Общее решение системы линейных уравнений доказательство

Как найти общее и частное решение системы линейных уравнений

Пример 2. Исследовать совместность, найти общее и одно частное решение системы

Решение. Переставим первое и второе уравнения, чтобы иметь единицу в первом уравнении и запишем матрицу B.

Получим нули в четвертом столбце, оперируя первой строкой:

Теперь получим нули в третьем столбце с помощью второй строки:

Третья и четвертая строки пропорциональны, поэтому одну из них можно вычеркнуть, не меняя ранга:
Третью строку умножим на (–2) и прибавим к четвертой:

Видим, что ранги основной и расширенной матриц равны 4, причем ранг совпадает с числом неизвестных, следовательно, система имеет единственное решение:
-x1=-3 → x1=3; x2=3-x1 → x2=0; x3=1-2x1 → x3=5.
x4 = 10- 3x1 – 3x2 – 2x3 = 11.

Пример 3. Исследовать систему на совместность и найти решение, если оно существует.

Решение. Составляем расширенную матрицу системы.

Переставляем первые два уравнения, чтобы в левом верхнем углу была 1:
Умножая первую строку на (-1), складываем ее с третьей:

Умножим вторую строку на (-2) и прибавим к третьей:

Система несовместна, так как в основной матрице получили строку, состоящую из нулей, которая вычеркивается при нахождении ранга, а в расширенной матрице последняя строка останется, то есть rB > rA.

Задание. Исследовать данную систему уравнений на совместность и решить ее средствами матричного исчисления.
Решение

Пример. Доказать совместимость системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) методом Крамера. (ответ ввести в виде: x1,x2,x3)
Решение:doc:doc:xls
Ответ: 2,-1,3.

Пример. Дана система линейных уравнений. Доказать ее совместность. Найти общее решение системы и одно частное решение.
Решение
Ответ:x3 = — 1 + x4 + x5; x2 = 1 — x4; x1 = 2 + x4 — 3x5

Задание. Найти общее и частное решения каждой системы.
Решение. Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:

1114020
342301
23-33-21
x1x2x3x4x5

Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

0-140-36-1
342301
23-33-21

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-3). Добавим 3-ую строку к 2-ой:

0-140-36-1
0-113-36-1
23-33-21

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

0027000
0-113-36-1
23-33-21

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной.
Этот минор является базисным. В него вошли коэффициенты при неизвестных x1,x2,x3, значит, неизвестные x1,x2,x3 – зависимые (базисные), а x4,x5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.

0027000
0-113-13-6
23-31-32
x1x2x3x4x5

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
27x3 =
— x2 + 13x3 = — 1 + 3x4 — 6x5
2x1 + 3x2 — 3x3 = 1 — 3x4 + 2x5
Методом исключения неизвестных находим:
Получили соотношения, выражающие зависимые переменные x1,x2,x3 через свободные x4,x5, то есть нашли общее решение:
x3 = 0
x2 = 1 — 3x4 + 6x5
x1 = — 1 + 3x4 — 8x5
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной, т.к. имеет более одного решения.

Задание. Решить систему уравнений.
Ответ😡2 = 2 — 1.67x3 + 0.67x4
x1 = 5 — 3.67x3 + 0.67x4
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной

Пример. Проверить совместность линейной системы уравнений и в случае совместности решить ее: а) по формулам Крамера; б) методом Гаусса.
Решение: Проверяем совместность системы с помощью теоремы Кронекера — Капелли. Согласно теореме Кронекера — Капелли, из того, что следует несовместность исходной системы.
Ответ: система не совместна.
Решение

Общая теория систем линейных уравнений

Условия совместности.

Займемся изучением систем из m уравнений с n неизвестными. Систему
\begina_<1>^<1>x^<1>+a_<2>^<1>x^<2>+. +a_^<1>x^=b^<1>,\\a_<1>^<2>x^<1>+a_<2>^<2>x^<2>+. +a_^<2>x^=b^<2>,\\\cdots\\a_<1>^x^<1>+a_<2>^x^<2>+. +a_^x^=b^\end мы можем кратко записать в виде \tag <1>A\boldsymbol=\boldsymbol.
Система задается своей расширенной матрицей A^ <*>, получаемой объединением матрицы системы A и столбца свободных членов \boldsymbol .

Простое и эффективное условие, необходимое и достаточное для совместности системы (1) , дает следующая теорема, называемая теоремой Кронекера-Капелли.

Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

Иначе утверждение теоремы можно сформулировать так: приписывание к матрице A размеров m \times n столбца \boldsymbol высоты m не меняет ее ранга тогда и только тогда, когда этот столбец — линейная комбинация столбцов A .

Если \mathbf\,A^ <*>= \mathbf\,A , то базисный минор A является базисным и для A^ <*>. Следовательно, \boldsymbol раскладывается по базисным столбцам A . Мы можем считать его линейной комбинацией всех столбцов A , добавив недостающие столбцы с нулевыми коэффициентами.

Обратно, если \boldsymbol раскладывается по столбцам A , то элементарными преобразованиями столбцов можно превратить A^ <*>в матрицу A_ <0>, получаемую из A приписыванием нулевого столбца. Из утверждения о том, что ранг матрицы не меняется при элементарных преобразованиях, следует \mathbf\,A_ <0>= \mathbf\,A^ <*>. С другой стороны, \mathbf\,A_ <0>= \mathbf\,A , так как добавление нулевого столбца не может создать новых невырожденных подматриц. Отсюда \mathbf\,A = \mathbf\,A^ <*>, как и требовалось.

Иначе это утверждение можно сформулировать так.

Система линейных уравнений несовместна тогда и только тогда, когда противоречивое равенство 0=1 является линейной комбинацией ее уравнений.

Равенство рангов матрицы системы и расширенной матрицы можно выразить, понимая ранг матрицы как строчный ранг. Это приведет нас к важной теореме, известной как теорема Фредгольма.

Транспонируем матрицу A системы (1) и рассмотрим систему из n линейных уравнений \tag <2>\begin a_<1>^<1>y_<1>+a_<1>^<2>y_<2>+. +a_<1>^y_=0,\\ a_<2>^<1>y_<1>+a_<2>^<2>y_<2>+. +a_<2>^y_=0,\\\cdots\\a_^<1>y_<1>+a_^<2>y_<2>+. +a_^y_=0\end с m неизвестными, матрицей A^и свободными членами, равными нулю. Она называется сопряженной однородной системой для системы (1) . Если \boldsymbol — столбец высоты m из неизвестных, то систему (2) можно записать как A^\boldsymbol=\boldsymbol , или лучше в виде \tag <3>\boldsymbol^A=\boldsymbol, где \boldsymbol — нулевая строка длины n .

Для того чтобы система (1) была совместна, необходимо и достаточно, чтобы каждое решение сопряженной однородной системы (3) удовлетворяло уравнению \tag <4>\boldsymbol^\boldsymbol=y_<1>b^<1>+. +y_b^=0.

1^ <\circ>. Пусть система (1) совместна, то есть существует столбец \boldsymbol высоты n , для которого A\boldsymbol=\boldsymbol . Тогда для любого столбца \boldsymbol высоты m выполнено \boldsymbol^A\boldsymbol=\boldsymbol^\boldsymbol . Если \boldsymbol — решение системы (3) , то \boldsymbol^\boldsymbol=(\boldsymbol^A)\boldsymbol=\boldsymbol\boldsymbol=0 .

2^ <\circ>. Предположим теперь, что система (1) несовместна. Тогда согласно утверждению 1 строка \begin 0&. & 0& 1 \end входит в упрощенный вид расширенной матрицы A^<*>=\begin A& |& \boldsymbol \end и, следовательно, является линейной комбинацией ее строк. Обозначим коэффициенты этой линейной комбинации y_<1>. y_ и составим из них столбец \boldsymbol . Для этого столбца \boldsymbol^\begin A& |& \boldsymbol \end=\begin 0&. & 1 \end (согласно данного утверждения). Это же равенство можно расписать как два: \boldsymbol^A=\boldsymbol и \boldsymbol^\boldsymbol=1 . Итак, нам удалось найти решение системы (3) , не удовлетворяющее условию (4) . Это заканчивает доказательство.

В качестве примера применим теорему Фредгольма к выводу условия параллельности двух различных прямых на плоскости. Их уравнения составляют систему A_<1>x+B_<1>y+C_<1>=0,\ A_<2>x+B_<2>y+C_<2>=0.
Она не имеет решений, если существуют такие числа y_<1>, y_ <2>, что y_<1>A_<1>+y_<2>A_<2>=0 , y_<1>B_<1>+y_<2>B_<2>=0 , но y_<1>C_<1>+y_<2>C_ <2>\neq 0 . Ясно, что y_ <1>и y_ <2>не равны нулю. Поэтому можно положить \lambda=-y_<2>/y_ <1>и записать полученное условие в виде: существует число \lambda такое, что A_<1>=\lambda A_ <2>, B_<1>=\lambda B_ <2>и C_ <1>\neq \lambda C_ <2>.

Нахождение решений.

В этом пункте мы будем предполагать, что дана совместная система из m линейных уравнений с n неизвестными. Ранг матрицы системы обозначим r . Поскольку ранг расширенной матрицы тоже равен r , мы можем считать базисные столбцы матрицы системы базисными столбцами расширенной матрицы. Элементарными преобразованиями строк приведем расширенную матрицу к упрощенному виду (возможность этого мы уже доказывали). Наша система линейных уравнений перейдет в эквивалентную ей систему из r линейно независимых уравнений.

Для удобства записи будем предполагать, что первые r столбцов — базисные. Тогда преобразованную систему можно записать в виде \tag <5>\begin x^<1>=\beta^<1>-(\alpha_^<1>x^+. +\alpha_^<1>x^),\\\cdots\\x^=\beta^-(\alpha_^x^+. +\alpha_^x^).\end
Здесь \alpha_^ и \beta^ — элементы преобразованной расширенной матрицы. В левых частях равенств мы оставили неизвестные, соответствующие выбранным нами базисным столбцам, так называемые базисные неизвестные. Остальные неизвестные, называемые параметрическими, перенесены в правые части равенств.

Как бы мы ни задали значения параметрических неизвестных, по формулам (5) мы найдем значения базисных так, что они вместе со значениями параметрических неизвестных образуют решение системы (1) . Легко видеть, что так мы получим все множество решений.

На формулах (5) можно было бы и остановиться, но ниже мы дадим более простое и наглядное, а также принципиально важное описание совокупности решений системы линейных уравнений.

Приведенная система.

Сопоставим системе линейных уравнений (1) однородную систему с той же матрицей коэффициентов: \tag<6>A\boldsymbol=\boldsymbol. По отношению к системе (1) она называется приведенной.

Пусть \boldsymbol_ <0>— решение системы (1) . Столбец \boldsymbol также будет ее решением тогда и только тогда, когда найдется такое решение у приведенной системы (6) , что \boldsymbol=\boldsymbol_<0>+\boldsymbol .

Пусть \boldsymbol — решение системы (1) . Рассмотрим разность \boldsymbol=\boldsymbol-\boldsymbol_ <0>. Для нее A\boldsymbol=A\boldsymbol-A\boldsymbol_<0>=\boldsymbol-\boldsymbol=\boldsymbol .

Обратно, если \boldsymbol — решение системы (6) , и \boldsymbol=\boldsymbol_<0>+\boldsymbol , то A\boldsymbol=A\boldsymbol_<0>+A\boldsymbol=\boldsymbol+\boldsymbol=\boldsymbol .

Это предложение сводит задачу описания множества решений совместной системы линейных уравнений к описанию множества решений ее приведенной системы.

Однородная система совместна. Действительно, нулевой столбец является ее решением. Это решение называется тривиальным.

Пусть столбцы матрицы A линейно независимы, то есть \mathbf\,A=n . Тогда система (6) имеет единственное решение (ранее мы это уже доказывали) и, следовательно, нетривиальных решений не имеет.

Если \boldsymbol_ <1>и \boldsymbol_ <2>— решения однородной системы, то любая их линейная комбинация — также решение этой системы.

Действительно, из A\boldsymbol_<1>=\boldsymbol и A\boldsymbol_<2>=\boldsymbol для любых \alpha и \beta следует A(\alpha \boldsymbol_<1>+\beta \boldsymbol_<2>)=\alpha A \boldsymbol_<1>+\beta A\boldsymbol_<2>=\boldsymbol .

Если однородная система имеет нетривиальные решения, то можно указать несколько линейно независимых решений таких, что любое решение является их линейной комбинацией. Сделаем это.

Матрица F , состоящая из столбцов высоты n , называется фундаментальной матрицей для однородной системы с матрицей А, если:

  1. AF=O ;
  2. столбцы F линейно независимы;
  3. ранг F максимален среди рангов матриц, удовлетворяющих условию 1).

Столбцы фундаментальной матрицы называются фундаментальной системой решений.

Если фундаментальная матрица существует, то каждый ее столбец в силу первого условия определения — решение системы. Если система не имеет нетривиальных решений, то фундаментальной матрицы нет. Это будет в том случае, когда столбцы А линейно независимы: \mathbf\,A=n .

Ниже мы докажем, что в остальных случаях фундаментальная матрица существует, но сначала выясним, что означает третье условие в определении.

Пусть A — матрица размеров m \times n и ранга r . Если AF=O , то \mathbf\,F \leq n-r .

Приведем матрицу A к упрощенному виду элементарными преобразованиями строк, а затем элементарными преобразованиями столбцов обратим в нулевые все небазисные столбцы. Мы получим матрицу A’=PAQ , где P и Q — произведения соответствующих элементарных матриц. Первые r строк A’ — строки единичной матрицы порядка n , а остальные — нулевые. Обозначим F’=Q^<-1>F . Тогда \mathbf\,F’ = \mathbf\,F . Используя ранее доказанное нами утверждение, легко заметить, что первые r строк матрицы A’F’ совпадают с первыми r строками F’ . Но A’F’=PAF=O и, следовательно, F’ содержит r нулевых строк. Так как всего в ней n строк, \mathbf\,F’ \leq n-r . Это равносильно доказываемому утверждению.

Покажем теперь, как может быть построена фундаментальная матрица. Согласно ранее доказанному утверждению, решение однородной системы состоит из коэффициентов равной нулю линейной комбинации столбцов матрицы системы. Мы можем получить такие линейные комбинации, основываясь на теореме о базисном миноре. Снова для удобства записи будем считать, что в матрице A первые r столбцов — базисные. Каждый из небазисных столбцов \boldsymbol_ (j=r+1. n) раскладывается по базисным: \tag <7>\boldsymbol_=\alpha_^<1>\boldsymbol_<1>+. +\alpha_^\boldsymbol_. Отсюда следует, что столбец \begin -\alpha_^<1>. -\alpha_^& 0. 0& 1& 0. 0 \end^решением. (Единица в нем стоит на j -м месте.)

Таких решений можно составить столько, сколько есть небазисных столбцов, то есть (n-r) . Убедимся в том, что эти решения линейно независимы. Для этого объединим все столбцы в одну матрицу \tag <8>\begin -\alpha_^<1>& -\alpha_^<1>&. -\alpha_^<1>,\\\cdots\\-\alpha_^& -\alpha_^&. -\alpha_^,\\1& 0&. & 0\\0& 1&. & 0\\\cdots\\0& 0&. & 1\end.
Подматрица в последних n-r строках — единичная. Поэтому ранг матрицы (8) равен числу столбцов, и столбцы линейно независимы.

Таким образом, мы получили

Если ранг матрицы однородной системы линейных уравнений r меньше числа неизвестных n , то система имеет фундаментальную матрицу из n-r столбцов.

Итак, система столбцов (8) — фундаментальная система решений. Она называется нормальной фундаментальной системой решений. Каждому выбору базисных столбцов соответствует своя нормальная фундаментальная система решений. Вообще же, каждая система из n-r линейно независимых решений является фундаментальной.

Для нахождения матрицы (8) можно привести матрицу A системы к упрощенному виду, что даст коэффициенты разложения небазисных столбцов по базисным.

Пусть F — фундаментальная матрица системы A\boldsymbol=\boldsymbol . Рассмотрим произвольный столбец с высоты n-r . Произведение F\boldsymbol — столбец высоты n , и из равенства AF\boldsymbol =\boldsymbol следует, что при любом с столбец F\boldsymbol — решение системы. Оказывается, имеет место

Столбец \boldsymbol — решение системы A\boldsymbol=\boldsymbol тогда и только тогда, когда существует такой столбец \boldsymbol , что \tag <9>\boldsymbol=F\boldsymbol.

Остается доказать необходимость условия. Пусть \boldsymbol — решение. Присоединив его к F , получим матрицу F^<*>=\begin F\ |\ \boldsymbol \end . Эта матрица удовлетворяет условию AF^<*>=O , так как каждый ее столбец — решение. Значит, \mathbf\,F^<*>=n-r . По теореме Кронекера-Капелли мы заключаем отсюда, что существует столбец \boldsymbol , удовлетворяющий системе F\boldsymbol=\boldsymbol .

Общее решение системы линейных уравнений.

Теперь мы можем собрать воедино наши результаты — утверждения 2 и 6.

Выражение, стоящее в правой части формулы (10) , называется общим решением системы линейных уравнений. Если \boldsymbol_<1>. \boldsymbol_ — фундаментальная система решений, а c_<1>. c_ — произвольные постоянные, то формула (10) может быть написана так: \tag <11>\boldsymbol=\boldsymbol_<0>+c_<1>\boldsymbol_<1>+. +c_\boldsymbol_.

Теорема 3 верна, в частности, и для однородных систем. Если \boldsymbol_ <0>— тривиальное решение, то (10) совпадает с (9) .

Одна из ранее доказанных нами теорем гласит, что для существования единственного решения системы из n линейных уравнений с n неизвестными достаточно, чтобы матрица системы имела детерминант, отличный от нуля. Сейчас легко получить и необходимость этого условия.

Пусть A — матрица системы из n линейных уравнений с n неизвестными. Если \det A=0 , то система либо не имеет решения, либо имеет бесконечно много решений.

Равенство \det A=0 означает, что \mathbf\,A и, следовательно, приведенная система имеет бесконечно много решений. Если данная система совместна, то из теоремы 3 следует, что и она имеет бесконечно много решений.

Пример.

Рассмотрим уравнение плоскости как систему \tag<12>Ax+By+Cz+D=0 из одного уравнения. Пусть A \neq 0 и потому является базисным минором матрицы системы. Ранг расширенной матрицы 1, значит, система совместна. Одно ее решение можно найти, положив параметрические неизвестные равными нулю: y=z=0 . Мы получим x=-D/A . Так как n=3 , r=1 , фундаментальная матрица имеет два столбца. Мы найдем их, придав параметрическим неизвестным два набора значений: y=1 , z=0 и y=0 , z=1 . Соответствующие значения базисной неизвестной x , найденные из приведенной системы, будут -B/A и -C/A . Итак, общее решение системы (12) \tag <13>\begin x\\ y\\ z \end=\begin -D/A\\ 0\\ 0 \end+c_ <1>\begin -B/A\\ 1\\ 0 \end+c_ <2>\begin -C/A\\ 0\\ 1 \end.

Выясним геометрический смысл полученного решения. Очевидно, прежде всего, что решение \begin -D/A& 0& 0 \end^состоит из координат некоторой (начальной) точки плоскости, или, что то же, из компонент ее радиус-вектора. В формуле (10) решение x_0 можно выбирать произвольно. Это соответствует произволу выбора начальной точки плоскости. Мы уже знаем, что компоненты лежащих в плоскости векторов удовлетворяют уравнению A\alpha_<1>+B\alpha_<2>+C\alpha_<3>=0 , то есть приведенной системе. Два линейно независимых решения этой системы (фундаментальная система решений) могут быть приняты за направляющие векторы плоскости. Таким образом, формула (13) — не что иное, как параметрические уравнения плоскости.

Система линейных уравнений. Общее решение

Система линейных уравнений (СЛУ) может быть записана в виде

где m, n натуральные числа, aij (i= 1,2, . m, j= 1,2. n) называются коэффициентами, bi (i= 1,2. m) называются свободными членами, xi (i= 1,2. n) называются неизвестными.

Систему линейных уравнений (1) можно записать в виде

где A матрица порядка m×n , x — вектор порядка n (x∈R n ), b — вектор порядка m (b ∈R m ).

Решением системы (2) называется выбор такого вектора x’, что выполнено равенство

Если система линейных уравнений имеет хотя бы одно решение, то СЛУ называется совместным.

Если СЛУ не имеет решения, то СЛУ называется несовместным.

Если СЛУ имеет единственное решение, то СЛУ называется определенным.

Если СЛУ имеет более одного решения, то СЛУ называется неопределенным.

Система линейных уравнений (2) называется неоднородной cистемой линейных уравнений, если b≠0.

Система линейных уравнений (2) называется однородной cистемой линейных уравнений, если b=0.

Нахождение общего решения системы линейных уравнений

Общее решение системы линейных уравнений (1)((или (2))− это множество всех решений этой системы.

Пусть A m×n — матрица rankA=r. В общем случае можем предположить что r .

Применяя метод исключения Гаусса для системы (3), получим:

где M1 верхняя треугольная матрица, 0 — нулевые матрицы соответствующих порядков. Далее, применяя обратный ход исключения Гаусса, и, далее, разделив элементы каждой строки на ведущий элемент этой строки (если ведущий элемент существует) получим:

где E — единичная матрица порядка r×r.

Запишем (5) в виде системы линейных уравнений:

где

Решим систему линейных уравнений (6). Для этого перезапишем в следующем виде:

Из второго уравнения системы (7) следует, что для совместности системы (6) и, следовательно, (2) (или (1)) должно выполняться условие b2»≡ 0. Если система совместна, то решаем первое уравнение системы (7) относительно вектора xr:

(8)

Таким образом первые r координаты вектора x выражены через остальные координаты . — свободные координаты, т.е. могут принимать любые значения.

Найдем, далее, множество всех векторов x, удовлетворяющих уравнению (6) и, следовательно, (2)( или (1)).

Рассмотрим множество всех векторов х, удовлетворяющих условию

(9)

где λ — произвольный вектор-столбец длины n-r.

Подставляя (9) в (6) получим:

Следовательно (9) является решением системы (6) и, следовательно, (2)(или (1)). Отметим что вектор является частным решением неоднородной системы линейных уравнений Ax=b, а является общим решением однородной системы линейных уравнений Ax=0;

Нахождение общего решения системы линейных уравнений с помощью псевдообратной матрицы

Обозначим через R(A) пространство столбцов матрицы A, т.е.

1. Пусть A n×n матрица и rank(A)=n. Тогда существует обратная к A матрица A -1 , и следовательно единственное решение СЛУ (2) примет вид:

Действительно, подставляя (3) в (2) имеем:

2. Пусть A m×n − матрица, rank(A)=r.


источники:

http://univerlib.com/analytic_geometry/matrices_and_systems_of_linear_equations/common_theory_of_linear_equations_systems/

http://matworld.ru/linear-equations.php