Обратные матрицы из двух уравнений системы

Обратные матрицы из двух уравнений системы

Матрица, имеющая отличный от нуля определитель, называется невырожденной ; имеющая равный нулю определитель – вырожденной .

Матрица A -1 называется обратной для заданной квадратной матрицы , если при умножении матрицы на обратную ей как справа, так и слева, получается единичная матрица, то есть

Заметим, что в данном случае произведение матриц A и A -1 коммутативно.

Теорема 1.2. Необходимым и достаточным условием существования обратной матрицы для заданной квадратной матрицы, является отличие от нуля определителя заданной матрицы

Если главная матрица системы оказалась при проверке вырожденной, то для нее не существует обратной, и рассматриваемый метод применить нельзя.

Для невырожденной матрицы можно найти обратную ей матрицу A -1 по следующему алгоритму.

1. Транспонируем матрицу A в матрицу A T .

2. Вычисляем алгебраические дополнения элементов матрицы A T и записываем их в матрицу .

3. Составим обратную матрицу A -1 по формуле:

4. Сделаем проверку правильности найденной матрицы А -1 согласно формуле (1.7). Заметим, что данная проверка может быть включена в итоговую проверку самого решения системы.

Система (1.5) линейных алгебраических уравнений может быть представлена в виде матричного уравнения: A X = B , где A – главная матрица системы, – столбец неизвестных, – столбец свободных членов. Умножим это уравнение слева на обратную матрицу A -1 , получим: A -1 A X = A -1 B . Так как по определению обратной матрицы A -1 A = E , то уравнение принимает вид

Таким образом, чтобы решить систему линейных алгебраических уравнений нужно столбец свободных членов умножить слева на матрицу, обратную для главной матрицы системы. После этого следует сделать проверку полученного решения.

Пример 1.6. Решить систему методом обратной матрицы

Решение. Вычислим главный определитель системы

Найдём алгебраические дополнения всех элементов главной матрицы :

Запишем алгебраические дополнения в матрицу

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Решение систем линейных алгебраических уравнений с помощью обратной матрицы.

Решение систем линейных алгебраических уравнений (СЛАУ) с помощью обратной матрицы (иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ. Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^<-1>$.
  3. Используя равенство $X=A^<-1>\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ – матрица системы, $B$ – матрица свободных членов, $X$ – матрица неизвестных. Пусть матрица $A^<-1>$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^<-1>$ слева:

Так как $A^<-1>\cdot A=E$ ($E$ – единичная матрица), то записанное выше равенство станет таким:

Так как $E\cdot X=X$, то:

Перед переходом к чтению примеров рекомендую ознакомиться с методами вычисления обратных матриц, изложенными здесь.

Решить СЛАУ $ \left \ < \begin& -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end \right.$ с помощью обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^<-1>$. В примере №2 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^<-1>$:

Теперь подставим все три матрицы ($X$, $A^<-1>$, $B$) в равенство $X=A^<-1>\cdot B$. Затем выполним умножение матриц в правой части данного равенства.

$$ \left(\begin x_1\\ x_2 \end\right)= -\frac<1><103>\cdot\left(\begin 8 & -7\\ -9 & -5\end\right)\cdot \left(\begin 29\\ -11 \end\right)=\\ =-\frac<1><103>\cdot \left(\begin 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end\right)= -\frac<1><103>\cdot \left(\begin 309\\ -206 \end\right)=\left(\begin -3\\ 2\end\right). $$

Итак, мы получили равенство $\left(\begin x_1\\ x_2 \end\right)=\left(\begin -3\\ 2\end\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^<-1>$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^<-1>$:

$$ A^<-1>=\frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right). $$

Теперь подставим все три матрицы ($X$, $A^<-1>$, $B$) в равенство $X=A^<-1>\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin x_1\\ x_2 \\ x_3 \end\right)= \frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right)\cdot \left(\begin -1\\0\\6\end\right)=\\ =\frac<1><26>\cdot \left(\begin 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end\right)=\frac<1><26>\cdot \left(\begin 0\\-104\\234\end\right)=\left(\begin 0\\-4\\9\end\right) $$

Итак, мы получили равенство $\left(\begin x_1\\ x_2 \\ x_3 \end\right)=\left(\begin 0\\-4\\9\end\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Естественно, что решение систем линейных уравнений с помощью обратной матрицы без применения специальных программ вроде Mathcad возможно лишь при сравнительно небольшом количестве переменных. Если СЛАУ содержит четыре и более переменных, то гораздо удобнее в таком случае применить метод Гаусса или метод Гаусса-Жордана.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).


источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/matrichnyj-metod-reshenija-slau/

http://math1.ru/education/sys_lin_eq/invmatrix.html