Общее уравнение линии второго порядка реферат

Реферат по высшей математике «Кривые второго порядка», Ташкент — 2014

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО

Кафедра: Высшая математика

Тема: Кривые второго порядка

Выполнил: Студент группы 463-13

Принял: Старший препадаватель. Сайдалиев. З

Кривые второго порядка.

Понятие линии определилось в сознании человека в доисторические времена. Наблюдения за изгибами берега реки, траекторией брошенного камня, очертаниями листьев растений и цветов послужили основой для постепенного установления понятия кривой. Однако потребовалось очень много времени, прежде чем люди начали сравнивать между собой различные линии и отличать одну кривую от другой. Лишь в XVIIв. появилось абстрактное понятие линии, начались исследования свойств кривых.

Кривая (линия) — след, оставленный движущейся точкой или телом. Обычно кривую представляют лишь как плавно изгибающуюся линию, вроде параболы или окружности. Но математическое понятие кривой охватывает и прямую, и фигуры, составленные из отрезков прямых, например, треугольник или квадрат.

В школьном курсе математики в качестве кривых рассматриваются графики функций. В новых стандартах по математике профильного уровня обучения предусматривается изучение параболы, эллипса, гиперболы.

Некоторые понятия кривых встречаются нам в нашей повседневной жизни, хотя чаще всего мы этого не замечаем. Например, по круговой траектории движутся люди при катании на колесе обозрения, карусели, по гиперболе движутся альфа-частицы в опыте Резерфорда при рассеивании их ядром атома; по эллипсам движутся планеты вокруг Солнца, по параболе — тело в однородном поле силы тяжести, брошенное под углом к горизонту.

Знакомство с кривыми, изучение их свойств позволит расширить геометрические представления, углубить знания, повысить интерес к геометрии; создаст содержательную основу для дальнейшего изучения математики, физики и других наук.

Все вышесказанное подчеркивает актуальность выбранной темы дипломной работы.

Целью является изучение теории замечательных кривых.

Объектом исследования явились замечательные кривые, а также задачи, связанные с ними.

Предметом исследования является изучение теории замечательных кривых.

Цель исследования обусловила выбор следующих частных задач:

1. отобрать теоретический материал по теме дипломной работы;

2. обобщить и систематизировать материал;

. рассмотреть основные типы задач и их решение.

Структура дипломной работы следующая. Первая глава содержит теоретический материал по теории кривых. Здесь рассматриваются такие кривые, как окружность, эллипс, гипербола, парабола, а также кривые, наиболее часто встречающиеся в математическом анализе: Анъези локон, Декартов лист, Бернулли лемниската, кардиоида, цепная линия, астроида, циклоида.

Вторая часть дипломной работы представлена в виде рабочей тетради. Данная тетрадь разработана для студентов I и II-го курсов. В ней предлагаются задания по степени возрастания сложности по данной теме.

При работе над дипломной работой использовались в качестве основных источников учебники , , ,

Замечательные кривые

Кривые второго порядка. Общее уравнение кривой второго порядка.

Важной задачей аналитической геометрии является исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам.

Определение: Кривой второго порядка называется множество точек на плоскости , координаты которых удовлетворяют следующему общему уравнению кривой второго порядка:

(1)

где коэффициенты А, 2В, С, 2D, 2E и F — любые числа и, кроме того, числа А, В и С не равны нулю одновременно, т. е. . ()

Уравнения окружности, эллипса, гиперболы и параболы являются частными случаями уравнения (1). ()

Теорема 1. Пусть в прямоугольной системе координат задано общее уравнение кривой второго порядка . Тогда существует такая прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов:

1) (Эллипс);

2) (Мнимый эллипс);

3) (Пара мнимых пересекающихся прямых);

4) (Гипербола);

5) (Пара пересекающихся прямых);

6) (Парабола);

7) (Пара параллельных прямых);

8) (Пара мнимых параллельных прямых):

9) (Пара совпавших прямых).

п.1. Окружность

Окружность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра). Окружность (рис.1) с центром в точке и радиусом имеет уравнение в прямоугольных координатах:

(2)

Раскрывая скобки, придадим уравнению (2) вид:

(2′ )

или (2» )

где положено

Уравнение (2») является уравнением второй степени. Итак, окружность имеет уравнение второй степени относительно текущих координат. Но, очевидно не всякое уравнение второй степени определяет окружность. Действительно, из уравнения (2» ) усматриваем, что в уравнении окружности коэффициенты при квадратах координат равны, а член с произведением координат отсутствует. Обратно, если эти два условия (равенство коэффициентов при и и отсутствие члена ) осуществлены, то уравнение, вообще говоря, определяет окружность, так как оно приводится к виду (2») путем деления на коэффициент при . ()

Итак, по виду данного уравнения второй степени мы можем решить, является ли оно уравнением окружности или нет. Например, уравнение определяет окружность, так как в нем коэффициенты при квадратах координат равны между собой, а член с произведением отсутствует. Желая построить эту окружность, мы должны предварительно определить координаты ее центра и радиус. С этой целью данное уравнение мы приведем к виду (2). Такое представление есть не что иное, как представление уравнения (2» ) в виде (2). Возьмем в данном уравнении члены, содержащие , т. е. и представим этот двучлен в виде:

т. е. выделим из членов, содержащих , полный квадрат линейного двучлена . Далее возьмем члены, содержащие , т. е. И, преобразуя, этот двучлен таким же образом, получим:

После этого данное уравнение запишется так:

Перенося свободные члены вправо, будем иметь:

Сравнивая это уравнение с уравнением окружности (2), усматриваем, что , Таким образом, центром окружности является точка и радиус окружности равен . По этим данным можно построить окружность.

Параметрические уравнения окружности:

Уравнение окружности в полярных координатах:

Отметим, что движение по окружности часто встречается в физике и технике, по круговой траектории движутся люди при катании на колесе обозрения, карусели, по круговым орбитам могут двигаться искусственные спутники Земли. Хорошо известна планетарная модель атома водорода по Резерфорду. В центре атома находится ядро, а электрон вращается вокруг него. (Энц. словарь юного математика)

п.2. Эллипс

Название «Эллипс» ввёл Аполлоний Пергский, рассматривая эллипс как одно из конических сечений. Эллипс (греч. elleipsis — недостаток) — линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса.

Определение: Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; требуется, чтобы эта постоянная была больше расстояния между фокусами. Фокусы эллипса принято обозначать через F1 и F2. ()

Пусть М — произвольная точка эллипса (рис 2.) с фокусами F1 и F2. Отрезки F1М и F2М (так же как и длины этих отрезков) называются фокальными радиусами точки М. Постоянную сумму фокальных радиусов точки эллипса принято обозначать через 2а. Таким образом, для любой точки М эллипса имеем:

М + F2М = const=2а> F1 F2 (3)

Данное неравенство необходимо: оно означает, что сумма двух сторон F1 F2 М больше третьей. Если точки F1 и F2 сливаются, то условие (3) сводится к тому, что FM= const; точки с этим условием образуют окружность. Она считается частным (иногда вырожденным) случаем эллипса. ()

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса. Расстояние F1 и F2 между фокусами обозначают через 2с.

Вывод канонического уравнения эллипса

Пусть дан какой-нибудь эллипс с фокусами F1, F2. (рис.3).

Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим, далее, через r1 и r2 расстояния от точки М до фокусов

(r1 = F1М, r2 = F2М).

Точка М будет находиться на данном эллипсе в том и только в том случае, когда

Чтобы получить искомое уравнение, нужно в равенстве заменить переменные r1 и r2 их выражениями через координаты х, у.

Заметим, что, так как F1 F2 = 2с и так как фокусы F1 и F2 расположены на оси Ох симметрично относительно начала координат, то они имеют соответственно координаты (-с; 0) и (+с; 0); учитывая это и применяя формулу расстояния между двумя точками, находим

(5)

Заменяя r1 и r2, получаем:

(6)

Это и есть уравнение рассматриваемого эллипса, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на этом эллипсе. Возведём обе части равенства в квадрат, получим:

(7)

Возводя в квадрат обе части последнего равенства, найдем:

(8)

Здесь мы введем в рассмотрение новую величину

; (9)

Так как по условию а>с, следовательно, и величина b-положительное число. Из равенства (8) имеем

тогда уравнение (8) можно переписать в виде

Разделив обе части этого равенства на a2b2, окончательно получим

. (10)

Это уравнение называется каноническим уравнением эллипса, где а и b — длины большой и малой полуосей эллипса. При a = b фокусы F1 и F2 совпадают, и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса. Уравнение , определяющее эллипс в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, эллипс есть линия второго порядка.

Эксцентриситет эллипса

Определение: Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси (Шипачев); обозначив эксцентриситет буквой е, получаем:

.

Заметим, что поэтому

;

и

Следовательно, эксцентриситет определяется отношением осей эллипса, а отношение осей, в свою очередь, определяется эксцентриситетом. Таким образом, эксцентриситет характеризует форму эллипса. Чем ближе эксцентриситет к единице, тем меньше 1- е2, тем меньше, следовательно, отношение ; значит, чем больше эксцентриситет, тем более эллипс вытянут вдоль большей оси.() В случае b=a, уравнение (10) принимает вид:

или .

Это уравнение является уравнением окружности с центром в начале координат и с радиусом равным а. Значит, окружность можно рассматривать как частный случай эллипса, когда полуоси его равны между собой и эксцентриситет равен нулю:

Эксцентриситет эллипса характеризует меру вытянутости эллипса.

Как известно, планеты и некоторые кометы движутся по эллиптическим орбитам. Оказывается, что эксцентриситеты планетных орбит весьма малы, а кометных — велики, т. е. близки к единице. Таким образом, планеты движутся почти по окружности, а кометы то приближаются к Солнцу (Солнце находится в одном из фокусов), то удаляются от него.

Определение: Две прямые, перпендикулярные к большой оси эллипса и расположенные симметрично относительно центра на расстоянии от него, называются директрисами эллипса. (а — большая полуось, е — эксцентриситет эллипса). ()

Уравнения директрис в выбранной системе координат имеют вид:

и .

Первую из них мы условимся называть левой, вторую — правой. Так как для эллипса a, следовательно, с2-а2>0 и величина b-положительное число. Из равенства (15) имеем

Поэтому уравнение (15) принимает вид:

,

. (17)

Уравнение ,определяющее гиперболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, гипербола есть линия второго порядка.

Эксцентриситет гиперболы

Гипербола состоит из двух ветвей (правой и левой) и имеет две асимптоты:

и

Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) — центром гиперболы. Одна из осей пересекается с гиперболой в двух точках, которые называются ее вершинами (на рис.7 они обозначены буквами А и А′ ). Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник со сторонами 2а и 2b (см. рис.7) называется основным прямоугольником гиперболы. Величины а и b называются соответственно действительной и мнимой полуосями гиперболы.

(18)

переставляя буквы х и у, а и b, можно привести к виду (17). Отсюда ясно, что уравнение (18) определяет гиперболу, расположенную так, как показано на рис.7 справа; вершины ее лежат на оси Оу. Эта гипербола называется сопряженной по отношению к гиперболе (17) (). Обе гиперболы имеют одни и те же асимптоты.

Гипербола с равными полуосями (а = b) называется равносторонней, и ее каноническое уравнение имеет вид

(19)

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Определение: Эксцентриситетом гиперболы называется отношение расстояния между фокусами этой гиперболы к расстоянию между ее вершинами (); обозначив эксцентриситет буквой е, получим:

.

Так как с > a, то е > 1, т. е. эксцентриситет гиперболы больше единицы.

Заметим, что ; находим:

,

и .

Из последнего равенства легко получить геометрическое истолкование эксцентриситета гиперболы. Эксцентриситет определяется отношением , а отношение в свою очередь определяется эксцентриситетом. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.

Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше тем меньше, следовательно, отношение ; значит, чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении оси, соединяющей вершины). ()

В случае равносторонней гиперболы a = b и е = √2.

Директрисы гиперболы

Определение: Две прямые, перпендикулярные к той оси гиперболы, которая ее пересекает, и расположенные симметрично относительно центра на расстоянии от него, называются директрисами гиперболы.

Уравнения директрис в выбранной системе координат имеют вид

и .

Первую из них мы условимся называть левой, вторую — правой.

Так как для гиперболы е >1, то . Отсюда следует, что правая директриса расположена между центром и правой вершиной гиперболы; аналогично, левая директриса расположена между центром и левой вершиной (рис.8).

Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий:

Множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы величина постоянная, равная е, это эллипс, если е 1. ()

Возникает вопрос, что представляет собой множество точек, определенное аналогичным образом при условии Оказывается, это новая линия второго порядка, называемая параболой.

п.4. Парабола

Парабола (греч. parabole) — кривая второго порядка.

Определение: Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой (предполагается, что эта прямая не проходит через фокус). ()

Фокус параболы принято обозначать буквой F, расстояние от фокуса до директрисы — буквой p. Величину р называют параметром параболы.

Пусть дана какая-нибудь парабола (рис.11). Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим далее через r расстояние от точки М до фокуса F(r=), через d-расстояние от точки М до директрисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда

Вывод канонического уравнения параболы

Чтобы получить искомое уравнение, нужно заменить переменные r и d их выражениями через текущие координаты х, у.

Заметим, что фокус F имеет координаты ; приняв это во внимание, находим:

. (21)

Обозначим через N основание перпендикуляра, опущенного из точки М на директрису. Очевидно, точка N имеет координаты тогда с помощью формулы, выражающей расстояние между точками М и N, получаем:

(22)

число положительное; это следует из того, что М (х; у) должна находиться с той стороны от директрисы, где находится фокус, т. е. должно быть , откуда .

Заменяя в равенстве (20) r и d выражениями (21) и (22), найдем

(23)

Это и есть уравнение рассматриваемой параболы, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на данной параболе. Приведем его к более удобному виду, для чего возведем обе части равенства (23) в квадрат. Получаем:

Проверим, что уравнение (24), полученное возведением в квадрат обеих частей равенства (23), не приобрело «лишних» корней. Для этого достаточно показать, что для любой точки, координаты х и у которой удовлетворяют уравнению (22), выполнено соотношение (20). Действительно, из уравнения (24) вытекает, что х ≥ 0, поэтому для точек с неотрицательными абсциссами имеем d = + x. Подставляя значение у2 из уравнения (24) в выражение (21) и учитывая, что х ≥ 0, получаем r = + x, т. е. величины r и d равны, что и требовалось доказать. Таким образом, уравнению (24) удовлетворяют координаты точек данной параболы, и только они, т. е. это уравнение является уравнением параболы.

Уравнение (24) называется каноническим уравнением параболы. Уравнение у2=2рх, определяющее параболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, парабола есть линия второго порядка. ()

Исследование формы параболы

Исследуем теперь форму параболы по ее каноническому уравнению. Так как уравнение (24) содержит у только в четвертой степени, то парабола симметрична относительно оси Ох. Следовательно, достаточно рассмотреть только ее часть, лежащую в верхней полуплоскости. Для этой части у ≥ 0, поэтому, разрешая уравнение (24) относительно у, получаем:

у = (25)

Из равенства (25) вытекают следующие утверждения:

1. если х 0, расположена слева от оси ординат (Рис.10, б). Вершина этой параболы совпадает с началом координат, осью симметрии является ось Ох.

Реферат: Линии второго порядка

1. Линии второго порядка на евклидовой плоскости.

2. Инварианты уравнений линий второго порядка.

3. Определение вида линий второго порядка по инвариантам ее уравнения.

4. Линии второго порядка на аффинной плоскости. Теорема единственности.

5. Центры линий второго порядка.

6. Асимптоты и диаметры линий второго порядка.

7. Привидение уравнений линий второго порядка к простейшему.

8. Главные направления и диаметры линий второго порядка.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Линии второго порядка в евклидовой плоскости.

Евклидова плоскость – это пространство размерности 2, (двумерное вещественное пространство).

Линии второго порядка представляют собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.

Эти линии часто встречаются в различных вопросах естествознания. Например, движение материальной точки под воздействием центрального поля силы тяжести проис­ходит по одной из этих линий.

Если секущая плоскость пересекает все прямолинейные образующие одной полости конуса, то в сечении получится ли­ния, называемая эллипсом (рис. 1.1,а). Если секущая плоскость пересекает образующие обеих полостей конуса, то в сечении по­лучится линия, называемая гиперболой (рис. 1.1,6). И, наконец, если секущая плоскость параллельна одной из образующих ко­нуса (на 1.1, в — это образующая АВ), то в сечении получится линия, называемая параболой. Рис. 1.1 дает наглядное представление о форме рассматриваемых линий.

Общее уравнение линии второго порядка имеет следующий вид:

(1)

(1*)

Эллипсом называется множесво точек плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фо­кусами, есть величина постоянная.

При этом не исключается совпадение фокусов эллипса. Оче­видно, если фокусы совпадают, то эллипс представляет собой окружность.

Для вывода канонического уравнения эллипса выберем на­чало О декартовой системы координат в середине отрезка F 1 F 2 , а оси Ох и Оу направим так, как указано на рис. 1.2 (если фокусы F 1 и F 2 совпадают, то О совпадает с F 1 и F 2 , а за ось Ох можно взять лю­бую ось, проходящую через О).

Пусть длина отрезка F 1 F 2 равна 2с. Тогда в выбранной системе координат точки F 1 и F 2 соответствен­но имеют координаты (-с, 0) и (с, 0). Обозначим через постоян­ную, о которой говорится в опреде­лении эллипса. Очевидно, 2а > 2с, т. е. а > с ( Если М — точка эллипса (см. рис. 1.2), то | MF ] |+ | MF 2 | = 2 a , а так как сумма двух сторон MF 1 и MF 2 треугольника MF 1 F 2 больше третьей стороны F 1 F 2 = 2c, то 2а > 2с. Случай 2а = 2с естественно исключить, так как тогда точка М располагается на отрезке F 1 F 2 и эллипс вырождается в отрезок.).

Пусть М — точка плоскости с координатами (х, у) (рис. 1.2). Обозначим через r1 и r2 расстояния от точки М до точек F 1 и F 2 соответственно. Со­гласно определению эллипса равенство

является необходимым и достаточным условием расположения точки М (х, у) на данном эллипсе.

Используя формулу расстояния между двумя точками, получим

(1.2)

Из (1.1) и (1.2) вытекает, что соотношение

(1.3)

представляет собой необходимое и достаточное условие распо­ложения точки М с координатами х и у на данном эллипсе. По­этому соотношение (1.3) можно рассматривать как уравнение эллипса. Путем стандартного приема «уничтожения радикалов» это уравнение приводится к виду

(1.4)

(1.5)

Так как уравнение (1.4) представляет собой алгебраическое следствие уравнения эллипса (1.3), то координаты х и у любой точки М эллипса будут удовлетворять и уравнению (1.4). По­скольку при алгебраических преобразованиях, связанных с изба­влением от радикалов, могли появиться «лишние корни», мы дол­жны убедиться в том, что любая точка М, координаты которой удовлетворяют уравнению (1.4), располагается на данном эллипсе. Для этого, очевидно, достаточно доказать, что величи­ны r1 и r2 для каждой точки удовлетворяют соотношению (1.1). Итак, пусть координаты х и у точки М удовлетворяют уравне­нию (1.4). Подставляя значение у 2 из (1.4) в правую часть вы­ражения (1.2) для г1 после несложных преобразований найдем, что , тогда

.

Совершенно аналогично найдем, что . Таким обра­зом, для рассматриваемой точки М

, (1.6)

т. е.r 1 + r 2 = 2а, и поэтому точка М располагается на эллипсе. Уравнение (1.4) называется каноническим уравнением эллипса. Величины а и b называются соответственно большой и малой полуосями эллипса (наименование «большая» и «малая» объяс­няется тем, что а>Ь).

Замечание . Если полуоси эллипса а и b равны, то эллипс представляет собой окружность, радиус которой равен R = a = b , а центр совпадает с началом координат.

Гиперболой называется множество точек плоскости, для которых абсолютная величина раз­ности расстояний до двух фиксированных точек, F 1 и F 2 этой пло­скости, называемых фокусами, есть величина постоянная ( Фокусы F 1 и F 2 гиперболы естественно считать различными, ибо если указанная в определении гиперболы постоянная не равна нулю, то нет ни одной точки плоскости при совпаденииF 1 и F 2 , которая бы удовлетворяла требованиям определения гиперболы. Если же эта постоянная равна нулю и F 1 совпадает с F 2 , то любая точка плоскости удовлетворяет требованиям определения гиперболы.).

Для вывода канонического уравнения гиперболы выберем начало координат в середине отрезка F 1 F 2 , а оси Ох и Оу на­правим так, как указано на рис. 1.2. Пусть длина отрезка F 1 F 2 равна 2с. Тогда в выбранной системе координат точки F 1 и F 2 соответственно имеют координаты (-с, 0) и (с, 0) Обозначим через 2а постоянную, о которой говорится в определении гипер­болы. Очевидно, 2a d , и поэтому такие точки можно исключить из рас­смотрения) то, согласно (1.12), соотношение

(1.14)

представляет собой необходимое и достаточное условие распо­ложения точки М с координатами х и у на данной параболе. Поэтому соотношение (1.14) можно рассматривать как уравне­ние параболы. Путем стандартного приема «уничтожения ра­дикалов» это уравнение приводится к виду

(1.15)

Убедимся в том, что уравнение (6.15), полученное путем алгебраических преобразований уравнения (1.14), не приобрело новых корней. Для этого достаточно доказать, что для каждой точки М, координаты х и у которой удовлетворяют уравнению (1.15), величины r и d равны (выполнено соотношение (1.12)).

Из соотношения (1.15) вытекает, что абсциссы х рассматри­ваемых точек неотрицательны, т. е. . Для точек с неотри­цательными абсциссами . Найдем теперь выражение для расстояния r от точки М до F . Подставляя у 2 из выражения (1.15) в правую часть выражения для r (1.13) и учитывая, что , найдем, что . Таким образом, для рассма­триваемых точек r = d , т. е. они располагаются на параболе.

Уравнение (1.15) называется каноническим уравнением пара­болы. Величина р называется параметром параболы.

Пример 1.1 . Установить вид кривой второго порядка, заданной урав­нением .

Решение : Предложенное уравнение определяет эллипс . Действительно, проделаем следующие преобразования:

Получилось каноническое уравнение эллипса с центром в и полуосями и .

Пример 1.2 . Установить вид кривой второго порядка, заданной уравнением x 2 + 10х — 2у + 11 = 0.

Решение : Указанное уравнение определяет параболу (С = 0). Действи­тельно,

.

Получилось каноническое уравнение параболы с вершиной в точке и .

2. Инварианты уравнений линий второго порядка.

Назовем инвариантом уравнения (1) линии второго порядка относительно преобразований де­картовой системы координат такую функцию f ( a 11 , a 12 , . а33 ) от коэффициентов а in этого уравнения, значения которой не ме­няются при переходе к новой декартовой прямоугольной си­стеме координат. Таким образом, если f ( a 11 , a 12 , . а33 ) инва­риант и а’ ij — коэффициенты уравнения линии второго порядка в новой системе декартовых координат, то

(2.1)

являются инвариантами уравнения (1) линии второго по­рядка относительно преобразований декартовой системы коор­динат.

Очевидно, инвариантность величин достаточно доказать отдельно для параллельного переноса системы координат и для поворота

Рассмотрим сначала параллельный перенос системы коорди­нат. При этом преобразовании координат коэффициенты группы старших чле­нов не изменяются. Поэтому не изменяются и величины . Займемся величиной . В новой системе координат О’х’у’ вели­чина равна

(2.2)

Вычитая из последней строки этого определителя первую стро­ку, умноженную на х0 , и вторую, умноженную на у00 и у0 — координаты нового начала О’), и используя при этом выраже­ния для а’13 и а’23 из формул параллельного переноса

(2.3)

где

найдем, что этот определитель равен:

Если теперь вычесть из последнего столбца полученного опре­делителя первый столбец, умноженный на х0 , и второй, умно­женный на y о , и использовать при этом выражения для а’13 и а’23 из формул (2.3), то в результате получится определитель, стоя­щий в правой части выражения для в формулах (2.1). Итак, инвариантность при параллельном переносе системы коорди­нат доказана.

Рассмотрим теперь поворот декартовой системы координат. При этом преобразо­вании коэффициенты а’ ij уравнения линии L в новой системе свя­заны с коэффициентами а ij уравнения этой линии в старой си­стеме с помощью формул

(2.4)

Докажем теперь инвариантность . Имеем, со­гласно (2.4):

Таким образом, инвариантность доказана. Обратимся теперь к

Разлагая этот определитель по элементам последнего столбца, учитывая только что доказанную инвариантность , т. е. ра­венство

(2.5)

Согласно формулам (2.4) первое слагаемое в правой части (2.5) может быть преобразовано следующим образом:

(2.6)

Совершенно аналогично получается равенство а’23

(2.7)

Из соотношений (2.6) — (2.7) получаем

(2.8)

Так как величины А, В, С , углы не зависят от угла (эго вытекает из инвариантности ), то из (2.8) следует, что так же не зависит от угла , т. е. при любом значении имеет одно и то же значение. Но а’ ij = а ij при =0, и поэтому .Таким образом, инва­риантность также установлена. Теорема доказана.

3. Определение вида линий второго порядка по инвариантам ее уравнения.

Введем следующие обозначения:

Название: Линии второго порядка
Раздел: Рефераты по математике
Тип: реферат Добавлен 05:10:23 29 июня 2011 Похожие работы
Просмотров: 956 Комментариев: 8 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать

, ,

, ,

Название линииПризнакиНаличие центра
типакласса
1эллипсточка
2мнимый эллипс
3точка
4гипербола
52 пересекающиеся прямые
6Параболацентра нет
72 параллельные. прямыебесконечно много центров
82 мнимые параллельные прямые
92 совпадающие прямые , ,

Пример 3.1 : Определение зависимости типа данной кривой (3.1) от параметра b с помощью инвариантов

(3.1)

Для уравнения кривой второго порядка (3.1) имеем:

Вычислим инварианты кривой

.

.

.

В соответствии с классификацией кривых второго порядка:

Если I 2 = 0, то уравнение (3.1) определяет кривую параболического типа.

Но I 2 = -306-11b , следовательно, если , то уравнение (1) определяет кривую параболического типа.

Но при этом , следовательно, если , то уравнение (1) определяет параболу.

Если I 2 ¹ = 0, то данная кривая – центральная. Следовательно, при данная кривая – центральная.

Если I 2 > 0, то уравнение (1) определяет кривую эллиптического типа. Следовательно, если , то данная кривая есть кривая эллиптического типа. Но при этом I 1 I 3 = (1-b )(4885b -306) 0, I 1 I 3 2 /a 2 ) — (y 2 /b 2 ) = 1 находим Y = ±(b/a)∙[x/√(x 2 — a 2 )]∙X ± [ab/√(x 2 — a 2 )]. Полагая х = ∞, найдем ±(b/a) — [x//√(x 2 — a 2 )] = ±(b/a)∙[1/√(1 — a 2 / x 2 )] = ±(b/a), и ±[ab//√(x 2 — a 2 )] = 0; следовательно, уравнение А. рассматриваемой гиперболы будет У = ±(b/a)Х или, что все равно, Y = +(b/a)X и Y = -(b/a)X; последние два уравнения показывают, что гипербола имеет две А. Можно также определить А. следующим образом. Пусть будет У А. = Х + В уравнение А., не параллельной оси у. Ордината у кривой, соответствующая абсциссе x, для весьма больших величин сей абсциссы будет очень мало разниться от ординаты У а-ты, так что можно ее принять у = Ах + В ± ε, подразумевая под ε количество, уничтожающееся вместе с 1/x. Итак, полагая x = ∞, найдем пред. (Y/X) = пред.

и пред. (у — Ах) = пред. (В ± ε) = В. Следовательно, для определения постоянного количества стоит только в уравнении кривой положить Y/X = q или y = xq и сыскать предел, к которому стремится q для бесконечно больших значений х. Величина В определится, если в уравнении кривой примем у — Ах = ν, или у = Ах + ν. Изменив х на у и наоборот и рассуждая так же, как и выше, найдем А., не параллельные оси х. Так, например, уравнение рассмотренной нами гиперболы через подстановку qx вместо у дает a 2 /x 2 — q 2 x 2 /b 2 = 1 или q 2 = b 2 /a 2 — b 2 /x 2 ; полагая х = ∞, найдем q 2 = b 2 /a 2 , или q = ±(b/a)A. Полагая в том же уравнении y = Ax + ν = +(b/a)x + ν, получим x 2 /a 2 — [(±x(b/a) + ν) 2 /b 2 ] = 1, или ν = ±(b/a)∙[√(x 2 — a 2 ) — x], где, полагая x = ∞, получим ν = 0 = B; следовательно, уравнение А. предложенной гиперболы будет, как и выше, Y = +(b/a)X, что и требовалось доказать. Бесчисленное множество кривых имеет А.; укажем, кроме упомянутой уже гиперболы, следующие кривые, имеющие А.: конхоида, логарифмическая линия, циссоида, декартов лист и др. Чертежи I, II и III представляют (см.) примеры а-ты: линии KL и MN служат (черт. I) асимптотами нормальной равносторонней гиперболы, получающейся от пересечения поверхности конуса плоскостью, — пересекающимися в точке О, начала координат, под прямыми углами;

линии AF и AG (черт. II) изображают А. частей СВ и CED так называемой пересечной гиперболы.

Змиевидная гипербола DBE (черт. III) имеет асимптотой линию АС.

В курсе аналитической геометрии доказывается, что середины параллель­ных хорд линии второго порядка лежат на одной прямой. Эта прямая назы­вается диаметром линии второго порядка. Диаметр, делящий пополам какую-нибудь хорду (а значит, и все параллельные ей), называется сопряжённым этой хорде (и всем хордам, которые ей параллельны). Все диаметры эллипса и гиперболы проходят через центр.

Если эллипс задан уравнением

(6.1)

то его диаметр, сопряжённый хордам с угловым коэффициентом k, опреде­ляется уравнением:

(6.2)

Если гипербола задана уравнением

(6.3)

то её диаметр, сопряжённый хордам с угловым коэффициентом k , опреде­ляется уравнением:

(6.4)

Все диаметры параболы параллельны её оси.

Если парабола задана урав­нением

то её диаметр, сопряжённый хордам с угловым коэффициентом k , опреде­ляется уравнением

(6.6)

Если один из двух диаметров эллипса или гиперболы делит пополам хорды, параллельные другому, то второй диаметр делит пополам хорды, па­раллельные первому. Такие два диаметра называются взаимно сопряжён­ными.

Если k и k’ — угловые коэффициенты двух взаимно сопряжённых диаметров эллипса (6.1), то

(6.7)

Если k и k’ — угловые коэффициенты двух взаимно сопряжённых диа­метров гиперболы (6.3), то

(6.8)

Соотношения (6.7) и (6.8) называются условиями сопряжённости диаметров со­ответственно для эллипса и для гиперболы. Диаметр линии второго порядка, перпендикулярный к сопряжённым хор­дам, называется главным.

7. Привидение уравнений линий второго порядка к простейшему.

Упрощение общего уравнения кривой второго порядка

Задача упрощения уравнения или состоит в том, чтобы в преобразованном уравнении были устранены:

1) член, содержащий произведение текущих координат,

2) члены, содержащие первые степени двух координат или, по крайней мере, одной из них.

В том случае, когда уравнение линии второго порядка содержит произведение текущих координат, упрощение его следует начинать с поворота осей без изменения начала координат и надлежащим выбором угла поворота добиться того, чтобы из преобразованного уравнения был устранен член, содержащий произведение текущих координат. Преобразование координат в этом случае будем вести по формулам

(7.1)

Если после устранения из преобразованного уравнения члена с произведением текущих координат в нем останутся члены с первыми степенями текущих координат, то последующим параллельным переносом осей можно, как это было показано, привести уравнение к каноническому виду.

Координатную систему, полученную в результате поворота первоначальной системы координат, будем обозначать через x1 Oy1 , а систему координат, полученную от параллельного переноса координатной системы x1 Oy1 , — через x2 O1 y2 (см. рис. 7.1)

Упрощение уравнения центральной линии второго порядка

Дано уравнение , определяющее центральную линию второго порядка ( = АС — В 2 ¹ 0 ). Пере­нося начало координат в центр S 0 ; у0 ) этой линии и преобразуя уравне­ние по формулам:

(7.2)

Для вычисления можно пользоваться формулой:

Или

Дальнейшее упрощение уравнения (7.2) достигается при помощи преобра­зования координат

(7.3)

соответствующего повороту осей на угол α.

Если угол α выбран так, что:

(7.4)

то в новых координатах уравнение линии примет вид

(7.5)

где .

Замечание . Уравнение (7.4) позволяет определить , тогда как в формулах (3) участвуют и . Зная , можно найти и по формулам тригонометрии

Между коэффициентами уравнений (1*) и (7.5) существуют важные соотно­шения:

,

которые позволяют определить коэффициенты А’ и С’, не проводя преобразования координат.

Общее уравнение линий второго порядка

Автор: PRIMEXii • Апрель 10, 2021 • Реферат • 1,385 Слов (6 Страниц) • 124 Просмотры

Общее уравнение линий второго порядка

Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям

Найдем сначала уравнение эллипса с центром в точке [pic 1] , оси симметрии которого параллельны координатным осям Ох и Оу и полуоси соответственно равны а и b. Поместим в центре эллипса [pic 2] начало новой системы координат [pic 3] , оси которой [pic 4] и [pic 5] параллельны соответствующим осям Ох и Оу и одинаково с ними направленны (см.рис.41).

В этой системе координат уравнение Рис.41. [pic 6]

эллипса имеет вид [pic 7]

Так как [pic 9] , то в старой системе координат

уравнение эллипса запишется в виде

Аналогично рассуждая, получим уравнение гиперболы с центром в точке [pic 11] и полуосями а и Ь (см. рис. 42):

И, наконец, параболы, изображенные на рисунке 43, имеют соответствующие уравнения.

Уравнение Ac2 + Су2 + 2Dx + 2Еу + F = О

Уравнения эллипса, гиперболы, параболы и уравнение окружности [pic 21] после преобразований (раскрыть скобки, перенести все члены уравнения в одну сторону, привести подобные члены, ввести новые обозначения для коэффициентов) можно записать с помощью единого уравнения вида

где коэффициенты А и С не равны нулю одновременно.

Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка?

Ответ дает следующая теорема.

Теорема 11.2. Уравнение (11.14) всегда определяет: либо окружность (при А=С), либо эллипс (при А • С > 0), либо гиперболу (при А • С

Пример 11.1. Установить вид кривой второго порядка, заданной уравнением [pic 23]

Решение: Предложенное уравнение определяет эллипс [pic 24] . Действительно, проделаем следующие преобразования:

Получилось каноническое уравнение эллипса с центром в [pic 27] и полуосями [pic 28] и [pic 29] .

Пример 11.2. Установить вид кривой второго порядка, заданной уравнением х2 + 10х — 2у + 11 = 0.

Решение: Указанное уравнение определяет параболу (С = 0). Действительно,

Получилось каноническое уравнение параболы с вершиной в точке [pic 32] и [pic 33] .

Пример 11.3. Установить вид кривой второго порядка, заданной уравнением [pic 34] .

Решение: Преобразуем уравнение:

Это уравнение определяет две пересекающиеся прямые [pic 36]

Общее уравнение второго порядка

Рассмотрим теперь общее уравнение второй степени с двумя неизвестными:

Ax2 + 2Вху + Су2 + 2Dx + 2Еу + F == 0. (11.15)

Оно отличается от уравнения (11.14) наличием члена с произведением координат [pic 37] . Можно, путем поворота координатных осей на угол [pic 38] , преобразовать это уравнение, чтобы в нем член с произведением координат отсутствовал.


источники:

http://www.bestreferat.ru/referat-287220.html

http://ru.essays.club/%D0%A2%D0%BE%D1%87%D0%BD%D1%8B%D0%B5-%D0%BD%D0%B0%D1%83%D0%BA%D0%B8/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/%D0%9E%D0%B1%D1%89%D0%B5%D0%B5-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BB%D0%B8%D0%BD%D0%B8%D0%B9-%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%B3%D0%BE-359667.html