Область определения функции квадратного уравнения

Как найти область определения функции

Что такое область определения функции?

Начнём с краткого определения. Область определения функции y=f(x) — это множество значений X, для которых существуют значения Y.

Войдём в тему более основательно. Каждой точке графика функции соответствуют:

  • определённое значение «икса» — аргумента функции;
  • определённое значение «игрека» — самой функции.

Верны следующие факты.

  • От аргумента — «икса» — вычисляется «игрек» — значения функции.
  • Область определения функции — это множества всех значений «икса», для которых существует, то есть может быть вычислен «игрек» — значение функции. Иначе говоря, множество значений аргумента, на котором «функция работает».

Можно понимать область определения функции и как проекцию графика функции на ось Ox.

Что требуется, чтобы уверенно находить область определения функции? Во-первых, нужно различать виды функций (корень, дробь, синус и др.). Во-вторых, решать уравнения и неравенства с учетом вида функции (например, на что нельзя делить, какое выражение не может быть под знаком корня и тому подобное). Согласитесь, не так уж много и не так сложно. При изучении темы области определения функции поможет материал Свойства и графики элементарных функций. А поскольку областью определения функции служат различные множества, а также их объединения и пересечения, то пригодится и материал Множества и операции над множествами.

Итак, чтобы находить области определения распространённых функций, порешаем уравнения и неравенства с одной переменной.

После этого экскурса в важную составную матанализа многие согласятся, что найти область определения функции не очень сложно.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы. Приступаем к практике.

Общий принцип на самых простых примерах

Пример 1. На рисунке изображён график функции . Знаменатель дроби не может быть равен нулю, так как на нуль делить нельзя. Поэтому, приравнивая знаменатель нулю

и решая это уравнение:

получаем значение, не входящее в область определения функции: 1. То есть, область определения заданной функции — это все значения «икса» от минус бесконечности до единицы и от единицы до плюс бесконечности. Это хорошо видно на графике. Приведённый здесь пример функции относится к виду дробей. На уроке разберём решения всех распространённых видов функций.

Пример 2. Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Так как подкоренное выражение должно быть неотрицательным, нужно решить неравенство

Если перенести какое-либо слагаемое в другую часть неравенства с противоположным знаком, то мы получим равносильное неравенство с тем же знаком неравенства. Переносим минус 5 и получаем неравенство

Получаем решение: область определения функции — все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).

На чертеже сверху — фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в «плюсовом» направлении штриховка продолжается бесконечно вместе с самой осью.

Область определения корня n-й степени

В случае, функции корня n-й степени, то есть когда функция задана формулой и n — натуральное число:

если n — чётное число, то областью определения функции является множество всех неотрицательных действительных чисел, то есть [0; + ∞[ ;

если n — нечётное число, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ .

Пример 3. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно. Поэтому решаем неравенство

.

Это квадратное неравенство

,

По формуле находим дискриминант:

.

По формуле находим корни квадратного трёхчлена:

.

Найденные точки разбивают числовую прямую на три промежутка:

и .

При этом знак квадратного трёхчлена (больше или меньше нуля) совпадает со знаком коэффициента a во всех точках промежутков

и

и противоположен знаку коэффициента a во всех точках промежутка .

В нашем случае имеем отрицательный коэффициент a=-1 , поэтому квадратный трёхчлен неотрицателен во всех точках промежутка .

Следовательно, область определения данной функции — [- 1; 1] .

Заштрихованная область числовой прямой на чертеже сверху — это область определения данной функции.

Область определения степенной функции

Область определения степенной функции находится в зависимости от вида степени в выражении.

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если — положительное, то областью определения функции является множество [0; + ∞[ , то есть нуль входит в область определения;

если — отрицательное, то областью определения функции является множество (0; + ∞[ , то есть нуль не входит в область определения.

Пример 4. Найти область определения функции .

Решение. Выражение функции можно представить так:

Квадратный трёхчлен в скобках в знаменателе должен быть строго больше нуля (ещё и потому, что дробный показатель степени данной степенной функции — отрицательный). Поэтому решим строгое неравенство, когда квадратный трёхчлен в скобках строго больше нуля:

.

.

Дикриминант получился отрицательный. Следовательно сопряжённое неравенству квадратное уравнение не имеет корней. А это значит, что квадратный трёхчлен ни при каких значениях «икса» не равен нулю. Таким образом, область определения данной функции — вся числовая ось, или, что то же самое — множество R действительных чисел, или, что то же самое — ]- ∞; + ∞[ .

Пример 5. Найти область определения функции .

Решение. Оба слагаемых в выражении функции — степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции — множество [0; + ∞[ .

На чертеже сверху заштрихована часть числовой прямой от нуля (включительно) и больше, причём штриховка продолжается вместе с самой прямой до плюс бесконечности.

Область определения степенной функции с целым показателем степени

В случае, когда функция задана формулой :

если a — положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;

если a — отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 6. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы — так же целого числа. Следовательно, область определения данной функции — вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения показательной и логарифмической функции

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ . Подробнее о графике такой функции.

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ . Подробнее о графике такой функции.

Найти область определения функции самостоятельно, а затем посмотреть решение

Пример 7. Найти область определения функции .

Пример 8. Найти область определения функции .

Область определения тригонометрических функций

Область определения функции y = cos(x) — так же множество R действительных чисел.

Область определения функции y = tg(x) — множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x) — множество R действительных чисел, кроме чисел .

Пример 9. Найти область определения функции .

Решение. Внешняя функция — десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь — синус «икса». Пользуясь тригонометической таблицей (или поворачивая воображаемый циркуль по окружности), видим, что условие sin x > 0 нарушается при «иксе» равным нулю, «пи», два, умноженном на «пи» и вообще равным произведению числа «пи» и любого чётного ( 2 ) или нечётного целого числа ( (2k+1)π ).

Таким образом, область определения данной функции задаётся выражением

,

где k — целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x) — множество [-1; 1] .

Область определения функции y = arccos(x) — так же множество [-1; 1] .

Область определения функции y = arctg(x) — множество R действительных чисел.

Область определения функции y = arcctg(x) — так же множество R действительных чисел.

Пример 10. Найти область определения функции .

Решение. Решим неравенство:

Решение получили, основываясь на свойстве неравенств: если все части верного неравенства умножить на одно и то же положительное число, то получится также верное неравество. В данном случае умножали на 4.

Таким образом, получаем область определения данной функции — отрезок [- 4; 4] .

Пример 11. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение получили, основываясь на свойстве неравенств: если обе части верного неравенства умножить на одно и то же отрицательное число изменить знак неравенства на противоположный, то получится верное неравенство. В данном случае умножали на минус 2.

Аналогично и решение второго неравенства:

Таким образом, получаем область определения данной функции — отрезок [0; 1] .

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.

Пример 12. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби:

находим область определения данной функции — множество ]- ∞; — 2[ ∪ ]- 2 ;+ ∞[ , то есть все числа, кроме минус 2.

Пример 13. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[ , то есть все числа, кроме минус единицы и единицы.

Пример 14. Найти область определения функции .

Решение. Область определения первого слагаемого — данной функции — множество R действительных чисел, второго слагаемого — все действительные числа, кроме -2 и 2 (получили, решая равенство нулю знаменателя, как в предыдущем примере). В этом случае область определения функции должна удовлетворять условиями определения обоих слагаемых. Следовательно, область определения данной функции — ]- ∞; — 2[ ∪ ]- 2 ; 2[ ∪ ]2 ;+ ∞[ , то есть все числа, кроме -2 и 2.

Пример 15. Найти область определения функции .

Решение. Решим уравнение:

Уравнение не имеет действительных корней. Но функция определена только на действительных числах. Таким образом, получаем область определения данной функции — вся числовая прямая или, что то же самое — множество R действительных чисел или, что то же самое — ]- ∞; + ∞[ .

То есть, какое бы число мы не подставляли вместо «икса», знаменатель никогда не будет равен нулю.

Пример 16. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 0[ ∪ ]0 ; 1[ ∪ ]1 ;+ ∞[ .

Пример 17. Найти область определения функции .

Решение. Кроме того, что знаменатель не может быть равным нулю, ещё и выражение под корнем не может быть отрицательным. Сначала решим уравнение:

График квадратичной функции под корнем представляет собой параболу, ветви которой направлены вверх. Как следует из решения квадратного уравнения, парабола пересекает ось Ox в точках 1 и 2. Между этими точками линия параболы находится ниже оси Ox, следовательно значения квадратичной функции между этими точками отрицательное. Таким образом, исходная функция не определена на отрезке [1; 2] .

Найти область определения функции самостоятельно, а затем посмотреть решение

Пример 18. Найти область определения функции .

Пример 19. Найти область определения функции .

Область определения постоянной

Постоянная (константа) определена при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[ .

Пример 20. Найти область определения функции y = 2 .

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f(x) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

Область определения линейной функции

Если функция задана формулой вида y = kx + b , то область определения функции — множество R действительных чисел.

Область определения функции

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох. Чтобы обозначить область определения некоторой функции y, используют запись D(y).

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

  • Например, область значений функции y = x2 — это все числа больше либо равные нулю. Это можно записать так: Е (у): у ≥ 0.

Материал со звездочкой

Старшеклассникам нужно помнить, что у некоторых функций есть собственные обозначения. Например, у тригонометрических. Поэтому в учебниках можно встретить такие записи: D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус.

Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = X. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) = [-1, 1].

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

  1. Через точку с запятой указываем два числа: левую и правую границы промежутка.
  2. Если граница входит в промежуток, ставим возле нее квадратную скобку, если не входит — круглую.
  3. Если у промежутка нет правой границы, записываем так: ∞ или +∞. Если нет левой границы, пишем -∞.
  4. Если нужно описать множество, состоящее из нескольких промежутков, ставим между ними знак объединения: ∪.

Например, все действительные числа от 2 до 5 включительно можно записать так:

Все положительные числа можно описать так:

Ноль не положительное число, поэтому скобка возле него круглая.

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.

Смысл функции — в том, что каждому значению аргумента соответствует значение функции, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

  • Область определения постоянной функции y = -3 — это множество всех действительных чисел: D(y) = (−∞, +∞) или D(y) = R.
  • Областью определения функции y = 3 √9 является множество R.

Еще больше наглядных примеров и практики — на курсах по математике в онлайн-школе Skysmart!

Область определения функции с корнем

Функцию с корнем можно определить так: y = n √x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

  • Если n — четное число, то есть, n = 2m, где m ∈ N, то ее область определения есть множество всех неотрицательных действительных чисел:
  • Если показатель корня нечетное число больше единицы, то есть n = 2m+1, при этом m принадлежит к N, то область определения корня — множество всех действительных чисел:

Значит, область определения каждой из функций y = √x, y = 4 √x, y = 6 √x,… есть числовое множество [0, +∞). А область определения функций y = 3 √x, y = 5 √x, y = 7 √x,… — множество (−∞, +∞).

Пример

Найти область определения функции:

Подкоренное выражение должно быть неотрицательным, но поскольку оно стоит в знаменателе, то равняться нулю не может. Следовательно, для нахождения области определения необходимо решить неравенство x 2 + 4x + 3 > 0.

Для этого решим квадратное уравнение x 2 + 4x + 3 = 0. Находим дискриминант:

D = 16 — 12 = 4 > 0

Дискриминант положительный. Ищем корни:

Значит парабола f(x) = x 2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x 2 + 4x + 3 2 + 4x + 3 > 0).

Поскольку коэффициент a = 1 > 0, то ветви параболы смотрят вверх. Можно сделать вывод, что на интервалах (−∞, -3) ∪ (−1, +∞) выполнено неравенство x 2 + 4x + 3 > 0 (ветви параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке (-3; -1) ниже оси абсцисс, что соответствует неравенству x 2 + 4x + 3

Область определения степенной функции

Степенная функция выглядит так: y = x a , то есть, f(x) = x a , где x — переменная в основании степени, a — некоторое число в показателе степени.

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

  • Если a — положительное целое число, то область определения функции есть множество действительных чисел: (−∞, +∞).
  • Для нецелых действительных положительных показателей степени: D(f) = [0, +∞).
  • Если a — отрицательное целое число, то область определения функции представляет собой множество (−∞, 0) ∪ (0, +∞).
  • Для остальных действительных отрицательных a область определения степенной функции — числовой промежуток (0, +∞).

При a = 0 степенная функция y = x a определена для всех действительных значений x, кроме x = 0. Это связано с тем, что мы не определяли 0 0 . А любое отличное от нуля число в нулевой степени равно единице. То есть, при a = 0 функция приобретает вид y = x 0 = 1 на области определения (−∞, 0) ∪ (0, +∞).

Рассмотрим несколько примеров.

  1. Область определения функций y = x 5 , y = x 12 — множество R, так как показатели степени целые положительные.
  2. Степенные функции определены на интервале [0, +∞), так как их показатели положительные, но не целые.
  3. Область определения функции y = x −2 , как и функции y = x −5 — это множество (−∞, 0) ∪ (0, +∞), так как показатели степени целые отрицательные.
  4. Область определения степенных функций y = x -√19 , y = x -3e , — открытый числовой луч (0, +∞), так как их показатели не целые и отрицательные.

Область определения показательной функции

Показательную функцию можно задать формулой y = a x , где переменная x — показатель степени, а — больше нуля и не равно единице.

Область определения показательной функции — это множество R.

Примеры показательных функций:

  • y = e x
  • y = (√15) x
  • y = 13 x .

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

Рассмотрим примеры логарифмических функций:

  • y = log7x
  • y = lnx

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции:

Составим и решим систему:

Ответ: область определения: D(f) = (−3, -2) ∪ (−2, +∞).

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

  • Функция, которая задается формулой y = sinx, называется синусом, обозначается sin и определяется на множестве всех действительных чисел. Область определения синуса — это множество всех действительных чисел, то есть, D(sin) = R.
  • Функция, которая задана формулой y = cosx, называется косинусом, обозначается cos и определяется на множестве R. Область определения функции косинус — множество всех действительных чисел: D(cos) = R.
  • Функции, которые заданы формулами y = tgx и y = ctgx, называются тангенсом и котангенсом и обозначаются tg и ctg. Область определения тангенса — это множество всех действительных чисел, кроме чисел . Область определения котангенса — это множество всех действительных чисел, кроме чисел πk, k ∈ Z.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что и x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Так как a(x) = 2x, то в область определения не войдут следующие точки:

Перенесем 2 из левой части в знаменатель правой части:

В результате . Отразим графически:

Ответ: область определения: .

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

    Функция, которая задается формулой y = arcsinx и рассматривается на отрезке [−1, 1], называется арксинусом и обозначается arcsin.

Область определения арксинуса — это множество [−1, 1], то есть, D(arcsin) = [−1, 1].
Функция, которая задается формулой y = arccosx и рассматривается на отрезке [−1, 1], называется арккосинусом и обозначается arccos.

Область определения функции арккосинус — отрезок [−1, 1], то есть, D(arccos) = [−1, 1].
Функции, которые задаются формулами вида y = arctgx и y = arcctgx и рассматриваются на множестве всех действительных чисел, называются арктангенсом и арккотангенсом и обозначаются arctg и arcctg.

Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните.

Функция

Область определения функции

Квадратичная функция.

Видео-уроки по теме «График квадратичной функции — парабола» расположены в конце страницы.

Квадратным трёхчленом называется многочлен 2-ой степени, то есть выражение вида ax 2 + bx + c, где a ≠ 0, b, c — (обычно заданные) действительные числа, называемые его коэффициентами, x — переменная величина.

Обратите внимание: коэффициент a может быть любым действительным числом, кроме нуля. Действительно, если a = 0, то ax 2 + bx + c = 0·x 2 + bx + c = 0 + bx + c = bx + c. В этом случае в выражении не остаётся квадрата, поэтому его нельзя считать квадратным трёхчленом. Однако, такие выражения-двучлены как, например, 3x 2 − 2x или x 2 + 5 можно рассматривать как квадратные трёхчлены, если дополнить их недостающими одночленами с нулевыми коэффициентами: 3x 2 − 2x = 3x 2 − 2x + 0 и x 2 + 5 = x 2 + 0x + 5.

Если стоит задача, определить значения переменной х, при которых квадратный трёхчлен принимает нулевые значения, т.е. ax 2 + bx + c = 0, то имеем квадратное уравнение.

Если существуют действительные корни x1 и x2 некоторого квадратного уравнения, то соответствующий трёхчлен можно разложить на линейные множители: ax 2 + bx + c = a(xx1)(xx2)

Замечание: Если квадратный трёхчлен рассматривать на множестве комплексных чисел С, которое, возможно, вы еще не изучали, то на линейные множители его можно разложить всегда.

Когда стоит другая задача, определить все значения, которые может принимать результат вычисления квадратного трёхчлена при различных значениях переменной х, т.е. определить y из выражения y = ax 2 + bx + c, то имеем дело с квадратичной функцией.

При этом корни квадратного уравнения являются нулями квадратичной функции.

Квадратный трёхчлен также можно представить в виде

Это представление удобно использовать при построении графика и изучении свойств квадратичной функции действительного переменного.

Квадратичной функцией называется функция, заданная формулой y = f(x), где f(x) — квадратный трёхчлен. Т.е. формулой вида

где a ≠ 0, b, c — любые действительные числа. Или преобразованной формулой вида

.

Графиком квадратичной функции является парабола, вершина которой находится в точке .

Обратите внимание: Здесь не написано, что график квадратичной функции назвали параболой. Здесь написано, что графиком функции является парабола. Это потому, что такую кривую математики открыли и назвали параболой раньше (от греч. παραβολή — сравнение, сопоставление, подобие), до этапа подробного изучения свойств и графика квадратичной функции.

Парабола — линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельной одной из образующих этого конуса.

Парабола обладает еще одним интересным свойством, которое также используется как её определение.

Парабола представляет собой множество точек плоскости, расстояние от которых до определенной точки плоскости, называемой фокусом параболы, равно расстоянию до определенной прямой, называемой директрисой параболы.

Построить эскиз графика квадратичной функции можно по характерным точкам.
Например, для функции y = x 2 берем точки

x0123
y0149

Соединяя их от руки, строим правую половинку параболы. Левую получаем симметричным отраженим относительно оси ординат.

Для построения эскиза графика квадратичной функции общего вида в качестве характерных точек удобно брать координаты её вершины, нули функции (корни уравнения), если они есть, точку пересечения с осью ординат (при x = 0, y = c) и симметричную ей относительно оси параболы точку (−b/a; c).

xb/2ax1x20b/a
y−(b 2 − 4ac)/4a00сс
при D ≥ 0

Но в любом случае по точкам можно построить только эскиз графика квадратичной функции, т.е. приблизительный график. Чтобы построить параболу точно, нужно использовать её свойства: фокус и директрису.
Вооружесь бумагой, линейкой, угольником, двумя кнопками и крепкой нитью. Прикрепите одну кнопку примерно в центре листа бумаги — в точке, которая будет фокусом параболы. Вторую кнопку прикрепите к вершине меньшего угла угольника. На основаниях кнопок закрепите нить так, чтобы её длина между кнопками равнялась большому катету угольника. Начертите прямую линию, непроходящую через фокус будущей параболы, — директрису параболы. Приложите линейку к директрисе, а угольник к линейке так, как показано на рисунке. Перемещайте угольник вдоль линейки, одновременно прижимая карандаш к бумаге и к угольнику. Следите за тем, чтобы нить была натянута.

Измерьте расстояние между фокусом и директрисой (напоминаю — расстояние между точкой и прямой определяется по перпендикуляру). Это фокальный параметр параболы p. В системе координат, представленной на правом рисунке, уравнение нашей параболы имеет вид: y = x 2 /2p. В масштабе моего рисунка получился график функции y = 0,15x 2 .

Замечание: чтобы построить заданную параболу в заданном масштабе, делать нужно всё то же самое, но в другом порядке. Начинать нужно с осей координат. Затем начертить директрису и определить положение фокуса параболы. И только потом конструировать инструмент из угольника и линейки. Например, чтобы на клетчатой бумаге построить параболу, уравнение которой у = x 2 , нужно расположить фокус на расстоянии 0,5 клеточки от директрисы.

Свойства функции у = x 2

  1. Область определения функции — вся числовая прямая: D(f) = R = (−∞; ∞).
  2. Область значений функции — положительная полупрямая: E(f) = [0; ∞).
  3. Функция у = x 2 четная: f(−x) = (−x) 2 = x 2 = f(x) .
    Ось ординат является осью симметрии параболы.
  4. На промежутке (−∞; 0) функция монотонно убывает.
    На промежутке (0; + ∞) функция монотонно возрастает.
  5. В точке x = 0 достигает минимального значения.
    Точка с координатами (0;0) является вершиной параболы.
  6. Функция непрерывна на всей области определения.
  7. Асимптот не имеет.
  8. Нули функции: y = 0 при x = 0.

Свойства квадратичной функции общего вида.

  1. Область определения функции — вся числовая прямая: D(f) = R = (−∞; ∞).
  2. Область значений функции зависит от знака коэффициента a.
    При a > 0 ветви параболы направлены вверх, функция имеет наименьшее (ymin), но не имеет наибольшего значения: E(f) = [ ymin; ∞) ;
    при aE(f) = (−∞; ymax ] .
  3. В общем случае функция у = ax 2 + bx + c не является ни четной, ни нечетной.
    Осью симметрии параболы является прямая x = −b/2a .
    Функция будет четной только в случае, когда эта прямая совпадает с осью Oy, т.е. при b = 0.
  4. При a > 0 функция монотонно убывает на промежутке (−∞; −b/2a) и монотонно возрастает на промежутке (−b/2a; ∞).
    При a 0 — минимум функции.

Оба значения определяются по формуле y = − b 2 − 4ac _______ . 4a

Точка с координатами является вершиной параболы.

  • Функция непрерывна на всей области определения.
  • Асимптот не имеет.
  • Парабола пересекает ось ординат в точке (0;c).
    Если квадратный трёхчлен имеет дейтсивтельные корни x1x2, то парабола пересекает ось абсцисс в точках (x1;0) и (x2;0).
    При x1 = x2 парабола касается оси абсциcс в точке (x1;0).
  • Производная квадратичной функции вычисляется по формуле (ax 2 + bx + c)’ = 2ax + b.

    График квадратичной функции, заданной общей формулой, лучше всего строить и изучать пользуясь Правилами преобразования графиков функций.
    Для этого нужно сначала перейти от формулы y = ax 2 + bx + c к виду, удобному для преобразований, y = m(kx + l) 2 + n, где k, l, m, n — числа, зависящие от a, b, c, т.е. к виду
    .
    Затем взять за основу параболу y = x 2 и применить к ней следующие преобразования:

    • Параллельный перенос (сдвиг) исходной параболы на l = b/2a единиц влево (если l 2 − 4ac)/4a единиц вверх или вниз в зависимости от знака n (при n >0 вверх).

    Формулы для такого перехода можно выучить наизусть, а можно научиться выделять полный квадрат из трёхчлена с заданными коэффициентами. Это умение весьма полезно также для решения некоторых уравнений и неравенств, для вычисления интегралов и т.д.

    Рассмотрим пример:
    Пусть y = 3x 2 − 5x + 2
    1) Объединяем в скобки первые два слагаемых и выносим за скобки коэффициент при х 2 .
    2) В скобках умножим и одновременно разделим на 2 коэффициент при x.
    3) Сравним с формулой возведения двучлена в квадрат: имеем внутри скобок квадрат числа x, удвоенное произведение x на дробь 5/6. Чтобы применить эту формулу не хватает второго квадрата, поэтому добавим недостающее слагаемое 5 2 /6 2 и одновременно вычтем его, чтобы сохранилось исходное значение выражения.
    4) Сворачиваем квадрат по формуле и раскрываем большую скобку.
    5) Оставшиеся числовые дроби приводим к общему знаменателю и складываем.

    Итак, чтобы построить график функции y = 3x 2 − 5x + 2 из графика y = x 2 нужно последний сдвинуть по оси Ox вправо на 5/6 ≈ 0,83 единицы. Затем растянуть вдоль оси Oy в 3 раза и, наконец, опустить по оси Oy на 1/12 ≈ 0,08 единицы.
    Посмотрите, что получилось.

    Если Вы являетесь моим учеником или подписчиком, то можете поработать с интерактивными версиями этих графиков.

    Упражнение:
    Постройте по характерным точкам эскиз графика функции y = x 2 .
    Методом преобразования получите эскиз графика функции y = −x 2 + 4x + 6 .
    Посмотрите в каких точках график этой функции пересекает ось Ox и сравните их координаты (абсциссы) с корнями уравнения −x 2 + 4x + 6 = 0 , вычисленными через дискриминант. Насколько точным оказалось ваше графическое решение уравнения?

    Преобразуем выражение с выделением полного квадрата:

    Строим график функции
    .

    Для этого применяем следующие шаги: сдвиг на 2 клетки вправо, разворот ветвей вниз (вершина — точка, относительно которой поворачиваем), поднимаем вершину и, соответственно, всю параболу вверх на 10 клеточек. Вот что должно получиться
    .

    Визуально определяем корни. Парабола пересекает ось Ox примерно на одну пятую часть клетки левее минус единицы и настолько же правее пятерки, т.е. x1 ≈ −1,2 , x2 ≈ 5,2 .

    Решение по формулам нахождения корней квадратного уравнения дает ответы x1 = 2 − √10 __ , x2 = 2 + √10 __ .
    С помощью калькулятора вычисляем x1 = −1,162277660. , x2 = 5,162277660.

    Парабола — очень интересная кривая, квадратичная функция часто встречается при описании различных природных явлений, экономических процессов.

    Видеоуроки с параболой.

    Графики квадратичной функции и коэффициенты квадратного трёхчлена.

    Положение и вид параболы в зависимости от знака и значения коэффициента а — коэффициента при х 2 .

    Положение и вид параболы в зависимости от знака и значения коэффициента b — коэффициента при х.

    Положение и вид параболы в зависимости от знака и значения параметра c.

    Построение параболы по характерным точкам.

    Быстрое построение параболы как графика квадратичной функции.

    Другие случаи. Примеры построения.

    Задачи на анализ графика квадратичной функции.

    Задания вида «Установить соответствие между коэффициентами квадратного трёхчлена и приведенными графиками квадратичной функции» встречаются в ОГЭ по математике в 9-ом классе, а также необходимы сдающим ЕГЭ за 11 класс в качестве промежуточного действия.

    Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

    Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.


    источники:

    http://skysmart.ru/articles/mathematic/oblast-opredeleniya-funkcii

    http://mathematichka.ru/school/functions/quadratic.html