Область определения уравнения с двумя переменными

Функции нескольких переменных

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Пусть: z — переменная величина с областью изменения R; R- числовая прямая; D — область на координатной плоскости R2.

Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).

Если каждой паре (х; у) двух независимых перемен­ных из области D по некоторому правилу ста­вится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух не­зависимых переменных х и у с областью определения D и пишут

Аналогичным образом определяются функции многих переменных

П р и м е р 1. Найти и изобразить область определения функции

Область определения – есть плоскость хОу за исключением точек, лежащих на параболе у = х2, см. рисунок.

П р и м е р 2. Найти и изобразить область определения функции

Область определения – есть часть плоско­сти, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.

П р и м е р 3. Найти и изобразить область определения функции

Область определения – есть часть плоско­сти, в которой абсцисса и ордината ка­ждой точки имеют одинаковые знаки, т. е. это часть плоскости, лежащая в пер­вом и третьем координатных углах, см. рисунок.

К числу функций нескольких переменных относятся производственные функции.

Производственными функциями называют функ­ции, представляющие зависимости величин объемов вы­пускаемой продукции от переменных величин затрат ре­сурсов.

Производственные функции применяются не только в микроэкономических, но и в макроэкономических рас­четах.

Простейшая производственная функция — функция зависимости объема произведенной работы V от объемов трудовых ресурсов R и вложенного в производство капи­тала К

2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ

2.1.График функции двух переменных

Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плос­кости хОу и отложим на нем значение z = f(x; у). Геомет­рическое место полученных точек

является пространственным графиком, функции двух переменных.

Это некоторая поверхность.

Равенство z = f(x; у) называется уравнением этой по­верхности.

Функция двух переменных имеет наглядную геомет­рическую интерпретацию. Для функции числа перемен­ных n > 2 аналогом поверхности является гиперповерх­ность (n + 1) — мерного пространства, не имеющая геомет­рической интерпретации.

Линией уровня функции двух переменных z = f(x; у) называется линия f(x; у) = С (С = const) на плоскости хОу, в каждой точке которой функция сохраняет постоянное значение С.

Линия уровня представляет собой сечение поверхности графика функции двух переменных z = f(x; у) плоскостью z = С.

Поверхностью уровня функции трех переменных

u = f(x; у; z) называется поверхность в R3 (трехмерном про­странстве), в каждой точке которой функция сохраняет постоянное значение f(x;y;z) = C (С = const).

П р и м е р. Найти и построить линии уровня функции

Решение.

Линии уровня z = С данной функции имеют уравнения

Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением

x2 + y2 = R2, см. рисунок.

Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.

При построении графика функции часто пользуются методом сечений.

П р и м е р. Построить график функции и найти .

Решение. Воспользуемся методом сечений.

– в плоскости – парабола.

– в плоскости –парабола.

– в плоскости – окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

Множество точек называется открытым кругом радиуса с центром в точке r.

Открытый круг радиуса ε с центром в точке A называется ε — окрестностью точки А.

Найти и изобразить графически область определения функции:

Построить линии уровня функций:

3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Основные понятия математического анализа, введен­ные для функции одной переменной, распространяются и на функции нескольких переменных.

О п р е д е л е н и е:

Постоянное число А называется пределом функции двух переменных z = f(x;у) при х —> х0, у —> у0, если для лю­бого

ε >0 существует δ >0 такое, что |f(х; у) — А| 0 — постоянное число.

Постоянное число А называется пределом функции двух переменных f(x;y) = f(M) при стремлении точки М к точке М0, если для любого ε >0 можно найти такое число г >0, что как только расстояние |М0М| 0.

Предел отношения при Δs—>0 называется произ-

водной функции z = f(х; у) в точке (х; у) по направлению вектора и обозначается

Переходя к этому пределу, получим

(*)

Таким образом, зная част­ные производные функции

z = f(x; у) можно найти произ­водную этой функции по любому направлению, а каждая частная производная является частным случаем произ­водной по направлению.

П р и м е р. Найти производную функции

в точке М(1;0) в направлении, составляющем с Ох угол в 30°.

Следовательно, функция z = f(x;y) в данном направлении возрастает.

Градиентом функции z = f(x; у) называется вектор , координатами которого являются соответствующие частные производные данной функции

Связь между производной функции по направлению и градиентом этой функции осуществляется соотношени­ем

т. е. производная функции z = f(x;y) в данном направле­нии равна проекции градиента функции на направле­ние дифференцирования.

Градиент функции в каждой точке направлен по нормали к соответствующей линии уровня данной функ­ции.

Направление градиента функции в данной точке есть направление наибольшей скорости возрастания функции в этой точке.

Примеры решений задач: функции нескольких переменных

В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:

Примеры: область определения ФНП

Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.

Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.

Примеры: частные производные ФНП

Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$

Задача 4. Найти частные производные второго порядка $z=\sqrt$

Задача 5. Найти частные производные сложной функции:

$$ z=u^2 \cdot \ln v; \quad u=\frac, \, v=x^2+y^2.$$

Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.

Задача 7. Найти полный дифференциал данной функции

Задача 8. Найти дифференциал второго порядка функции:

Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $\sin(xz)+\cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.

Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.

Градиент, производная по направлению

Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $\overline$. Вычислить наибольшую скорость изменения функции в данной точке.

Задача 13. Найдите градиент, производную по направлению $\overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $\overline=\<2;1;-2\>$, $M(1,3,1)$.

Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.

Касательная плоскость и нормаль

Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.

Задача 16. Для кривой $\overline=\overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.

$$ \overline(t)=(t^2-3)\overline + (t^3+2)\overline+\ln t \overline, \quad t_0=1 $$

Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.

Экстремумы функции нескольких переменных

Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.

Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.

Задача 20. Исследовать на экстремум функцию $z=x^4+xy+\frac<1><2>y^2+5$.

Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.

Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.

Приближенные вычисления

Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.

Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.

Ряд Тэйлора

Задача 25. Разложите функцию $f(x,y)=x^2\ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.

Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.

Наибольшее и наименьшее значение в области

Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 \le x \le 1; 0\le y \le 2$. Сделать чертёж области $D$.

Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.

Решение контрольной

Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $\overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Функции многих переменных примеры с решением

Содержание:

Основные понятия о функциях многих переменных

Изучение связей и закономерностей, существующих в материальном мире, часто приводят к функции не одной, а многих переменных. Эти функции позволяют выражать более сложные зависимости, чем функции одной переменной. Поэтому теория функций многих переменных имеет широкое практическое применение в различных отраслях.

Определение функции многих переменных. Функция двух переменных и ее графическое изображение

Переменные x1, x2, . xn называются независимыми между собой, если каждая из них может принимать произвольные значения в своей области изменения независимо от того, какие значения принимают при этом другие переменные.

Определение 1. Функцией многих переменных u = f (x1, x2, . xn) называется такая закономерность, при которой переменным x1, x2, . xn из некоторого множества D ⊂ R n ставится в соответствие одно значение u из множества E ⊂ R’.

Например:

Множество D называется областью определения функции u = f (x1, x2, . xn), а множество E — областью значений этой функции. Например, функция задана для всех x и y, для которых выполняется неравенство x 2 + y 2 ≤ 9. В данном случае областью определения функции является круг на плоскости Оxy с центром в точке O (0; 0) и радиусом R = 3. Область значений этой функции E = [0; 3].

Частным случаем функции многих переменных есть функция двух переменных z = f (x, y), для которой можно дать понятие графика функции. В общем случае графиком такой функции является поверхность в трехмерном пространстве R 3 .

Пример 1. z = x 2 + y 2 . Графиком этой функции является параболоид вращения (рис. 1).

Экономические задачи, приводящие к понятию функций многих переменных

Приведем примеры конкретных функций многих переменных, которые встречаются в экономических задачах.

Пример 2. Пусть предприятие выпускает только один товар, и на его выпуск затрачивается только одно сырье (один ресурс). Предприятие характеризуется полностью своей производственной функцией y = f (x) — зависимость объема выпущенного товара y от объема затраченного сырья x. Такая производственная функция называется одноресурсной.

Если на производство продукции определенного типа расходуются многие виды сырья (ресурсов) x1, x2, . xn , то такая производственная функция называется многоресурсной или многофакторной:
y= F (x) = F (x1, x2, . xn).

Наиболее известной производственной функцией является функция Кобба-Дугласа y = AK α L β , где A, α, β — неотрицательные константы, причем α + β ≤ 1;
K — объем фондов в стоимостном или натуральном выражении;
L — объем трудовых ресурсов — число работников, число человеко-дней;
y — выпуск продукции в стоимостном или натуральном выражении.

На этом примере видно, что функция Кобба-Дугласа является функцией двух независимых переменных K и L.

Пример 3. Рассмотрим основное уравнение классической количественной теории денег, которое называется уравнением обмена Фишера: MV = PY.
В данном уравнении любая из переменных M, V, P, Y может рассматриваться как функция трех переменных, где
M — это общее количество денег, имеющихся в обороте;
V — скорость их оборота (сколько раз каждый рубль участвует в расчетах в среднем за год);
Y — национальный продукт или доход (национальный продукт — это все готовые товары и услуги, произведенные в экономической системе в стоимостном выражении; национальный доход — это все выплаты, полученные домашними хозяйствами: заработная плата, рента, прибыль; национальный продукт и национальный доход численно равны);
P — уровень цен (среднее взвешенное значение цен готовых товаров и услуг, которые определены относительно базового показателя, принятого за единицу).
Пусть , то есть цена является функцией трех независимых переменных. Тогда с увеличением денежной массы (количества денег) M в несколько раз (то есть деньги просто напечатают), цены вырастут во столько же раз, при условии, что другие величины V и Y останутся неизменными. Такие действия и является чаще всего причиной инфляции.

Функции многих переменных. Понятие функции многих переменных

Ранее рассматривались числовые функции одной переменной . Областью определения такой функции являлось множество . Числовая функция переменных характеризуется тем, что областью ее определения является подмножество пространства . В этом случае значение аргумента представляет собой точку .

Определение 1. Пусть имеются два множества и , и указано правило , по которому каждому элементу ставится в соответствие единственный элемент . Тогда говорят, что задана функция переменных из в :

. (1)

Как и ранее, — область определения функции , — область значений функции .

Для функций двух переменных ( = 2) вместо пишут обычно и тогда (1)принимает вид

. (2)

Функция двух переменных геометрически определяет некоторую поверхность в . Ее область определения состоит из точек расположенных на плоскости . Каждой из этих точек соответствует единственная число , которое является аппликатой точки данной поверхности. Поэтому говорят, что есть функция точки , и пишут . Эту аналогию можно распространить на случай > 2. Тогда область определения будет состоять из точек , а функция (1.19) будет записана в виде .

Поверхность — это сфера радиуса с центром в точке (0,0,0). Она не является функцией двух переменных, так как точке соответствуют два числа . Однако функцией будет, например, верхняя часть сферы (рис. 1, а).

Другим примером функции двух переменных может служить эллиптический параболоид (рис. 1, б). Если эту поверхность пересечь плоскостью, параллельной плоскости , то линией пересечения будет эллипс. Если же плоскость пересечения параллельна или , то линией пересечения будет парабола.

Уравнением задается гиперболический параболоид. График этой функции двух переменных имеет форму седла (рис. 1, в). Если эту поверхность пересечь плоскостью, параллельной плоскости , то линией пересечения будет гипербола. Если же плоскость пересечения параллельна или , то линией пересечения будет парабола.

Еще одним примером функции многих переменных может служить производственная функция Кобба-Дугласа. Ее классический вид

(3)

где — объем выпуска продукции; где — затраты труда; где — затраты производственных фондов (рис. 2). Константы и — положительны, как и переменные , , . Сумма параметров , и 1-, равна единице. Это означает, что при увеличении производственных ресурсов и на одну единицу объем продукции также увеличивается на единицу. Следовательно, темпы роста перечисленных показателей совпадают.

Исследования показали, что зависимость (3) редко встречается на практике. Поэтому справедлив более общий вид производственной функции Кобба-Дугласа:

(4)

где — положительная константа. В отличие от предыдущего случая сумма параметров может быть как больше, так и меньше единицы. Если > 1, то темпы роста объема выпуска продукции выше, чем темпы роста производственных ресурсов и . Если же

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://www.matburo.ru/ex_ma.php?p1=mafnp

http://natalibrilenova.ru/funktsii-mnogih-peremennyih-primeryi-s-resheniem/