Общее уравнение динамики алгоритм решения задач

Общее уравнение динамики. Пример решения задачи

Условие задачи

Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3-6, прикрепленных к этим нитям, и невесомого блока. Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом M = 10 Н·м , приложенной к шкиву 1. Радиусы ступеней шкива 1 равны: R 1 = 0,2 м , r 1 = 0,1 м , а шкива 2 – R 2 = 0,3 м , r 2 = 0,15 м ; их радиусы инерции относительно осей вращения равны соответственно ρ 1 = 0,1 м и ρ 2 = 0,2 м .

Пренебрегая трением, определить ускорение груза 5. Веса шкивов и грузов заданы: P 1 = 40 Н , P 2 = 0 , P 3 = 0 , P 4 = 20 Н , P 5 = 30 Н , P 6 = 10 Н . Грузы, веса которых равны нулю, на чертеже не изображать.

Указание. При решении задачи использовать общее уравнение динамики (принцип Даламбера – Лагранжа).

Решение задачи

Дано: R 1 = 0,2 м , r 1 = 0,1 м , R 2 = 0,3 м , r 2 = 0,15 м , ρ 1 = 0,1 м , ρ 2 = 0,2 м . P 1 = 40 Н , P 2 = 0 , P 3 = 0 , P 4 = 20 Н , P 5 = 30 Н , P 6 = 10 Н , M = 10 Н·м .

Установление кинематических соотношений

Установим кинематические соотношения. Пусть V 4 , V 5 , V 6 , a 4 , a 5 , a 6 , δS 4 , δS 5 , δS 6 – скорости, ускорения и малые перемещения грузов 4,5 и 6. Пусть ω 1 , ω 2 , ε 1 , ε 2 , δφ 1 , δφ 2 – угловые скорости, угловые ускорения и малые углы поворота шкивов 1 и 2.

Скорость движения нити между телами 2, 4 и 5:
. Отсюда .
Скорость движения нити между шкивами 1 и 2:
. Отсюда
.
Скорость движения нити между телами 1 и 6:
.

Итак, мы нашли связь между скоростями тел.
;
;
.

Поскольку ускорения – это производные скоростей по времени, ,
то дифференцируя по времени предыдущие формулы, находим связь между ускорениями:
;
;
.

Поскольку скорости – это производные от перемещений по времени, то такая же связь есть между бесконечно малыми перемещениями.
;
;
.

Активные внешние силы

Рассмотрим внешние силы, действующие на систему.
Это силы тяжести тел P 1 = 40 Н , P 4 = 20 Н , P 5 = 30 Н и P 6 = 10 Н , направленные вниз;
заданная пара сил с моментом M = 10 Н·м ;
силы давления осей N 1 , N 2 и N шкивов 1, 2 и невесомого блока;
силы реакции N 4 и N 6 , действующие на грузы со стороны поверхностей, перпендикулярные этим поверхностям.

Силы инерции

Мы будем решать эту задачу с помощью общего уравнения динамики, применяя принцип Даламбера — Лагранжа. Он заключается в том, что сначала мы вводим силы инерции. После введения сил инерции, задача динамики превращается в задачу статики. То есть нам нужно найти неизвестные силы инерции, чтобы система находилась в равновесии. Данную задачу статики мы решаем, применяя принцип Даламбера. То есть считаем, что система совершила малое перемещение. Тогда в равновесии, сумма работ всех сил, при таком перемещении, равна нулю.

Итак, на первом этапе мы вводим силы инерции. Для этого предполагаем, что система движется с некоторым, пока не определенным, ускорением. То есть шкивы 1 и 2 вращаются с угловыми ускорениями ε 1 и ε 2 , соответственно; грузы 4,5 и 6 совершают поступательное движение с ускорениями a 4 , a 5 и a 6 , соответственно. Между этими ускорениями имеются связи, которые мы нашли ранее. То есть все эти ускорения можно выразить через одно ускорение a 5 . Силы инерции определяются так, что они равны по модулю и противоположны по направлению тем силам (и моментам сил), которые, по законам динамики, создавали бы предполагаемые ускорения (при отсутствии других сил).

Определяем модули (абсолютные значения) сил и моментов инерции и выражаем их через a 5 .
Пусть – массы тел;
– момент инерции шкива 1.
Момент сил инерции, действующий на шкив 1:
.
Силы инерции, действующие на грузы 4, 5 и 6:
;
;
.

Изображаем силы инерции на чертеже учитывая, что их направления противоположны ускорениям.

Применение общего уравнения динамики

Даем системе бесконечно малое перемещение. Пусть груз 5 переместился на малое расстояние δS 5 . Тогда угол поворота δφ 1 шкива 1 и перемещения δS 4 и δS 6 грузов 4 и 6 определяются с помощью установленных ранее кинематических соотношений. Поскольку нити нерастяжимые, то они не совершают работу при таком перемещении. Это означает, что система имеет идеальные связи. Поэтому мы можем применить общее уравнение динамики:
,
согласно которому сумма работ всех активных сил и сил инерции, при таком перемещении, равна нулю.

Определение суммы работ внешних активных сил и сил инерции

Работа, которую совершает сила при перемещении точки ее приложения на малое смещение равна скалярному произведению векторов , то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, произведенная моментом сил , вычисляется аналогично:
.

Определяем работы всех активных сил и сил инерции. Поскольку центры осей шкивов 1, 2 и невесомого блока не совершают перемещений, то силы P 1 , N 1 , N 2 и N не совершают работу. Поскольку силы N 4 и N 6 перпендикулярны перемещениям грузов 4 и 6, то эти силы также не совершают работу.

Находим сумму работ остальных активных сил и сил инерции.

.
Подставляем выражения для сил инерции и применяем кинематические соотношения.

.
Сокращаем на δS 5 и преобразовываем.

.
Подставляем численные значения.

;
;
м/с 2 .

Автор: Олег Одинцов . Опубликовано: 02-08-2015

Физика дома

Умение решать задачи на законы Ньютона — является одним из показателей того, что учащийся знает и понимает физику. Тем более, что динамические задачи встречаются не только в «Механике», но и в других разделах физики (например задачи на равновесие и движение частицы в электрическом поле или движение заряженной частицы в магнитном поле).
А для того, чтобы решать задачи, всего-то надо знать алгоритм решения задач по Динамике.
И самые простые, и более сложные задачи решаются с использованием этого алгоритма, приведенного ниже.
Сам алгоритм сопровождается пояснительными рисунками (для большей наглядности).
Алгоритм решения задач по динамике.
1. Сделать рисунок, на котором изобразить тело (систему тел), о котором идет речь в задаче, и указать направление вектора скорости (если движение равномерное) или направление вектора ускорения (если движение равноускоренное или равнозамедленное) для тела (системы тел).

Тело на горизонталиТело на наклонной плоскостиCвязанные тела

2. Указать все силы, действующие на тело (систему тел).

3. Записать уравнение Ньютона (уравнение динамики) в векторной форме (векторная сумма сил, действующих на тело равна равнодействующей ma). Если речь идет о связанных телах, то уравнения Ньютона записываются для каждого тела.

4. Выбрать удобное направление координатных осей (для связанных тел направление координатных осей может отличаться).

5. Спроецировать векторное(-ые) уравнение(-я) на координатные оси.

6. Записать дополнительные кинематические уравнения, если это необходимо и формулы для определения сил.
7. Составить систему уравнений, выделить неизвестные и решить систему получившихся уравнений относительно неизвестных величин.

Большое количество задач, решенных с помощью этого алгоритма, Вы можете найти на нашем сайте.

Общее уравнение динамики – теорема Даламбера-Лагранжа — решение задач по теоретической механике

Ищите кому заказать термех — пишите мне вк

Примеры моих работ: Пример2 Пример2 Пример3

Общее уравнение динамики применяется для решения задач по термеху в случаях если необходимо определит ускорение какого либо тела, или всех тел. Иногда задачи на общее уравнение динамики просят решить используя теорему Даламбера – Лагранжа, или типа того. Это одно и тоже: общее уравнение динамики и теорема Даламбера – Лагранжа. Лично я больше предпочитаю первое название. Суть общего уравнения динамики очень проста: сумма бесконечно малых работ внешних сил и сил инерции, на бесконечно малом возможном (БМВ) перемещении системы, равна нулю.

Вход на сайт


источники:

http://fizika-doma.ru/eto-nado-znat/algoritm-resheniya-zadach-po-dinamike.html

http://univer2.ru/obshee_uravnenie_dinamiki.htm