Общее уравнение фотосинтеза и дыхания

Поясните сущность процессов фотосинтеза и дыхания. Напишите уравнения соответствующих реакций

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,299
  • гуманитарные 33,630
  • юридические 17,900
  • школьный раздел 607,256
  • разное 16,836

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Метаболизм клетки. Энергетический обмен и фотосинтез. Реакции матричного синтеза.

Понятие метаболизма

Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.

Выделяют две составные части метаболизма — катаболизм и анаболизм.

Составные части метаболизма

ЧастьХарактеристикаПримерыЗатраты энергииКатаболизм (энергетический обмен, диссимиляция)Совокупность химических реакций, приводящих к образованию простых веществ из более сложныхГидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществЭнергия выделяетсяАнаболизм (пластический обмен, ассимиляция)Совокупность химических реакций синтеза сложных веществ из более простыхОбразование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтезаЭнергия поглощается

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Энергетический обмен

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

Классификация организмов по отношению к свободному кислороду

ГруппаХарактеристикаОрганизмы
Аэробы (облигатные аэробы)Организмы, способные жить только в кислородной средеЖивотные, растения, некоторые бактерии и грибы
Анаэробы (облигатные анаэробы)Организмы, неспособные жить в кислородной средеНекоторые бактерии
Факультативные формы (факультативные анаэробы)Организмы, способные жить как в присутствии кислорода, так и без негоНекоторые бактерии и грибы

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный, бес- кислородный и кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

1. Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые. Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов. У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.
2. Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное окисление глюкозы называется гликолизом. В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH3COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД + и запасаются в виде НАД·Н.
Суммарная формула гликолиза имеет следующий вид:
C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД·Н.
Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД·Н) перерабатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода)
CH3COCOOH → СО2 + СН3СОН
СН3СОН + 2НАД·Н → С2Н5ОН + 2НАД + ,
либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода)
CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД + .
При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.
3. Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий:
А) образование ацетилкоэнзима А;
Б) окисление ацетилкоэнзима А в цикле Кребса;
В) окислительное фосфорилирование в электронотранспортной цепи.

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует 1) диоксид углерода, который выводится из клетки; 2) атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; 3) ацетилкофермент А (ацетил-КоА).
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются 1) две молекулы диоксида углерода, 2) молекула АТФ и 3) четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД. Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД·Н и 4 ФАД·Н2.
В. На третьей стадии атомы водорода с НАД·Н и ФАД·Н2 окисляются молекулярным кислородом О2 с образованием воды. Один НАД·Н способен образовывать 3 АТФ, а один ФАД·Н2–2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:
О2 + е — → О2 — .
В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2 — ), а снаружи — положительно (за счёт Н + ), так что между её поверхностями создаётся разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H + силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:
1/2О2 — +2H + → Н2О.
Энергия ионов водорода H + , транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:
АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.
Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:
C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ.
Таким образом, в ходе гликолиза образуются 2 молекулы АТФ, в ходе клеточного дыхания — ещё 36 молекул АТФ, в целом при пол- ном окислении глюкозы — 38 молекул АТФ.

Пластический обмен

Пластический обмен, или ассимиляция, представляет собой совокупность реакций, обеспечивающих синтез сложных органических соединений из более простых (фотосинтез, хемосинтез, биосинтез белка и др.).

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:
органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы:
неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез

Фотосинтез — синтез органических соединений из неорганических за счёт энергии света. Суммарное уравнение фотосинтеза:

Фотосинтез протекает при участии фотосинтезирующих пигментов, обладающих уникальным свойством преобразования энергии солнечного света в энергию химической связи в виде АТФ. Фотосинтезирующие пигменты представляют собой белковоподобные вещества. Наиболее важным является пигмент хлорофилл. У эукариот фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид, у прокариот — во впячивания цитоплазматической мембраны.
Строение хлоропласта очень похоже на строение митохондрии. Во внутренней мембране тилакоидов гран содержатся фотосинтетические пигменты, а также белки цепи переноса электронов и молекулы фермента АТФ-синтетазы.
Процесс фотосинтеза состоит из двух фаз: световой и темновой.
1. Световая фаза фотосинтеза протекает только на свету в мембране тилакоидов граны.
К ней относятся поглощение хлорофиллом квантов света, образование молекулы АТФ и фотолиз воды.
Под действием кванта света (hv) хлорофилл теряет электроны, переходя в возбуждённое состояние:

Эти электроны передаются переносчиками на наружную, то есть обращенную к матриксу поверхность мембраны тилакоидов, где накапливаются.
Одновременно внутри тилакоидов происходит фотолиз воды, то есть её разложение под действием света:

Образующиеся электроны передаются переносчиками к молекулам хлорофилла и восстанавливают их. Молекулы хлорофилла возвращаются в стабильное состояние.
Протоны водорода, образовавшиеся при фотолизе воды, накапливаются внутри тилакоида, создавая Н + -резервуар. В результате внутренняя поверхность мембраны тилакоида заряжается положительно (за счёт Н + ), а наружная — отрицательно (за счёт е — ). По мере накопления по обе стороны мембраны противоположно заряженных частиц нарастает разность потенциалов. При достижении критической величины разности потенциалов сила электрического поля начинает проталкивать протоны через канал АТФ-синтетазы. Выделяющаяся при этом энергия используется для фосфорилирования молекул АДФ:
АДФ + Ф → АТФ.

Образование АТФ в процессе фотосинтеза под действием энергии света называется фотофосфорилированием.
Ионы водорода, оказавшись на наружной поверхности мембраны тилакоида, встречаются там с электронами и образуют атомарный водород, который связывается с молекулой-переносчиком водорода НАДФ (никотинамидадениндинуклеотидфосфат):
2Н + + 4е – + НАДФ + → НАДФ·Н2.
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ·Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ·Н2 участвуют в процессах темновой фазы.
2. Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступающего из воздуха, в цикле Кальвина. Осуществляются реакции темновой фазы за счёт энергии АТФ. В цикле Кальвина СО2 связывается с водородом из НАДФ·Н2 с образованием глюкозы.
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.) синтезируются мономеры других органических соединений — аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растения обеспечивают себя и всё живое на Земле необходимыми органическими веществами и кислородом.
Сравнительная характеристика фотосинтеза и дыхания эукариот представлена в таблице.

Сравнительная характеристика фотосинтеза и дыхания эукариот

ПризнакФотосинтезДыханиеУравнение реакции6СО2 + 6Н2О + энергия света → C6H12O6 + 6O2C6H12O6 + 6O2 → 6СО2 + 6Н2О + энергия (АТФ)Исходные веществаУглекислый газ, водаОрганические вещества, кислородПродукты реакцииОрганические вещества, кислородУглекислый газ, водаЗначение в круговороте веществСинтез органических веществ из неорганическихРазложение органических веществ до неорганическихПревращение энергииПревращение энергии света в энергию химических связей органических веществПревращение энергии химических связей органических веществ в энергию макроэргических связей АТФВажнейшие этапыСветовая и темновая фаза (включая цикл Кальвина)Неполное окисление (гликолиз) и полное окисление (включая цикл Кребса)Место протекания процессаХлоропластыГиалоплазма (неполное окисление) и митохондрии (полное окисление)

Генетическая информация у всех организмов хранится в виде определённой последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределён в нескольких молекулах ДНК, организованных в хромосомы.
ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определённым образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.
Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.
Участок хромосомы, где расположен ген называется локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — гено́м, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.
Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определённой последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации выступают РНК. То есть реализация генетической информации происходит следующим образом:
ДНК → РНК → белок.
Этот процесс осуществляется в два этапа:
1) транскрипция;
2) трансляция.

Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные её отрезки. Такой отрезок (транскриптон) начинается промотором — участком ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция, а заканчивается терминатором — участком ДНК, содержащим сигнал окончания транскрипции. Транскриптон — это ген с точки зрения молекулярной биологии.
Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе транскрипции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.
Гены прокариот состоят только из кодирующих нуклеотидных последовательностей.

Гены эукариот состоят из чередующихся кодирующих (экзонов) и некодирующих (интронов) участков.

После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга.

Процессинг — процесс формирования зрелой мРНК из её предшественника пре-мРНК. Он включает два основных события. 1.Присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции. Сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз. Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК: мРНК является информационной матрицей; тРНК доставляют аминокислоты и узнают кодоны; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи.

Этапы трансляции

ЭтапХарактеристикаИнициацияСборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-трнк, а затем с мрнк, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.ЭлонгацияУдлинение полипептидной цепи. Рибосома перемещается вдоль мрнк, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.ТерминацияЗавершение синтеза полипептидной молекулы. Рибосома достигает одного из трёх стоп-кодонов мрнк, а так как не существует трнк с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мрнк и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза. К реакциям матричного синтеза относятся

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. Реакции матричного синтеза являются основой способности живых организмов к воспроизведению себе подобных.
Регуляция экспрессии генов. Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, то есть дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют ещё и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т. д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

Что такое фотосинтез?

Фотосинтез поглощает углекислый газ, производимый всеми дышащими организмами, и повторно вводит кислород в атмосферу. (Изображение предоставлено: KPG_Payless / Shutterstock)

Фотосинтез – это процесс, используемый растениями, водорослями и некоторыми бактериями для превращения солнечного света, углекислого газа (CO2) и воды в пищу (сахар) и кислород. Вот обзор общих принципов фотосинтеза и связанных с ним исследований, которые помогут разработать чистые виды топлива и источники возобновляемой энергии.

Виды фотосинтетических процессов

Существует два вида фотосинтетических процессов: кислородный фотосинтез и аноксигенный фотосинтез. Оба они следуют очень похожим принципам, но кислородный фотосинтез является наиболее распространенным и наблюдается у растений, водорослей и цианобактерий.

Во время кислородного фотосинтеза световая энергия переносит электроны из воды (H2O), поглощенной корнями растений, на CO2 для производства углеводов. При этом переносе СО2 «восстанавливается» или получает электроны, а вода «окисляется» или теряет электроны. Кислород вырабатывается вместе с углеводами.

Кислородный фотосинтез действует как противовес дыханию, поглощая CO2, производимый всеми дышащими организмами, и повторно вводя кислород в атмосферу.

Между тем, аноксигенный фотосинтез использует доноры электронов, которые не являются водой и не производят кислород. Этот процесс обычно происходит у бактерий, таких как зелёные серобактерии и фототрофные пурпурные бактерии. (1)

Уравнение фотосинтеза

Хотя оба вида фотосинтеза являются сложными и многоступенчатыми, общий процесс можно аккуратно резюмировать в виде химического уравнения.

Уравнение кислородного фотосинтеза:

6CO2 + 12H2O + Световая энергия → C6H12O6 + 6O2 + 6H2O

Здесь 6 молекул углекислого газа (CO2) соединяются с 12 молекулами воды (H2O), используя энергию света. Конечным результатом является образование одной молекулы углевода (C6H12O6 или глюкозы) вместе с 6 молекулами кислорода и 6 молекулами воды.

Точно так же различные реакции аноксигенного фотосинтеза можно представить в виде единой обобщенной формулы:

CO2 + 2H2A + световая энергия → [CH2O] + 2A + H2O

Буква A в уравнении является переменной, а H2A представляет собой потенциального донора электронов. Например, «A» может обозначать серу в сероводороде (H2S), являющемся донором электронов. (2)

Как происходит обмен диоксида углерода и кислорода?

Устьица являются привратниками листа, обеспечивая газообмен между листом и окружающим воздухом. (Изображение предоставлено: Уолдо Нелл / 500px / Getty Images)

Растения поглощают CO2 из окружающего воздуха и выделяют воду и кислород через микроскопические поры на своих листьях, называемые устьицами. Устьица служат воротами газообмена между внутренней частью растений и внешней средой.

Когда устьица открываются, они пропускают СО2; однако, когда устьица открыты, они выделяют кислород и позволяют выйти водяным парам. Чтобы уменьшить потерю воды, устьица закрываются, но это означает, что растение больше не может получать CO2 для фотосинтеза. Этот компромисс между увеличением количества CO2 и потерей воды представляет собой особую проблему для растений, растущих в жарких и засушливых условиях.

Как растения поглощают солнечный свет для фотосинтеза?

Растения содержат особые пигменты, поглощающие световую энергию, необходимую для фотосинтеза.

Хлорофилл является основным пигментом, используемым для фотосинтеза и придающим растениям зеленый цвет. Хлорофилл поглощает красный и синий свет для использования в фотосинтезе и отражает зеленый свет. Хлорофилл – большая молекула, для производства которой требуется много ресурсов; как таковой, он разрушается к концу жизни листа, и большая часть азота (один из строительных блоков хлорофилла) всасывается обратно в растение. Когда осенью листья теряют свой хлорофилл, другие пигменты листьев, такие как каротиноиды и антоцианы, начинают проявлять свой истинный цвет. В то время как каротиноиды в основном поглощают синий свет и отражают желтый, антоцианы поглощают сине-зеленый свет и отражают красный. (3, 4)

Молекулы пигмента связаны с белками, что позволяет им гибко двигаться навстречу свету и друг другу. Большое скопление из 100–5000 молекул пигмента составляет «антенну». Эти структуры эффективно улавливают световую энергию солнца в виде фотонов. (5)

С бактериями ситуация немного иная. В то время как цианобактерии содержат хлорофилл, другие бактерии, например, пурпурные бактерии и зелёные серобактерии, содержат бактериохлорофилл, поглощающий свет для аноксигенного фотосинтеза.

Где в растении происходит фотосинтез?

Для фотосинтеза растениям нужна энергия солнечного света. (Изображение предоставлено: Shutterstock)

Фотосинтез происходит в хлоропластах, типе пластид (органеллы с мембраной), которые содержат хлорофилл и в основном обнаруживаются в листьях растений. Двумембранные пластиды в растениях и водорослях известны как первичные пластиды, в то время как мультимембранные пластиды, обнаруженные в планктоне, называются вторичными пластидами. (6)

Хлоропласты похожи на митохондрии, энергетические центры клеток, тем, что у них есть собственный геном или набор генов, содержащихся в кольцевой ДНК. Эти гены кодируют белки, необходимые для органелл и фотосинтеза. (7)

Внутри хлоропластов находятся пластинчатые структуры, называемые тилакоидами, которые отвечают за сбор фотонов света для фотосинтеза. Тилакоиды уложены друг на друга в столбцы, известные как граны. Между гранами находится строма – жидкость, содержащая ферменты, молекулы и ионы, в которой происходит образование сахара. (8)

В конечном итоге световая энергия должна быть передана комплексу пигмент-белок, который может преобразовать ее в химическую энергию в форме электронов. В растениях световая энергия передается пигментам хлорофилла. Преобразование в химическую энергию осуществляется, когда пигмент хлорофилла изгоняет электрон, который затем может перейти к соответствующему получателю.

Пигменты и белки, которые преобразуют энергию света в химическую энергию и запускают процесс переноса электронов, известны как реакционные центры.

Реакции фотосинтеза растений делятся на две основные стадии: те, которые требуют присутствия солнечного света (светозависимые реакции), и те, которые не требуют наличия солнечного света (светонезависимые реакции). В хлоропластах протекают оба типа реакций: светозависимые реакции в тилакоиде и светонезависимые реакции в строме.

Светозависимые реакции

Когда растение поглощает солнечную энергию, ему сначала необходимо преобразовать ее в химическую энергию.

Когда фотон света попадает в реакционный центр, молекула пигмента, такая как хлорофилл, высвобождает электрон.

Освободившемуся электрону удается уйти, путешествуя по цепи переноса электронов, которая генерирует энергию, необходимую для производства АТФ (аденозинтрифосфата, источника химической энергии для клеток) и НАДФН – оба из которых необходимы на следующем этапе фотосинтеза в восстановительном пентозофосфатном цикле. «Электронная дыра» в исходном пигменте хлорофилла заполняется за счет взятия электронов из воды. В результате расщепления молекул воды в атмосферу выделяется кислород.

Светонезависимые реакции: восстановительный пентозофосфатный цикл

Фотосинтез включает в себя процесс, называемый восстановительным пентозофосфатным циклом, для использования энергии, накопленной в результате светозависимых реакций, для превращения CO2 в сахара, необходимые для роста растений. (Изображение предоставлено: wikipedia.org)

Восстановительный пентозофосфатный цикл, или Цикл Кальвина, использует энергию, накопленную в результате светозависимых реакций, для превращения CO2 в сахара, необходимые для роста растений. Эти реакции происходят в строме хлоропластов и не запускаются непосредственно светом – отсюда их название «светонезависимые реакции». Однако они все еще связаны со светом, поскольку цикл Кальвина подпитывается АТФ и НАДФН (оба из ранее упомянутых светозависимых реакций). (9)

Во-первых, CO2 соединяется с рибулозо-1,5-бисфосфатом (РуБФ), который является пятиуглеродным акцептором. Затем он расщепляется на две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). Реакция катализируется ферментом РуБФ-карбоксилаза/оксигеназа, также известным как рубиско.

Вторая стадия цикла Кальвина включает преобразование 3-ФГК в трехуглеродный сахар, называемый глицеральдегид-3-фосфатом (Г3Ф) – в процессе используются АТФ и НАДФН. Наконец, в то время как одни молекулы Г3Ф используются для производства глюкозы, другие рециркулируют обратно, чтобы получить РуБФ, который используется на первом этапе для принятия CO2. На каждую молекулу Г3Ф, которая производит глюкозу, пять молекул рециркулируют с образованием трех акцепторных молекул РуБФ.

Фотодыхание

Рубиско может иногда связывать кислород вместо СО2 в цикле Кальвина, который тратит энергию – процесс, известный как фотодыхание. Фермент развился в то время, когда уровни CO2 в атмосфере были высокими, а кислород был редким, поэтому у него не было причин проводить различие между ними. (10, 11)

Фотодыхание представляет собой особенно большую проблему, когда устьица растений закрыты для экономии воды и поэтому больше не поглощают CO2. У рубиско нет другого выбора, кроме как вместо этого восстанавливать кислород, что, в свою очередь, снижает фотосинтетическую эффективность растения. Это означает, что будет производиться меньше пищи растения (сахара), что может привести к замедлению роста и, следовательно, к уменьшению размеров растений.

Это большая проблема для сельского хозяйства, так как меньшие растения означают меньший урожай. На сельскохозяйственную отрасль оказывается растущее давление с целью повышения продуктивности растений, чтобы прокормить постоянно растущее население Земли. Ученые постоянно ищут способы повысить эффективность фотосинтеза и уменьшить частоту неэффективного фотодыхания.

Виды фотосинтеза

Существует три основных вида фотосинтетических путей: C3, C4 и CAM. Все они производят сахар из CO2, используя цикл Кальвина, но каждый путь немного отличается.

Три основных типа фотосинтетических путей – это C3, C4 и CAM. Большинство растений используют фотосинтез C3, включая рис и хлопок. (Изображение предоставлено: Эндрю ТБ Тан / Getty Images)

C3-фотосинтез

Большинство растений используют C3-фотосинтез, включая зерновые (пшеница и рис), хлопок, картофель и сою. C3-фотосинтез назван в честь трехуглеродного соединения, называемого 3-фосфоглицериновой кислотой (3-ФГК), которое он использует во время цикла Кальвина. 3-ФГК образуется, когда рубиско фиксирует CO2, образуя трехуглеродное соединение. (12)

C4-фотосинтез

Такие растения, как кукуруза и сахарный тростник, используют C4-фотосинтез. В этом процессе используется промежуточное соединение, состоящее из четырех атомов углерода (называемое оксалоацетатом), которое превращается в малат. Затем малат транспортируется в проводящий пучок, где он разрушается и выделяет CO2, который затем фиксируется рубиско и превращается в сахара в цикле Кальвина (точно так же, как фотосинтез C3). Растения C4 лучше приспособлены к жаркой и сухой окружающей среде и могут продолжать удерживать углерод, даже когда их устьица закрыты (поскольку у них есть умное решение для хранения), что снижает их риск фотодыхания. (13)

CAM-фотосинтез

Кислотный метаболизм толстянковых (CAM) обнаруживается у растений, адаптированных к очень жарким и сухим условиям, таких как кактусы и ананасы. Когда устьица открываются для поглощения CO2, они рискуют потерять воду во внешнюю среду. Из-за этого растения адаптировались в очень засушливых и жарких условиях. Одна из адаптаций – CAM, при котором растения открывают устьица ночью (когда температура ниже и потеря воды менее опасна). CO2 попадает в растения через устьица, фиксируется в оксалоацетат и превращается в малат или другую органическую кислоту (как в пути C4). Затем CO2 доступен для светозависимых реакций в дневное время, и устьица закрываются, что снижает риск потери воды. (14)

Как фотосинтез может бороться с изменением климата

Фотосинтезирующие организмы – это возможное средство для производства экологически чистого топлива, такого как водород. Группа исследователей из Университета Турку в Финляндии изучила способность зеленых водорослей производить водород. Зеленые водоросли могут выделять водород в течение нескольких секунд, если они сначала подвергаются воздействию темных анаэробных (бескислородных) условий, а затем подвергаются воздействию света. Как сообщается в их исследовании 2018 года, опубликованном в журнале Energy & Environmental Science, исследователи разработали способ продлить производство водорода зелеными водорослями до трех дней. (15)

Ученые также добились успехов в области искусственного фотосинтеза. Например, группа исследователей из Калифорнийского университета в Беркли разработала искусственную систему для улавливания CO2 с использованием нанопроволоки или проводов диаметром в несколько миллиардных долей метра. Проволока проникает в систему микробов, которые уменьшают CO2 в топливо или полимеры, используя энергию солнечного света. Команда опубликовала свой дизайн в 2015 году в журнале Nano Letters. (16)

В 2016 году члены этой же группы опубликовали исследование в журнале Science, в котором описана еще одна искусственная фотосинтетическая система, в которой специально сконструированные бактерии использовались для создания жидкого топлива с использованием солнечного света, воды и CO2. В общем, растения могут использовать только около одного процента солнечной энергии и использовать ее для производства органических соединений во время фотосинтеза. Напротив, искусственная система исследователей смогла использовать 10% солнечной энергии для производства органических соединений. (17)

В 2019 году исследователи написали в Journal of Biological Chemistry, что цианобактерии могут повысить эффективность фермента рубиско. Ученые обнаружили, что эти бактерии особенно хороши в концентрации СО2 в своих клетках, что помогает предотвратить случайное связывание рубиско с кислородом. Понимая, как бактерии достигают этого, ученые надеются внедрить этот механизм в растения, чтобы повысить эффективность фотосинтеза и снизить риск фотодыхания. (18)

Непрерывные исследования природных процессов помогают ученым в разработке новых способов использования различных источников возобновляемой энергии, а использование силы фотосинтеза является логическим шагом для создания экологически чистых и углеродно-нейтральных видов топлива.

Работает экологическим и научным журналистом более 15 лет. Пишет о науке, культуре, космосе и устойчивом развитии. Внештатный автор сайта «Знание – свет».


источники:

http://examer.ru/ege_po_biologii/teoriya/metabolizm_kletki

http://znanie-svet.ru/fotosintez/