sqrt3)/2`, а две нижние – решения уравнения `sinx=-(sqrt3)/2`).

`x=pin,ninz`; `x=+-pi/3+pin,n inZ`.

Решить уравнение `cos2x+sin^2x=0,5`.

Воспользуемся формулой `cos2x=1-2sin^2x`.

Получим: `1-sin^2x=0,5` или `sin^2x=1/2`, `sinx=+-1/sqrt2`.

Это уравнение можно решить и пользуясь формулой `sin^2x+(1-cos2x)/2`. Тогда оно преобразуется к виду: `cos2x=0`, `2x=pi/2+pin,ninZ`, или

Геометрически множества точек (1) и (2) совпадают (рис. 2). Так что решения тригонометрических уравнений могут быть записаны в разной форме.

III. Однородные уравнения

(хотя формально эти уравнения можно отнестик предыдущему типу)

Решить уравнение `5sin^2x-4sinx*cosx-cos^2x=0`.

Это однородное уравнение второго порядка. Так как `cosx!=0` (иначе из нашего уравнения следовало бы, что `sinx=0` что противоречит основному тригонометрическому тождеству `sin^2x+cos^2x=1`), то разделим наше уравнение на `cos^2x`. Получим уравнение `5″tg»^2x-4″tg»x-1=0`. Откуда `»tg»x=1` или `»tg»x=-1/5`. Следовательно, `x=pi/4+pin,ninZ`, или `x=-«arctg»1/5+pin,ninZ`.

Решить уравнение `2+3sinxcosx=7sin^2x`.

Воспользуемся основным тригонометрическим тождеством `1=sin^2x+cos^2x`. Преобразуем наше уравнение к однородному уравнению второго порядка: `2(sin^2x+cos^2x)+3sinxcosx=7sin^2x` или `5sin^2x-3sinxcosx-2cos^2x=0`. Здесь `cosx!=0` (в противном случае из последнего уравнения следовало бы, что `sinx!=0` что противоречит основному тригонометрическому тождеству). Делим последнее уравнение на `cos^2x`. Получаем уравнение `5″tg»^2x-3″tg»x-2=0`.

Откуда `»tg»x=1` или `»tg»x=-2/5`. И значит, `x=pi/4+pin,ninZ`, или `x=-«arctg»2/5+pin,ninZ`

Наконец рассмотрим уравнение, сводящееся к однородному третьего порядка.

Решить уравнение `sin^3x+13cos^3x-cosx=0`.

Перепишем это уравнение так:

Это однородное уравнение третьего порядка. Деля его на `cos^3x` (`cosx!=0` для решений нашего уравнения), получим уравнение относительно `»tg»x`

Делаем замену: `t=»tg»x`. Алгебраическое уравнение `t^3-t^2+12=0` имеет корень `t=-2` (находится подбором среди целых делителей числа `12`). Далее деля многочлен `t^3-t^2+12` на `(t+12)`, раскладываем левую часть алгебраического уравнения на множители

Уравнение `t^2-3t+6=0` не имеет действительных корней, т. к. `D sqrt2` не даёт решений. Число `|1-sqrt3| при `2x+varphi=pi/2+2pin,ninZ`.

`max_Rf(x)=-2`, `min_R f(x)=-12`.

Рассмотрим теперь более сложные тригонометрические уравнения, в которых надо делать отбор корней.

V. Рациональные тригонометрические уравнения

Решить уравнение `(cos2x+cosx+1)/(2sinx+sqrt3)=0`.

Не будем решать это неравенство, а изобразим на тригонометрическом круге (рис. 3а) точки, не удовлетворяющие ОДЗ.

Решаем уравнение `cos2x+cosx+1=0`.

Преобразуем его: `(2cos^2x-1)+cosx+1=0`, `2cos^2x+cosx=0`,

Изобразим решения уравнения `cosx=0` на тригонометрическом круге (рис. 3б). Они удовлетворяют ОДЗ.

Изобразим решения уравнения `cosx=-1/2` на тригонометрическом круге (рис. 3в). Мы видим, что точки `x=-(2pi)/3+2pin,ninZ`, не удовлетворяют ОДЗ, а точки `x=(2pi)/3+2pin,ninZ`, удовлетворяют ОДЗ. Таким образом,

Решить уравнение `(sinx)/(sin3x)+(sin5x)/(sinx)=8cosxcos3x`.

Умножим уравнение на `sinx*sin3x`. Получим:

Преобразуем это уравнение:

Ещё раз воспользуемся формулой

в правой части последнего уравнения и умножим его на `2`. Получим

`(1-cos2x)+(cos2x-cos8x)=2(cos4x-cos8x)` или `1+cos8x-2cos4x=0`.

Далее: `1+(2cos^2 4x-1)-2cos4x=0`, `2cos4x(cos4x-1)=0 iff` $$ \iff \left[\begin\mathrm4x=1.\\ \mathrm4x=0.\end\right.$$

Если `cos4x=1`, то `4x=2pin,x=(pin)/2,ninZ`.

1. Изображаем точки

на тригонометрическом круге (рис. 4а). Геометрически их `4` штуки (для `n=0,1,2,3` – далее они повторяются).

2. Изображаем точки

которые не удовлетворяют ОДЗ на тригонометрическом круге (4б). Их `6` штук (для `m=0,1,2,3,4,5` – далее они повторяются).

Видно, что совпадения точек в `(3)` и `(4)` будут при `x=pin,ninZ`. Эти значения надо исключить из решения, т. е. в ответ пойдут точки

С решениями уравнения

или `x=pi/8+(pin)/4,ninZ`, можно поступить аналогично, сделав отбор на тригонометрическом круге. Но когда точек–решений на тригонометрическом круге много, и много точек, не входящих в ОДЗ, то удобнее воспользоваться аналитическим способом отбора решений. В данном случае точек — решений на тригонометрическом круге в серии `x=pi/8+(pin)/4,ninZ`, будет `8` штук (различные при `n=0, 1, 2, 3, 4, 5, 6, 7` – далее они повторяются), а точек, не входящих в ОДЗ на тригонометрическом круге `6`. Посмотрим, есть ли совпадения, т. е. существуют ли целые `m` и `n` такие, что

`pi/8+(pin)/4=(pim)/3 iff 1/8+n/4=m/3 iff`

`iff 3+6n=8m iff 3=2(4m-3n)`.

Последнее равенство невозможно, т. к. слева стоит нечётное число, а справа чётное.

Отметим, что и для решений уравнения `cos4x=1` отбор можно было сделать аналитически. А именно смотрим, существуют ли целые `m` и `n` такие, что `(pin)/2=(pim)/3 iff 3n=2m`. Видим, что `n` делится на `2`. Тогда `n=2k` и `m=3k,kinZ`. Т. е. из решения уравнения `cos4x=1` надо исключить `x=(pin)/2`, где `n=2k`, т. е. оставить `x=(pin)/2` с `n=2k+1,kinZ`. Но при `n=2k+1` в серии `x=(pin)/2` останутся `x=pi/2(2k+1)=pi/2+pik,kinZ`, что и было нами получено на тригонометрическом круге.

Иногда отбор решений предлагается сделать в условии задачи.


источники:

http://reshator.com/sprav/algebra/10-11-klass/osnovnye-metody-resheniya-trigonometricheskih-uravnenij/

http://zftsh.online/articles/4750