Общее решение уравнения y cosx

Функция y = cos x, её свойства и график

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

Рассмотрим, как изменяется косинус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=cosx на этом отрезке.

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x косинусоидой .
Часть косинусоиды для –π≤x≤π называют волной косинусоиды .
Часть косинусоиды для \(-\frac\pi2\leq x\leq\frac\pi2\) называют полуволной или аркой косинусоиды .

Заметим, что термин «косинусоида» используется достаточно редко. Обычно, и в случае косинуса, говорят о «синусоиде».

п.2. Свойства функции y=cosx

1. Область определения \(x\in\mathbb\) — множество действительных чисел.

2. Функция ограничена сверху и снизу $$ -1\leq cosx\leq 1 $$ Область значений \(y\in[-1;1]\)

3. Функция чётная $$ cos(-x)=cosx $$

4. Функция периодическая с периодом 2π $$ cos(x+2\pi k)=cosx $$

5. Максимальные значения \(y_=1\) достигаются в точках $$ x=2\pi k $$ Минимальные значения \(y_=-1\) достигаются в точках $$ x=\pi+2\pi k $$ Нули функции \(y_<0>=cosx_0=0\) достигаются в точках \(x=\frac\pi2 +\pi k\)

6. Функция возрастает на отрезках $$ -\pi+2\pi k\leq x\leq 2\pi k $$ Функция убывает на отрезках $$ 2\pi k\leq x\leq\pi+2\pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1. Найдите наименьшее и наибольшее значение функции y=cosx на отрезке:

a) \(\left[\frac\pi6; \frac<3\pi><4>\right]\) $$ y_=cos\left(\frac<3\pi><4>\right)=-\frac<\sqrt<2>><2>,\ \ y_=cos\left(\frac\pi6\right)=\frac<\sqrt<3>> <2>$$ б) \(\left[\frac<5\pi><6>; \frac<5\pi><3>\right]\) $$ y_=cos(\pi)=-1,\ \ y_=cos\left(\frac<5\pi><3>\right)=\frac12 $$

Пример 2. Решите уравнение графически:
a) \(cosx=\frac\pi2-x\)

Один корень: \(x=\frac\pi2\)

б) \(cosx-x=1\)
\(cosx=x+1\)

Один корень: x = 0

в) \(cosx-x^2=1\)
\(cosx=x^2+1\)

Один корень: x = 0

г*) \(cosx-x^2+\frac<\pi^2><4>=0\)
\(cosx=x^2-\frac<\pi^2><4>\)
\(y=x^2-\frac<\pi^2><4>\) – парабола ветками вверх, с осью симметрии \(x_0=0\) (ось OY) и вершиной \(\left(0; -\frac<\pi^2><4>\right)\) (см. §29 справочника для 8 класса)

Два корня: \(x_<1,2>=\pm\frac\pi2\)

Пример 3. Постройте в одной системе координат графики функций $$ y=cosx,\ \ y=-cosx,\ \ y=2cosx,\ \ y=cosx-2 $$

\(y=-cosx\) – отражение исходной функции \(y=cosx\) относительно оси OX. Область значений \(y\in[-1;1]\).
\(y=2cosx\) – исходная функция растягивается в 2 раза по оси OY. Область значений \(y\in[-2;2]\).
\(y=cosx-2\) — исходная функция опускается вниз на 2. Область значений \(y\in[-3;-1]\).

Пример 4. Постройте в одной системе координат графики функций $$ y=cosx,\ \ y=cos2x,\ \ y=cos\frac <2>$$

Амплитуда колебаний у всех трёх функций одинакова, область значений \(y\in[-1;1]\).
Множитель под косинусом изменяет период колебаний.
\(y=cosx\) – главная арка косинуса соответствует отрезку \(-\frac\pi2\leq x\leq\frac\pi2\)
\(y=cos2x\) — период уменьшается в 2 раза, главная арка укладывается в отрезок \(-\frac\pi4\leq x\leq\frac\pi4\).
\(y=cos\frac<2>\) — период увеличивается в 2 раза, главная арка растягивается в отрезок \(-\pi \leq x\leq \pi\).

Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть cos(x),sin(x)

y» +4y’ — 12y = 8sin(2x)

Решение уравнения будем искать в виде y = e rx находим с помощью калькулятора. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 +4 r — 12 = 0
D = 4 2 — 4 • 1 • (-12) = 64


Корни характеристического уравнения:
r1 = 2
r2 = -6
Следовательно, фундаментальную систему решений составляют функции:


Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть:
f(x) = 8•sin(2•x)
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 8, α = 0, β = 2.
Следовательно, число α + βi = 0 + 2i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y * = Acos(2x) + Bsin(2x)
Вычисляем производные:
y’ = 2•B•cos(2x)-2•A•sin(2x)
y» = -4(A•cos(2x)+B•sin(2x))
которые подставляем в исходное дифференциальное уравнение:
y» + 4y’ -12y = (-4(A•cos(2x)+B•sin(2x))) + 4(2•B•cos(2x)-2•A•sin(2x)) -12(Acos(2x) + Bsin(2x)) = 8•sin(2•x)
или
-8•A•sin(2x)-16•A•cos(2x)-16•B•sin(2x)+8•B•cos(2x) = 8•sin(2•x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
-8A -16B = 8
-16A + 8B = 0
Решая ее, методом Гаусса находим:
A = -1 /5;B = -2 /5;
Частное решение имеет вид:
y * = — 1 /5cos(2x) — 2 /5sin(2x)
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример 2.
4y’’ -8y’ + 5y = 5cos(x)
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
4 r 2 -8 r + 5 = 0
D = (-8) 2 — 4 • 4 • 5 = -16


Корни характеристического уравнения:
(комплексные корни):
r1 = 1 + 1 /2i
r1 = 1 — 1 /2i
Следовательно, фундаментальную систему решений составляют функции:
y1 = e x cos( 1 /2x)
y2 = e x sin( 1 /2x)
Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть:
f(x) = 5cos(x)
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 5, Q(x) = 0, α = 0, β = 1.
Следовательно, число α + βi = 0 + 1i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y * = Acos(x) + Bsin(x)
Вычисляем производные:
y’ = Bcos(x)-Asin(x)
y» = -Acos(x)-Bsin(x)
которые подставляем в исходное дифференциальное уравнение:
4y» -8y’ + 5y = 4(-Acos(x)-Bsin(x)) -8(Bcos(x)-Asin(x)) + 5(Acos(x) + Bsin(x)) = 5cos(x)
или
8Asin(x)+Acos(x)+Bsin(x)-8Bcos(x) = 5cos(x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
8A + B = 0
A -8B = 5
Решая ее методом Гаусса, находим:
A = 1 /13;B = -8 /13;
Частное решение имеет вид:
y * = 1 /13cos(x) + -8 /13sin(x)
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример 3.
y»+3y’+2y=-24e -4x -20sin(2x)
Решаем в два этапа:
а) y»+3y’+2y=-24e -4x
б) y»+3y’+2y=-20sin(2x)
Затем объединяем полученные решения.

Решение уравнения вида cos(x)=y

Все сказанное о решении уравнений вида sin(x)=y будет справедливо и для уравнений вида cos(x)=y.

Здесь повторим лишь основные моменты, не расписывая подробности.

Функция y=cos(x) имеет следующий вид:

График функции y=cos(x) полностью аналогичен графику функции y=sin(x) — это та же синусоида, которая сдвинута по оси х на (-π/2).

Функция y=cos(x) может принимать значения только в диапазоне от -1 до 1.

Поэтому уравнение cos(x)=y не имеет решений при |y|>1.

Если |y|≤1, уравнение cos(x)=y имеет бесконечное множество решений.

На рисунке показано графическое решение уравнений cos(x)=-1 и cos(x)=-1/2.

Если взять диапазон значений аргумента x от 0 до +2π (что будет соответствовать одному полному обороту тригонометрического круга), то на этом участке уравнение cos(x)=-1 будет иметь одно решение π:

Поскольку функция косинус является периодической с периодом в 2π, то полным решением уравнения cos(x)=-1 будет бесконечное множество углов, кратных 2π

Теперь рассмотрим случай, когда |y| Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе


источники:

http://math.semestr.ru/math/diffur_cossin.php

http://prosto-o-slognom.ru/matematika/036-cos_x_ravno_y.html