Обратные матрицы нахождение обратных матриц матричные уравнения

Что такое обратная матрица

Сложная тема из линейной алгебры.

Недавно мы начали говорить о линейной алгебре и матрицах. Сначала всё было хорошо и легко:

Но начав заниматься линейной алгеброй, бывает трудно остановиться. Сегодня мы познакомимся с обратной матрицей и научимся её вычислять. Это навык, который в будущем нам пригодится для решения матричных уравнений.

С точки зрения арифметики материал не сложный. Но он требует вдумчивого чтения для понимания правил. В итоге статья довольно большая, мозги кипят и танки наши быстры.

Читать ли эту статью?

❌ Если вам нужны простые быстрые решения для жизни — нет, можно объявить, что у вас сегодня выходной.

✅ Если вашему мозгу не хватает вызова и новых горизонтов — велком ту зе матрикс.

Обратное — это как?

В математике есть взаимно обратные числа. Они получаются так: вы берёте какое-то число, добавляете отрицательную степень и получаете обратное число:

Обратные числа при умножении друг на друга всегда дают единицу:

Обратная матрица

В линейной алгебре есть обратные матрицы. По свойствам они напоминают обратные числа: если обычную матрицу умножить на обратную к ней, получится единичная матрица.

Единичная матрица работает как единица с числами: если умножить любое число на единицу, получится исходное число; если умножить любую матрицу на единичную матрицу — получится исходная матрица:

Единичная матрица состоит из единиц и нулей: на диагонали находятся единицы; остальные элементы — нули. Единичные матрицы не используются при расчёте обратных матриц, но без них не получится решать матричные уравнения.

Пример квадратной единичной матрицы размером 5×5. Единичная матрица может быть любого размера — состоять из любого количества строк и столбцов

Как рассчитать обратную матрицу

Для расчёта обратной матрицы нужно выполнить три действия. Пока что не обращайте внимание на термины:

  1. Разделить единицу на матричный определитель.
  2. Найти транспонированную матрицу алгебраических дополнений.
  3. Перемножить полученные значения.

Далее мы по порядку во всём разберёмся.

Формула расчёта обратной матрицы: |A| — матричный определитель; Aᵀᵢⱼ — матрица алгебраических дополнений

Определитель — это особое число, которое «определяет» свойства матрицы.

Порядок вычисления определителя зависит от размера матрицы, которому он соответствует — чем больше матрица, тем сложнее считать определитель. Мы только знакомимся с матрицами, поэтому остановимся на определителях второго и третьего порядка — они подходят для квадратных матриц размером 2×2 и 3×3.

Чтобы найти определитель второго порядка, нам достаточно умножить элементы главной диагонали и вычесть из значения произведение чисел второй диагонали.

Формула для расчёта определителя второго порядка

Пример расчёта определителя второго порядка

Определитель третьего порядка находится путём умножения диагоналей на треугольники. Здесь много операций, поэтому формулу соберём по частям.

Сначала работаем по главной диагонали: идём от верхнего левого элемента и движемся к правому нижнему элементу. Перемножаем элементы между собой.

Считаем определитель третьего порядка: 1-й этап — главная диагональ

Прибавляем к произведению элементов первой диагонали произведение первого треугольника. Основание первого треугольника находится параллельно главной диагонали и состоит из элементов А₂₁ и А₃₂. Вершина — элементА₁₃.

Считаем определитель третьего порядка: 2-й этап — первый треугольник

Прибавляем к полученному результату произведение второго треугольника, в котором основание состоит из элементов А₁₂ и А₂₃, а вершина — А₃₁.

Считаем определитель третьего порядка: 3-й этап — второй треугольник

Вычитаем из полученного значения произведение элементов второй диагонали. Вторая диагональ начинается в левом нижнем углу и идёт в правый верхний угол.

Считаем определитель третьего порядка: 4-й этап — вторая диагональ

Вычитаем произведение элементов третьего треугольника, в котором основание — элементы А₁₂ и А₂₁, а вершина — А₃₃.

Считаем определитель третьего порядка: 5-й этап — третий треугольник

Последний шаг: вычитаем произведение четвёртого треугольника, с основанием из элементов А₂₃ и А₃₂ и вершиной А₁₁.

Считаем определитель третьего порядка: 6-й этап — четвёртый треугольник

Общий вид формулы для расчёта определителя третьего порядка

Пример расчёта определителя третьего порядка

Транспонированная матрица алгебраических дополнений вычисляется в три шага:

  1. Мы из исходной матрицы находим матрицу миноров.
  2. Меняем в матрице миноров знак некоторых элементов и получаем матрицу алгебраических дополнений.
  3. Находим транспонированную матрицу из матрицы алгебраических дополнений.

Алгоритм вычислений матрицы миноров и матрицы алгебраических дополнений зависит от размера исходной матрицы — чем она больше, тем сложнее формула расчёта. Поэтому мы рассматриваем только матрицы второго и третьего порядка.

Чтобы найти матрицу миноров второго порядка, нам нужно последовательно зачеркнуть три элемента исходной матрицы:

  • Вычёркиваем первую строку и первый столбец исходной матрицы — получаем первый элемент первой строки матрицы миноров.
  • Вычёркиваем первую строку и второй столбец — получаем второй элемент первой строки матрицы миноров.
  • Вычёркиваем вторую строку и первый столбец — получаем первый элемент второй строки матрицы миноров.
  • Вычёркиваем вторую строку и второй столбец — получаем второй элемент второй строки матрицы миноров.

Когда матрица миноров составлена — меняем знаки элементов второй диагонали и получаем матрицу алгебраических дополнений. Теперь берём эту матрицу и проводим транспонирование — меняем расположение строк и столбцов. Готово.

Пример вычисления матрицы миноров из матрицы второго порядка

Пример вычисления матрицы алгебраических дополнений (Aᵢⱼ ) из матрицы миноров второго порядка

Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров второго порядка

Матрица миноров третьего порядка рассчитывается по следующему принципу:

  1. Последовательно вычёркиваем строки и столбцы.
  2. Получаем четыре элемента и считаем определитель.
  3. Записываем результат в матрицу миноров третьего порядка.

Чтобы не запоминать порядок вычёркивания элементов — попробуйте схему:

  1. Определите элемент, который вы ищете для матрицы. Пусть это будет A₁₁.
  2. Найдите этот же элемент в исходной матрице и отметьте его точкой.
  3. Проведите от этой точки две линии: вдоль строки и вдоль столбца.

После вычёркивания останется квадратная двухразмерная матрица, определитель которой равен разности произведений двух диагоналей.

Пример вычисления первого элемента матрицы миноров из матрицы третьего порядка. Треугольник, или греческая дельта, — это обозначение определителя вне матрицы

Матрицу миноров третьего порядка удобно находить на бумаге с помощью ручки, карандаша и ластика — записываете исходную матрицу, карандашом вычёркиваете линии, считаете определитель, вытираете линии и повторяете процедуру. Рекомендуем попробовать и сверить результат с нашими расчётами.

1-я строка 1-й элемент:

1-я строка 2-й элемент:

1-я строка 3-й элемент:

2-я строка 1-й элемент:

2-я строка 2-й элемент:

2-я строка 3-й элемент:

3-я строка 1-й элемент:

3-я строка 2-й элемент:

3-я строка 3-й элемент:

Считаем матрицу алгебраических дополнений: берём матрицу миноров и меняем на противоположный знак в четырёх элементах — изменяем А₁₂, А₂₁, А₂₃ и А₃₂. Транспонируем полученную матрицу и можем переходить к последнему действию.

Получаем из матрицы третьего порядка матрицу миноров

Меняем знаки в матрице миноров и получаем матрицу алгебраических дополнений (Aᵢⱼ)

Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров третьего порядка

Мы нашли все компоненты для вычисления обратной матрицы. Осталось их подставить в формулу, перемножить и записать ответ:

Пример вычисления обратной матрицы второго порядка: мы внесли дробь в матрицу, но могли этого не делать — просто так захотелось

Пример вычисления обратной матрицы третьего порядка: мы оставили дробь за пределами матрицы и вынесли из матрицы минус. Матрица — это таблица с числами, поэтому не обращайте внимание, если числа получаются большими или неудобными

Господи, зачем всё это?

Мы понимаем, что это всё кажется совершенно оторванным от жизни. Какие-то миноры, детерминанты, о чём вообще речь?

  • Вам не нужно уметь решать все эти уравнения самостоятельно. Для этого давно есть мощные алгоритмы.
  • Достаточно понимать, из чего всё это складывается. Вот матрица. Вот некий алгоритм, который делает из этой матрицы какую-то другую матрицу. Это всё просто арифметика, числа туда, числа сюда.
  • В конце этого пути мы покажем, как из этих кубиков собрано машинное обучение. И вы увидите, что машинное обучение — это просто много алгебры. Просто арифметика, числа туда, числа сюда.
  • И вы понимаете, что никакого искусственного интеллекта не существует. Это всё, от начала и до конца, работа с числами и расчёты по формулам. Просто когда это делается в больших масштабах, создаётся иллюзия осмысленной деятельности. Ключевое слово — иллюзия.

Обратная матрица и её свойства

15 февраля 2018

Эта тема является одной из самых ненавистных среди студентов. Хуже, наверное, только определители.

Фишка в том, что само понятие обратного элемента (и я сейчас не только о матрицах) отсылает нас к операции умножения. Даже в школьной программе умножение считается сложной операцией, а уж умножение матриц — вообще отдельная тема, которой у меня посвящён целый параграф и видеоурок.

Сегодня мы не будем вдаваться в подробности матричных вычислений. Просто вспомним: как обозначаются матрицы, как они умножаются и что из этого следует.

Повторение: умножение матриц

Прежде всего договоримся об обозначениях. Матрицей $A$ размера $\left[ m\times n \right]$ называется просто таблица из чисел, в которой ровно $m$ строк и $n$ столбцов:

Чтобы случайно не перепутать строки и столбцы местами (поверьте, на экзамене можно и единицу с двойкой перепутать — что уж говорить про какие-то там строки), просто взгляните на картинку:

Определение индексов для клеток матрицы

Что происходит? Если разместить стандартную систему координат $OXY$ в левом верхнем углу и направить оси так, чтобы они охватывали всю матрицу, то каждой клетке этой матрицы можно однозначно сопоставить координаты $\left( x;y \right)$ — это и будет номер строки и номер столбца.

Почему система координат размещена именно в левом верхнем углу? Да потому что именно оттуда мы начинаем читать любые тексты. Это очень просто запомнить.

А почему ось $x$ направлена именно вниз, а не вправо? Опять всё просто: возьмите стандартную систему координат (ось $x$ идёт вправо, ось $y$ — вверх) и поверните её так, чтобы она охватывала матрицу. Это поворот на 90 градусов по часовой стрелке — его результат мы и видим на картинке.

В общем, как определять индексы у элементов матрицы, мы разобрались. Теперь давайте разберёмся с умножением.

Определение. Матрицы $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, когда количество столбцов в первой совпадает с количеством строк во второй, называются .

Именно в таком порядке. Можно сумничать и сказать, мол, матрицы $A$ и $B$ образуют упорядоченную пару $\left( A;B \right)$: если они согласованы в таком порядке, то совершенно необязательно, что $B$ и $A$, т.е. пара $\left( B;A \right)$ — тоже согласована.

Умножать можно только согласованные матрицы.

Определение. $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой $<_>$ считаются по формуле:

Другими словами: чтобы получить элемент $<_>$ матрицы $C=A\cdot B$, нужно взять $i$-строку первой матрицы, $j$-й столбец второй матрицы, а затем попарно перемножить элементы из этой строки и столбца. Результаты сложить.

Да, вот такое суровое определение. Из него сразу следует несколько фактов:

  1. Умножение матриц, вообще говоря, некоммутативно: $A\cdot B\ne B\cdot A$;
  2. Однако умножение ассоциативно: $\left( A\cdot B \right)\cdot C=A\cdot \left( B\cdot C \right)$;
  3. И даже дистрибутивно: $\left( A+B \right)\cdot C=A\cdot C+B\cdot C$;
  4. И ещё раз дистрибутивно: $A\cdot \left( B+C \right)=A\cdot B+A\cdot C$.

Дистрибутивность умножения пришлось отдельно описывать для левого и правого множителя-суммы как раз из-за некоммутативности операции умножения.

Если всё же получается так, что $A\cdot B=B\cdot A$, такие матрицы называются перестановочными.

Среди всех матриц, которые там на что-то умножаются, есть особые — те, которые при умножении на любую матрицу $A$ снова дают $A$:

Определение. Матрица $E$ называется , если $A\cdot E=A$ или $E\cdot A=A$. В случае с квадратной матрицей $A$ можем записать:

Единичная матрица — частый гость при решении матричных уравнений. И вообще частый гость в мире матриц.:)

А ещё из-за этой $E$ кое-кто придумал всю ту дичь, которая будет написана дальше.

Что такое обратная матрица

Поскольку умножение матриц — весьма трудоёмкая операция (приходится перемножать кучу строчек и столбцов), то понятие обратной матрицы тоже оказывается не самым тривиальным. И требующим некоторых пояснений.

Ключевое определение

Что ж, пора познать истину.

Определение. Матрица $B$ называется , если

\[A\cdot B=B\cdot A=E\]

Казалось бы, всё предельно просто и ясно. Но при анализе такого определения сразу возникает несколько вопросов:

  1. Всегда ли существует обратная матрица? И если не всегда, то как определить: когда она существует, а когда — нет?
  2. А кто сказал, что такая матрица ровно одна? Вдруг для некоторой исходной матрицы $A$ найдётся целая толпа обратных?
  3. Как выглядят все эти «обратные»? И как, собственно, их считать?

Насчёт алгоритмов вычисления — об этом мы поговорим чуть позже. Но на остальные вопросы ответим прямо сейчас. Оформим их в виде отдельных утверждений-лемм.

Основные свойства

\[\begin & \left[ m\times n \right]\cdot \left[ a\times b \right]=\left[ m\times b \right] \\ & n=a \end\]

Это прямое следствие из алгоритма перемножения матриц: коэффициенты $n$ и $a$ являются «транзитными» и должны быть равны.

\[\begin & \left[ a\times b \right]\cdot \left[ m\times n \right]=\left[ a\times n \right] \\ & b=m \end\]

\[\begin & \left[ m\times n \right]=\left[ n\times m \right] \\ & m=n \end\]

Что ж, уже неплохо. Мы видим, что обратимыми бывают лишь квадратные матрицы. Теперь давайте убедимся, что обратная матрица всегда одна.

Доказательство. Пойдём от противного: пусть у матрицы $A$ есть хотя бы два экземпляра обратных —$B$ и $C$. Тогда, согласно определению, верны следующие равенства:

Из леммы 1 мы заключаем, что все четыре матрицы — $A$, $B$, $C$ и $E$ — являются квадратными одинакового порядка: $\left[ n\times n \right]$. Следовательно, определено произведение:

Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:

Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.

Приведённые рассуждения почти дословно повторяют доказательство единственность обратного элемента для всех действительных чисел $b\ne 0$. Единственное существенное дополнение — учёт размерности матриц.

Впрочем, мы до сих пор ничего не знаем о том, всякая ли квадратная матрица является обратимой. Тут нам на помощь приходит определитель — это ключевая характеристика для всех квадратных матриц.

\[\left| A \right|\ne 0\]

Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:

Вот и получается, что $\left| A \right|\ne 0$. Лемма доказана.

На самом деле это требование вполне логично. Сейчас мы разберём алгоритм нахождения обратной матрицы — и станет совершенно ясно, почему при нулевом определителе никакой обратной матрицы в принципе не может существовать.

Но для начала сформулируем «вспомогательное» определение:

Определение. — это квадратная матрица размера $\left[ n\times n \right]$, чей определитель равен нулю.

Таким образом, мы можем утверждать, что всякая обратимая матрица является невырожденной.

Как найти обратную матрицу

Сейчас мы рассмотрим универсальный алгоритм нахождения обратных матриц. Вообще, существует два общепринятых алгоритма, и второй мы тоже сегодня рассмотрим.

Тот, который будет рассмотрен сейчас, очень эффективен для матриц размера $\left[ 2\times 2 \right]$ и — частично — размера $\left[ 3\times 3 \right]$. А вот начиная с размера $\left[ 4\times 4 \right]$ его лучше не применять. Почему — сейчас сами всё поймёте.

Алгебраические дополнения

Готовьтесь. Сейчас будет боль. Нет, не переживайте: к вам не идёт красивая медсестра в юбке, чулках с кружевами и не сделает укол в ягодицу. Всё куда прозаичнее: к вам идут алгебраические дополнения и Её Величество «Союзная Матрица».

Начнём с главного. Пусть имеется квадратная матрица размера $A=\left[ n\times n \right]$, элементы которой именуются $<_>$. Тогда для каждого такого элемента можно определить алгебраическое дополнение:

Где $M_^<*>$ — определитель матрицы, полученной из исходной $A$ вычёркиванием той самой $i$-й строки и $j$-го столбца.

Ещё раз. Алгебраическое дополнение к элементу матрицы с координатами $\left( i;j \right)$ обозначается как $<_>$ и считается по схеме:

  1. Сначала вычёркиваем из исходной матрицы $i$-строчку и $j$-й столбец. Получим новую квадратную матрицу, и её определитель мы обозначаем как $M_^<*>$.
  2. Затем умножаем этот определитель на $<<\left( -1 \right)>^>$ — поначалу это выражение может показаться мозговыносящим, но по сути мы просто выясняем знак перед $M_^<*>$.
  3. Считаем — получаем конкретное число. Т.е. алгебраическое дополнение — это именно число, а не какая-то новая матрица и т.д.

Важное замечание. Вообще-то во «взрослой» математике алгебраические дополнения определяются так:

  1. Берём в квадратной матрице $k$ строчек и $k$ столбцов. На их пересечении получится матрица размера $\left[ k\times k \right]$ — её определитель называется минором порядка $k$ и обозначается $<_>$.
  2. Затем вычёркиваем эти «избранные» $k$ строчек и $k$ столбцов. Снова получится квадратная матрица — её определитель называется дополнительным минором и обозначается $M_^<*>$.
  3. Умножаем $M_^<*>$ на $<<\left( -1 \right)>^>$, где $t$ — это (вот сейчас внимание!) сумма номеров всех выбранных строчек и столбцов. Это и будет алгебраическое дополнение.

Взгляните на третий шаг: там вообще-то сумма $2k$ слагаемых! Другое дело, что для $k=1$ мы получим лишь 2 слагаемых — это и будут те самые $i+j$ — «координаты» элемента $<_>$, для которого мы ищем алгебраическое дополнение.

Таким образом сегодня мы используем слегка упрощённое определение. Но как мы увидим в дальнейшем, его окажется более чем достаточно. Куда важнее следующая штука:

Определение. Союзная матрица $S$ к квадратной матрице $A=\left[ n\times n \right]$ — это новая матрица размера $\left[ n\times n \right]$, которая получается из $A$ заменой $<_>$ алгебраическими дополнениями $<_>$:

Первая мысль, возникающая в момент осознания этого определения — «это сколько же придётся всего считать!» Расслабьтесь: считать придётся, но не так уж и много.:)

Что ж, всё это очень мило, но зачем это нужно? А вот зачем.

Основная теорема

Вернёмся немного назад. Помните, в Лемме 3 утверждалось, что обратимая матрица $A$ всегда не вырождена (т.е. её определитель отличен от нуля: $\left| A \right|\ne 0$).

Так вот, верно и обратное: если матрица $A$ не вырождена, то она всегда обратима. И даже существует схема поиска $<^<-1>>$. Зацените:

. Пусть дана квадратная матрица $A=\left[ n\times n \right]$, причём её определитель отличен от нуля: $\left| A \right|\ne 0$. Тогда обратная матрица $<^<-1>>$ существует и считается по формуле:

А теперь — всё то же самое, но разборчивым почерком. Чтобы найти обратную матрицу, нужно:

Задача. Найдите обратную матрицу:

\[\left[ \begin 3 & 1 \\ 5 & 2 \\\end \right]\]

Решение. Проверим обратимость. Посчитаем определитель:

\[\left| A \right|=\left| \begin 3 & 1 \\ 5 & 2 \\\end \right|=3\cdot 2-1\cdot 5=6-5=1\]

Определитель отличен от нуля. Значит, матрица обратима. Составим союзную матрицу:

Посчитаем алгебраические дополнения:

Обратите внимание: определители |2|, |5|, |1| и |3| — это именно определители матриц размера $\left[ 1\times 1 \right]$, а не модули. Т.е. если в определителях стояли отрицательные числа, убирать «минус» не надо.

Итого наша союзная матрица выглядит так:

Осталось посчитать обратную:

Ну вот и всё. Задача решена.

Ответ. $\left[ \begin<*<35>> 2 & -1 \\ -5 & 3 \\\end \right]$

Задача. Найдите обратную матрицу:

\[\left[ \begin<*<35>> 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end \right]\]

Решение. Опять считаем определитель:

\[\begin & \left| \begin<*<35>> 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end \right|=\begin \left( 1\cdot 2\cdot 1+\left( -1 \right)\cdot \left( -1 \right)\cdot 1+2\cdot 0\cdot 0 \right)- \\ -\left( 2\cdot 2\cdot 1+\left( -1 \right)\cdot 0\cdot 1+1\cdot \left( -1 \right)\cdot 0 \right) \\\end= \\ & =\left( 2+1+0 \right)-\left( 4+0+0 \right)=-1\ne 0. \\ \end\]

Определитель отличен от нуля — матрица обратима. А вот сейчас будет самая жесть: надо посчитать аж 9 (девять, мать их!) алгебраических дополнений. И каждое из них будет содержать определитель $\left[ 2\times 2 \right]$. Полетели:

Короче, союзная матрица будет выглядеть так:

\[S=\left[ \begin 2 & -1 & -2 \\ 1 & -1 & -1 \\ -3 & 1 & 2 \\\end \right]\]

Следовательно, обратная матрица будет такой:

Ну и всё. Вот и ответ.

Ответ. $\left[ \begin<*<35>> -2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end \right]$

Как видите, в конце каждого примера мы выполняли проверку. В связи с этим важное замечание:

Не ленитесь выполнять проверку. Умножьте исходную матрицу на найденную обратную — должна получиться $E$.

Выполнить эту проверку намного проще и быстрее, чем искать ошибку в дальнейших вычислениях, когда, например, вы решаете матричное уравнение.

Альтернативный способ

Как я и говорил, теорема об обратной матрице прекрасно работает для размеров $\left[ 2\times 2 \right]$ и $\left[ 3\times 3 \right]$ (в последнем случае — уже не так уж и «прекрасно»), а вот для матриц больших размеров начинается прям печаль.

Но не переживайте: есть альтернативный алгоритм, с помощью которого можно невозмутимо найти обратную хоть для матрицы $\left[ 10\times 10 \right]$. Но, как это часто бывает, для рассмотрения этого алгоритма нам потребуется небольшая теоретическая вводная.

Элементарные преобразования

Среди всевозможных преобразований матрицы есть несколько особых — их называют элементарными. Таких преобразований ровно три:

  1. Умножение. Можно взять $i$-ю строку (столбец) и умножить её на любое число $k\ne 0$;
  2. Сложение. Прибавить к $i$-й строке (столбцу) любую другую $j$-ю строку (столбец), умноженную на любое число $k\ne 0$ (можно, конечно, и $k=0$, но какой в этом смысл? Ничего не изменится же).
  3. Перестановка. Взять $i$-ю и $j$-ю строки (столбцы) и поменять местами.

Почему эти преобразования называются элементарными (для больших матриц они выглядят не такими уж элементарными) и почему их только три — эти вопросы выходят за рамки сегодняшнего урока. Поэтому не будем вдаваться в подробности.

Важно другое: все эти извращения нам предстоит выполнять над присоединённой матрицей. Да, да: вы не ослышались. Сейчас будет ещё одно определение — последнее в сегодняшнем уроке.

Присоединённая матрица

Наверняка в школе вы решали системы уравнений методом сложения. Ну, там, вычесть из одной строки другую, умножить какую-то строку на число — вот это вот всё.

Так вот: сейчас будет всё то же, но уже «по-взрослому». Готовы?

Определение. Пусть дана матрица $A=\left[ n\times n \right]$ и единичная матрица $E$ такого же размера $n$. Тогда $\left[ A\left| E \right. \right]$ — это новая матрица размера $\left[ n\times 2n \right]$, которая выглядит так:

Короче говоря, берём матрицу $A$, справа приписываем к ней единичную матрицу $E$ нужного размера, разделяем их вертикальной чертой для красоты — вот вам и присоединённая.:)

В чём прикол? А вот в чём:

Теорема. Пусть матрица $A$ обратима. Рассмотрим присоединённую матрицу $\left[ A\left| E \right. \right]$. Если с помощью элементарных преобразований строк привести её к виду $\left[ E\left| B \right. \right]$, т.е. путём умножения, вычитания и перестановки строк получить из $A$ матрицу $E$ справа, то полученная слева матрица $B$ — это обратная к $A$:

\[\left[ A\left| E \right. \right]\to \left[ E\left| B \right. \right]\Rightarrow B=<^<-1>>\]

Вот так всё просто! Короче говоря, алгоритм нахождения обратной матрицы выглядит так:

  1. Записать присоединённую матрицу $\left[ A\left| E \right. \right]$;
  2. Выполнять элементарные преобразования строк до тех пор, пока права вместо $A$ не появится $E$;
  3. Разумеется, слева тоже что-то появится — некая матрица $B$. Это и будет обратная;
  4. PROFIT!:)

Конечно, сказать намного проще, чем сделать. Поэтому давайте рассмотрим парочку примеров: для размеров $\left[ 3\times 3 \right]$ и $\left[ 4\times 4 \right]$.

Задача. Найдите обратную матрицу:

\[\left[ \begin<*<35>> 1 & 5 & 1 \\ 3 & 2 & 1 \\ 6 & -2 & 1 \\\end \right]\]

Решение. Составляем присоединённую матрицу:

\[\left[ \begin 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end \right]\]

Поскольку последний столбец исходной матрицы заполнен единицами, вычтем первую строку из остальных:

\[\begin & \left[ \begin 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end \right]\begin \downarrow \\ -1 \\ -1 \\\end\to \\ & \to \left[ \begin 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end \right] \\ \end\]

Больше единиц нет, кроме первой строки. Но её мы не трогаем, иначе в третьем столбце начнут «размножаться» только что убранные единицы.

Зато можем вычесть вторую строку дважды из последней — получим единицу в левом нижнем углу:

\[\begin & \left[ \begin 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end \right]\begin \ \\ \downarrow \\ -2 \\\end\to \\ & \left[ \begin 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end \right] \\ \end\]

Теперь можно вычесть последнюю строку из первой и дважды из второй — таким образом мы «занулим» первый столбец:

\[\begin & \left[ \begin 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end \right]\begin -1 \\ -2 \\ \uparrow \\\end\to \\ & \to \left[ \begin 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end \right] \\ \end\]

Умножим вторую строку на −1, а затем вычтем её 6 раз из первой и прибавим 1 раз к последней:

\[\begin & \left[ \begin 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end \right]\begin \ \\ \left| \cdot \left( -1 \right) \right. \\ \ \\\end\to \\ & \to \left[ \begin 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end \right]\begin -6 \\ \updownarrow \\ +1 \\\end\to \\ & \to \left[ \begin 0 & 0 & 1 & -18 & 32 & -13 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & 0 & 0 & 4 & -7 & 3 \\\end \right] \\ \end\]

Осталось лишь поменять местами строки 1 и 3:

\[\left[ \begin 1 & 0 & 0 & 4 & -7 & 3 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 0 & 0 & 1 & -18 & 32 & -13 \\\end \right]\]

Готово! Справа — искомая обратная матрица.

Ответ. $\left[ \begin<*<35>>4 & -7 & 3 \\ 3 & -5 & 2 \\ -18 & 32 & -13 \\\end \right]$

Задача. Найдите обратную матрицу:

\[\left[ \begin 1 & 4 & 2 & 3 \\ 1 & -2 & 1 & -2 \\ 1 & -1 & 1 & 1 \\ 0 & -10 & -2 & -5 \\\end \right]\]

Решение. Снова составляем присоединённую:

\[\left[ \begin 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end \right]\]

Немного позалимаем, попечалимся от того, сколько сейчас придётся считать. и начнём считать. Для начала «обнулим» первый столбец, вычитая строку 1 из строк 2 и 3:

\[\begin & \left[ \begin 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end \right]\begin \downarrow \\ -1 \\ -1 \\ \ \\\end\to \\ & \to \left[ \begin 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end \right] \\ \end\]

Наблюдаем слишком много «минусов» в строках 2—4. Умножим все три строки на −1, а затем «выжжем» третий столбец, вычитая строку 3 из остальных:

\[\begin & \left[ \begin 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end \right]\begin \ \\ \left| \cdot \left( -1 \right) \right. \\ \left| \cdot \left( -1 \right) \right. \\ \left| \cdot \left( -1 \right) \right. \\\end\to \\ & \to \left[ \begin 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 6 & 1 & 5 & 1 & -1 & 0 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \\\end \right]\begin -2 \\ -1 \\ \updownarrow \\ -2 \\\end\to \\ & \to \left[ \begin 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end \right] \\ \end\]

Теперь самое время «поджарить» последний столбец исходной матрицы: вычитаем строку 4 из остальных:

\[\begin & \left[ \begin 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end \right]\begin +1 \\ -3 \\ -2 \\ \uparrow \\\end\to \\ & \to \left[ \begin 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end \right] \\ \end\]

Финальный бросок: «выжигаем» второй столбец, вычитая строку 2 из строки 1 и 3:

\[\begin & \left[ \begin 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end \right]\begin 6 \\ \updownarrow \\ -5 \\ \ \\\end\to \\ & \to \left[ \begin 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end \right] \\ \end\]

И снова слева единичная матрица, значит справа — обратная.:)

Ответ. $\left[ \begin 33 & -6 & -26 & 17 \\ 6 & -1 & -5 & 3 \\ -25 & 5 & 20 & -13 \\ -2 & 0 & 2 & -1 \\\end \right]$

Ну вот и всё. Проверку сделайте сами — мне в лом.:)

Обратная матрица

Содержание:

Обратная матрица

Миноры первого порядка можно определить для любой (не только квадратной) матрицы. Матрица может иметь много миноров, причём некоторые из них могут равняться нулю, а другие — нет.

Высший порядок минора матрицы, который не равен нулю, называют рангом матрицы.

Пример.

а) Рассмотрим матрицу:

Матрица не имеет миноров третьего порядка, но имеет три минора второго порядка, которые равны нулю

Следовательно, ранг матрицы

б) Рассмотрим матрицу:

Минор 3-го порядка этой матрицы, то есть её определитель, равный нулю:

Рассмотрим миноры 2-го порядка:

Видим, что существует минор 2-го порядка, отличный от нуля. Следовательно,

Очевидно, что ранг матрицы не может превышать её порядок.

Ранги транспонированных матриц совпадают.

Можно доказать, что ранг матрицы равный максимально возможному числу её линейно независимых строк (столбцов). Так, в приведённом нами примере строки 1 -1 3 и 4 -1 5 дают в сумме строку 3 0 2, то есть строки матрицы линейно зависимы.

Матрица, ранг которой меньше её порядка, называется вырожденной матрицей (это матрица, определитель которой равен нулю).

Для невырожденных матриц (а такими могут быть только квадратные) вводят понятие обратной матрицы.

По аналогии с умножением чисел, обратной для матрицы А называют матрицу , если

Для матрицы А обратной будет матрица:

где алгебраические дополнения элементов матрицы А.

Замечание.

1. Алгебраические дополнения элементов рядов матрицы стоят в соответственных столбцах, то есть проведена операция транспонирования.

2. Если в уравнении выполнять одинаковые элементарные преобразования строк матриц А и Е до тех пор, пока матрица А не преобразуется в единичную, то уравнение примет вид где преобразованная единичная матрица. Потому, что получим , то есть обратная матрица — это преобразованная единичная.

Свойства обратных матриц

Последнее свойство легко доказывается. Действительно, согласно свойствам определителей известно, что

Пример 1. Найти матрицу, обратную к матрице А:

Решение.

а) Установить, не будет ли вырожденной матрица А; для этого вычислим

Определитель отличный от нуля, поэтому для матрицы А существует

б) Вычислить алгебраические дополнения соответствующих элементов матрицы А:

в) Запишем матрицу М, составленную из алгебраических дополнений элементов матрицы А:

г) Запишем обратную матрицу транспонировав матрицу М:

д) Необходимо проверить правильность выполнения операции, то есть проверить, что

Следовательно, обратная матрица найдена правильно.

Пример 2. Найти обратную матрицу для матрицы А:

Решение. Запишем параллельно матрицы А и Е и выполним над ними одинаковые элементарные преобразования, направленные на преобразование матрицы А в единичную:

— умножим первый ряд матриц А и Е на три и отнимем от второго ряда соответствующей матрицы:

— сложим вторые ряды матриц А и Е с первыми:

— умножим вторые ряды на

В результате приведённых выше преобразований из единичной матрицы Е мы получили матрицу, обратную матрице А:

Проверим правильность нахождения обратной матрицы, вычислив её согласно схеме, приведённой в примере 1:

— вычислим определитель матрицы

— вычислим алгебраические дополнения элементов матрицы А:

— сложим матрицу М, составленную из алгебраических дополнений и транспонируем её:

— запишем обратную матрицу для матрицы А:

Как видим, матрицы совпадают.

Системы n линейных уравнений с n неизвестными

Определение. Линейным уравнением с n неизвестными называют уравнения вида:

где коэффициенты уравнения; неизвестные; свободный член.

В курсе средней школы рассматривали линейные уравнения с одним, двумя и тремя неизвестными. Это уравнения:

Геометрически эти уравнения изображают точку на числовой прямой, прямую на площади, площадь в пространстве.

Решением линейного уравнения считают совокупность значений неизвестных этого уравнения, которые преобразуют его в истинную тождественность.

Системой линейных уравнений называют два или более уравнений, которые решаются совместно. Это означает, что решением системы будут те решения её уравнений, которые удовлетворяют все уравнения системы. (сечение решений уравнений системы).

В общем виде система m линейных уравнений имеет вид:

где неизвестные; коэффициенты систем; свободные члены.

Систему можно представлять как произведение матриц:

Такую запись системы называют матричной формой записи.

Если ввести обозначения

то систему можно записать в виде матричного равенства:

Система называется однородной, если все свободные члены равны нулю (АХ=0).

Системы называется квадратной, если n=m (количество равенств и количество неизвестных равны).

Не каждая система имеет решения, например система состоящая из следующих уравнений:

решений не будет иметь.

Система называется совместной, если она имеет хотя бы одно решение и несовместной, если она не имеет ни одного решения.

Если совместная система имеет только одно решение, то она называется определённой.

Однородная система всегда совместная, она имеет так называемое тривиальное решение

Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг матрицы, составленной из её коэффициентов меньше чем число n её столбцов.

Квадратная однородная система имеет нетривиальное решение, только тогда когда определитель матрицы, составленной из её коэффициентов равен нулю.

Вопрос совместимости системы линейных уравнений полностью решается следующей теоремой.

Теорема Кронекера — Капелли

Для того, чтобы система была совместимой, необходимо и достаточно чтобы ранг основной матрицы А совпадал с рангом расширенной матрицы (матрица А, к которой присоединён столбец свободных чисел).

Доказательство. Рассмотрим матрицы А и :

Минор, который определяет ранг матрицы А входит в матрицу , следовательно ранг матрицы или равен матрице А, или на единицу больше него.

Необходимость. Если система А совместимая, то существуют значения неизвестных которые и являются решениями. Подставив эти значения в систему, получим m тождеств, из которых видно, что последний столбец матрицы является суммой всех последних столбцов, взятых вместе с коэффициентами (линейной комбинацией столбцов матрицы А). Определитель, у которого столбцы линейно зависимы равен нулю. Следовательно, ранг матриц совпадает.

Достаточность. Пусть ранги матриц А и совпадают. Это значит, что количество линейно независимых столбцов у этих матриц одинаковое. Потому, что матрицы отличаются только последним столбцом матрицы , существуют числа , такие, что сумма столбцов матрицы А взятых вместе с этими числами, равна столбцу свободных членов из системы . Следовательно, числа являются решениями системы.

Отметим, что совместная система имеет единое решение тогда и только тогда, когда ранг матрицы А равен числу неизвестных.

Пример 1. Установить совместимость системы:

Решение. Ранг матрицы, составленной из коэффициентов системы равен 2. Ранг расширенной матрицы равен 3, поскольку

Ответ: система несовместима.

Пример 2. Установить совместимость системы:

Решение. Ранг матрицы, составленной из коэффициентов системы равен 2, то есть равен числу коэффициентов. Ранг расширенной матрицы 2. Следовательно, система совместима и имеет единое решение.

Ответ: система совместима.

Пример 3. Установить совместимость системы:

Решение. Ранг матрицы, составленной из коэффициентов системы 2. Ранг расширенной матрицы 2.

Ответ: система совместима.

Решение систем n линейных уравнений с n неизвестными

1. Матричный метод. Одним из способов решения систем линейных уравнений является её умножение на обратную матрицу.

Пусть дана система6

Умножим правую и левую части на А -1 :

А -1 (АХ)=А -1 В или (А -1 А)Х=А -1 В.

Потому что, А -1 А=Е, получим

Нахождение обратной для матриц высоких порядков достаточно сложное, поэтому матричный метод используют довольно редко.

Пример 1. Решить систему:

Решение.

а) Запишем систему в матричной форме:

б) Вычислим определитель матрицы А:

в) Запишем обратную матрицу А -1 :

Обратная матрица найдена правильно, поскольку

г) Вычислим произведение матрицы А -1 В:

Ответ: х=2, у=1, z=3.

2. Метод Крамера. Пусть дана система (запишем в виде матричного уравнения) n линейных уравнений с n неизвестными

где определитель матрицы матрица, составленная из алгебраических дополнений элементов матрицы А:

Как видим, полученные выражения для элементов матрицы Х — это разложения элементов i-ой строки некоторого определителя, а именно:

где определитель матрицы А, а определитель матрицы, в которой столбец коэффициентов, которые стоят при заменён на столбец свободных членов (матрица В).

Если , то система будет иметь единое решение.

Если , то система или неопределённая, или несовместимая. Система будет несовместимой (не будет иметь ни одного решения), если хотя бы один из .

Если же, и , то система будет иметь множество решений (неопределённая)

Пример. Найти решения системы:

Решение.

а) Вычислим определитель матрицы А:

б) Вычислим определитель . Для этого первый столбец матрицы А заменим на столбец свободных членов (матрицей В) и для получения матрицы вычислим определитель:

в) Вычислим определители . Для этого заменим соответствующие столбцы матрицы А на столбец свободных членов и вычислим определители полученных матриц:

г) Найдём значения неизвестных

Ответ:

3. Метод Гаусса. Суть метода Гаусса заключается в последовательном изъятии неизвестных из уравнения системы. Поясним на примере системы трёх уравнений:

Разделим коэффициенты первого уравнения на . Получим систему:

Если теперь последовательно перемножить первое уравнение на коэффициенты и отнять соответственно от второго и третьего уравнения системы, то получим:

Неизвестное х мы изъяли из второго и третьего уравнения системы.

Изымем таким же способом у: разделим второе уравнение на , а потом, умножив на , отнимем от третьего. Получим:

Из третьего уравнения находим z, со второго — у, с третьего — х.

Алгоритм можно применять к системам более высоких порядков.

На практике, при непосредственном вычислении удобно использовать расширенную матрицу системы:

которую с помощью элементарных преобразований приводят к виду:

Пример 1. Решить систему уравнений:

Решение. Коэффициент системы равен 1, поэтому выпишем расширенную матрицу:

Умножим первую строку на 2 и отнимем от второй:

а потом умножим первую строку на 3 и отнимем от третьей:

Продолжим изымать переменные со второго и третьего уравнений системы (со второй и третьей строки расширенной матрицы). Коэффициент равен 1, поэтому просто умножим вторую строку на 5 и отнимем от третьей:

Система свелась к виду:

Из третьего уравнения системы находим z=1, подставив найденное значение во второе уравнение системы найдём у= -2, а из первого уравнения — х=3.

Ответ: х=3, у= -2, z=1.

Пример2. Решить систему уравнений:

Решение. Выпишем расширенную матрицу системы:

Разделим первую строку системы на коэффициент . Получим:

Умножим первую строку матрицы последовательно на 4 и 2 и отнимем соответственно от второй и третьей строк:

Разделим третью строку полученной матрицы на . Получим:

Умножим вторую строку матрицы на и отнимем её от третьей строки:

Начальная система свелась к виду:

Из третьего уравнения получим z=1, со второго — у=1, с первого х=1.

Ответ: х=1, у=1, z=1.

Обратная матница и её определение

Квадратная матрица называется обратной квадратной матрице если выполняется условие где единичная матрица. Квадратная матрица называется невырожденной или неособенной, если ее определитель отличен от нуля. Если определитель матрицы равен нулю, она называется вырожденной или особенной.

Всякая невырожденная квадратная матрица

имеет единственную обратную матрицу

где алгебраическое дополнение элемента матрицы . (Алгебраическое дополнение элементов каждой строки матрицы записаны в столбец с тем же номером).

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Чтобы найти матрицу, обратную данной, необходимо:

1) вычислить определитель данной матрицы; 2) найти алгебраические дополнения ее элементов 3) составить матрицу из алгебраических дополнений взятых в том же порядке, что и элементы в матрице 4) в матрице поменять ролями строки и столбцы, записать матрицу каждый элемент матрицы разделить на определитель матрицы Рангом матрицы называется наивысший из порядков ее миноров, отличных от нуля. Ранг матрицы обозначается так: или .

Возможно вам будут полезны данные страницы:


источники:

http://www.berdov.com/works/matrix/obratnaya-matrica/

http://natalibrilenova.ru/obratnaya-matritsa/