Общий интеграл дифференциального уравнения первого порядка это

Определения и понятия теории дифференциальных уравнений

С этой темы мы рекомендуем начинать изучение теории дифференциальных уравнений. В одном разделе мы собрали все основные термины и определения, которые будут применяться при рассмотрении теоретической части. Для того, чтобы облегчить усвоение материала, мы приводим многочисленные примеры.

Дифференциальное уравнение

Дифференциальное уравнение – это уравнение, которое содержит неизвестную функцию под знаком производной или дифференциала.

Обыкновенное дифференциальное уравнение содержит неизвестную функцию, которая является функцией одной переменной. Если же переменных несколько, то мы имеем дело с уравнением в частных производных.

Имеет значение также порядок дифференциального уравнения, за который принимают максимальный порядок производной неизвестной функции дифференциального уравнения.

Обыкновенные дифференциальные уравнения 1 -го, 2 -го и 5 -го порядков:

1 ) y ‘ + 1 = 0 ; 2 ) d 2 y d x 2 + y = x · sin x ; 3 ) y ( 5 ) + y ( 3 ) = a · y , α ∈ R

Уравнения в частных производных 2 -го порядка:

1 ) ∂ 2 u ∂ t 2 = v 2 · ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 , u = u ( x , y , z , t ) , v ∈ R ; 2 ) ∂ 2 u ∂ x 2 — ∂ 2 u ∂ y 2 = 0 , u = u ( x , y )

С порядками ДУ разобрались. Далее мы будем в основном рассматривать обыкновенные дифференциальные уравнения n -ого порядка вида F ( x , y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 или F x , y , d y d x , d 2 y d x 2 , . . . , d n y d x n = 0 , в которых Ф ( x , y ) = 0 — это заданная неявно функция. В тех случаях, когда это будет возможно, неявную функцию мы будем записывать в ее явном представлении y = f ( x ) .

Интегрирование дифференциального уравнения

Интегрирование дифференциального уравнения – это процесс решения этого уравнения.

Решением дифференциального уравнения является функция Ф ( x , y ) = 0 , которая задана неявно и которая обращает данное уравнение в тождество. В некоторых случаях нам нужно будет неявно заданную функцию у выражать через аргумент х явно.

Искать решение дифференциального уравнения мы всегда будем на интервале Х , который задается заранее.

В каких случаях мы будем учитывать интервал Х ? Обычно в условии задач он не упоминается. В этих случаях мы буде искать решение уравнения F ( x , y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) для всех х , при которых искомая функция у и исходное уравнение будут иметь смысл.

Интеграл дифференциального уравнения – это название решения дифференциального уравнения.

Функции y = ∫ x d x или y = x 2 2 + 1 можно назвать решением дифференциального уравнения y ‘ = x .

У одного дифференциального уравнения может быть множество решений.

Функция y = x 3 3 является решением ДУ y ‘ = x 2 . Если мы подставим полученную функцию в исходное выражение, то получим тождество y ‘ = x 3 3 = 1 3 · 3 x 2 = x 2 .

Вторым решением данного дифференциального уравнения является y = x 3 3 + 1 . Подстановка полученной функции в уравнение также превращает его в тождество.

Общее решение ДУ

Общее решение ДУ – это все множество решений данного дифференциального уравнения.

Также общее решение часто носит название общего интеграла ДУ.

Общее решение дифференциального уравнения y ‘ = x 2 имеет вид y = ∫ x 2 d x или y = x 3 3 + C , где C – произвольная постоянная. Из общего интеграла ДУ y = x 3 3 + C мы можем прийти к двум решениям, которые мы привели в прошлом примере. Для этого нам нужно подставить значения С = 0 и C = 1 .

Частное решение ДУ

Частное решение ДУ – это такое решение, которое удовлетворяет условиям, заданным изначально.

Для ДУ y ‘ = x 2 частным решением, которое будет удовлетворять условию y ( 1 ) = 1 , будет y = x 3 3 + 2 3 . Действительно, y ‘ = x 3 3 + 2 3 ‘ = x 2 и y ( 1 ) = 1 3 3 + 2 3 = 1 .

К числу основных задач из теории дифференциальных уравнений относятся:

  • задачи Коши;
  • задачи нахождения общего решения ДУ при заданном интервале Х ;
  • краевые задачи.

Особенностью задач Коши является наличие начальных условий, которым должно удовлетворять полученное частное решение ДУ. Начальные условия задаются следующим образом:

f ( x 0 ) = f 0 ; f ‘ ( x 0 ) = f 1 ; f ‘ ‘ ( x 0 ) = f 2 ; . . . ; f ( n — 1 ) ( x 0 ) = f n — 1

где f 0 ; f 1 ; f 2 ; . . . ; f n — 1 — это некоторые числа.

Особенностью краевых задач является наличие дополнительных условий в граничных точках x 0 и x 1 , которым должно удовлетворять решение ДУ второго порядка: f ( x 0 ) = f 0 , f ( x 1 ) = f 1 , где f 0 и f 1 — заданные числа. Такие задачи также часто называют граничными задачами.

Линейное обыкновенное ДУ n -ого порядка имеет вид:

f n ( x ) · y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )

При этом коэффициенты f 0 ( x ) ; f 1 ( x ) ; f 2 ( x ) ; . . . ; f n ( x ) — это непрерывные функции аргумента х на интервале интегрирования.

Уравнение f n ( x ) · y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x ) будет называться линейным однородным дифференциальным уравнением в том случае, если f ( x ) ≡ 0 . Если нет, то мы будем иметь дело с линейным неоднородным ДУ.

В линейных однородных ДУ коэффициенты f 0 ( x ) = f 0 ; f 1 ( x ) = f 1 ; f 2 ( x ) = f 2 ; . . . ; f n ( x ) = f n могут быть постоянными функциями (некоторыми числами), то мы будем говорить о ЛОДУ с постоянными коэффициентами или ЛНДУ с постоянными коэффициентами. В ЛОДУ с постоянными коэффициентами f ( x ) ≡ 0 , в ЛНДУ с постоянными коэффициентами f ( x ) ненулевая.

Характеристическое уравнение ЛНДУ n -ой степени с постоянными коэффициентами

Характеристическое уравнение ЛНДУ n -ой степени с постоянными коэффициентами – это уравнение n -ой степени вида f n · k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 .

Остальные определения мы будем разбирать в других темах по мере изучения теории.

Дифференциальные уравнения первого порядка (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2

Дифференциальные уравнения первого порядка

Дифференциальным уравнением называется уравнение, связывающее независимую переменную x, искомую функцию y(x) и производную искомой функции.

Символически дифференциальное уравнение можно написать так

.

Неизвестной здесь является функция y, входящая под знак производных (или дифференциалов).

Если искомая функция y(x) есть функция одной независимой переменной, то дифференциальное уравнение называется обыкновенным. В этой главе мы будем рассматривать только обыкновенные дифференциальные уравнения.

Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение.

Например, уравнение есть уравнение первого порядка,

а уравнение — уравнение второго порядка.

Решением дифференциального уравнения называется всякая функция y(x), которая будучи подставленной в уравнение, обращает его в тождество. Решение еще называется интегралом дифференциального уравнения.

Пример

Рассмотрим уравнение .

Функция является решением этого уравнения.

Действительно,

и уравнение обращается в тождество:
.
Решением рассматриваемого уравнения будут и функции

и вообще функции
, где и — произвольные постоянные.
В самом деле

и уравнение обращается в тождество
.

Заметим, что рассматриваемое уравнение имеет бесчисленное множество решений вида: .

Решение дифференциальных уравнений первого порядка

Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную x, искомую функцию y(x) и производную первого порядка искомой функции.

Дифференциальное уравнение первого порядка имеет вид .

Общее и частное решение

Общим решением дифференциального уравнения первого порядка называется решение , зависящее от одной произвольной постоянной C, придавая конкретное значение которой , можно получить решение , удовлетворяющее любому заданному начальному условию .

Равенство вида , неявно задающее общее решение, называется общим интегралом дифференциального уравнения.
Заметим, что в практике чаще всего бывает нужным не общее решение, а так называемое частное решение,отвечающее определенным начальным условиям, вытекающим из условия данной конкретной задачи.
Частным решением называется любая функция , которая получается из общего решения ,если в последнем произвольной постоянной C придать определенное значение . Соотношение называется в этом случае частным интегралом.
Задача отыскания решения дифференциального уравнения y I = f(x, y) , удовлетворяющего заданным начальным условиям y(xo ) = yo, называется задачей Коши.

Теорема Коши
Если функция f(x, y) — правая часть дифференциального уравнения y I = f(x, y) — непрерывна в некоторой замкнутой области D плоскости xOy и имеет в этой области ограниченную частную производную f Iy (x, y), то каждой внутренней точке области D соответствует, и притом единственное, решение, удовлетворяющее начальным условиям.

Пример

Рассмотрим уравнение
.

Общим решением этого уравнения является семейство функций
.

Действительно, при любом значении C эта функция удовлетворяет уравнению: .
Кроме того, всегда можно найти такое значение C, что соответствующее частное решение будет удовлетворять заданному начальному условию.

Найдем, например, частное решение, удовлетворяющее начальному условию y(1)=-2. Подставляя эти значения в уравнение
,
получим
.
Решая это уравнение относительно C получим C = — 3.
Следовательно, искомым частным решением будет функция: Y = X

Это решение можно получить, используя нижеприведенный апплет для построения поля направлений и интегральных кривых для уравнения первого порядка.

С геометрической точки зрения общее решение уравнения первого порядка представляет собой семейство кривых на плоскости xOy, зависящее от одной произвольной постоянной C. Эти кривые называются интегральными кривыми данного дифференциального уравнения.
Частному решению соответствует одна интегральная кривая, проходящая через некоторую заданную точку. Так, в последнем примере общее решение геометрически изобразится семейством парабол, причем каждому значению параметра C будет соответствовать вполне определенная кривая. Частное решение изобразится параболой (рис. 1. ) проходящей через точку Заметим, что задать начальное условие для уравнения первого порядка с геометрической точки зрения означает задать точку , через которую должна пройти соответствующая интегральная кривая.

Решить или проинтегрировать данное дифференциальное уравнение это значит:

а) найти его общее решение или общий интеграл, если не заданы начальные условия,

б) найти частное решение, удовлетворяющее заданным начальным условиям.

Геометрическая интерпретация дифференциального уравнения первого порядка

Пусть дано дифференциальное уравнение, разрешенное относительно производной: .
Это уравнение для каждой точки определяет значение производной , т. е. определяет угловой коэффициент касательной к интегральной кривой, проходящей через эту точку.
Таким образом, рассматриваемое дифференциальное уравнение дает совокупность направлений или, как говорят, определяет поле направлений или поле линейных элементов. Задача интегрирования такого уравнения, с геометрической точки зрения, заключается в нахождении кривых, направление касательных к которым совпадает с направлением поля линейных элементов в соответствующих точках .

Рассмотрим уравнение
.
В каждой точке (x, y), отличной от точки (0,0), угловой коэффициент касательной к интегральной кривой равен отношению , т. е. совпадает с угловым коэффициентом прямой, проходящей через начало координат и точку с координатами (x, y). Очевидно, что интегральными кривыми будут прямые y=Cx, где C — произвольная постоянная, т. к. направление этих прямых всюду совпадает с направлением поля.

Теорема существования и единственности решения дифференциального уравнения.

Рассматривая уравнение первого порядка , разрешенное относительно производной, мы ставили вопрос об отыскании его общего решения и, если задано начальное условие частного решения, удовлетворяющего этому условию.
Возникает вопрос: всегда ли существует частное решение, удовлетворяющее заданному начальному условию и если существует, будет ли оно единственным.
Рассмотрим, например, уравнение
.
Общим решением является функция , а интегральными кривыми — семейство гипербол, причем через каждую точку , не лежащую на оси Oy проходит одна и только одна интегральная кривая, т. е. рассматриваемое уравнение имеет единственное решение, проходящее через точку, не лежащую на оси Oy, но оно не имеет решения, проходящего через точку, взятую на оси Oy.
Этот пример показывает, что не всегда существует решение, удовлетворяющее заданному начальному условию.
В некоторых случаях решение может оказаться не единственным.
Так, например, уравнение

имеет бесконечное множество решений, проходящих через точку (0,0).
В самом деле, функция является общим решением этого уравнения, а при любом значении C прямая проходит через начало координат. На вопрос, при каких условиях для уравнения можно гарантировать существование и единственность решения, удовлетворяющего заданному начальному условию , отвечает следующая теорема.

Теорема.
Пусть функция и ее частная производная непрерывны в некоторой области D на плоскости xOy. Тогда, если точка принадлежит этой области, существует, и притом единственное, решение уравнения , удовлетворяющее начальному условию .

Геометрически это означает, что через каждую точку области D проходит одна и только одна интегральная кривая рассматриваемого уравнения. Данная теорема называется теоремой существования и единственности решения дифференциального уравнения .
Возвращаясь к рассмотренным нами примерам, мы видим, что функции

и

не определены при и, следовательно, не являются непрерывными. Это обстоятельство и привело, в первом случае, к отсутствию решений, проходящих через точки оси Ox , во втором — к нарушению единственности в точке (0,0).

1.1. Уравнения с разделяющимися переменными

Рассмотрим уравнение первого порядка, разрешенное относительно производной:

или
.

Это уравнение можно переписать так:

или в симметричной форме

,

дающей соотношение между переменными x и y и их дифференциалами.

Если в этом уравнении функция P зависит только от x , а функция Q — только от y, то уравнение называется уравнением с разделенными переменными.

Таким образом, уравнением с разделенными переменными называется уравнение вида

.

Решение такого уравнения получается прямым интегрированием. Так как слева стоит сумма дифференциалов двух функций, которая равна нулю, то сумма их интегралов равняется постоянной

.

Пример

Уравнение — уравнение с разделенными переменными. Интегрируя, получим общий интеграл: .
Уравнение вида

называется уравнением с разделяющимися переменными.

Это уравнение может быть приведено к уравнению с разделенными переменными путем деления обеих его частей на выражение

или
.

Общий интеграл полученного уравнения имеет вид:

.

Пример

Дано уравнение
или .
Разделим переменные и интегрируем .

В результате вычисления получим:

.
Это выражение можно записать в иной форме:

т. к. всякое число можно представить в виде логарифма другого.

Таким образом, общий интеграл данного уравнения будет иметь вид

.

1.2. Однородные уравнения первого порядка

Рассмотрим сначала понятие однородной функции двух переменных.
Функция двух переменных называется однородной функцией измерения n, если при любом t справедливо тождество f (tx, ty) = t n f(x, y) .

Пример

Функция есть однородная функция измерения 2, т. к.
.

С понятием однородной функции связано понятие однородного дифференциального уравнения.

называется однородным дифференциальным уравнением первого порядка,
если функции и являются однородными функциями одного и того же измерения.

Для однородного уравнения имеем:

.

Полагая в последних равенствах , получаем

.

Подставив эти выражения в исходное уравнение, получим

и далее .

Для разделения переменных введем новую переменную V = y/x или y = Vx. Так как в этом случае dy = xdV +Vdx, то последнее уравнение принимает вид:

M(1,V)dx + N(1,V)(xdV + Vdx) = 0,

Последнее уравнение является уравнением с разделяющимися переменными x и V, из него определяется V, а затем искомая функция y = Vx.

Если уравнение может приведено к виду: dy/dx = F(x, y) = F(v), где V = y/x, то оно называется однородным дифференциальным уравнением первого порядка.

Для приведения его к уравнению с разделяющимися переменными используется подстановка
V = y/x, отсюда y = Vx и dy/dx = xdV/dx + V.
В итоге получается уравнение с разделяющимися переменными: xdV/dx = F(V) — V, которое и интегрируется.

Пример

Решить уравнение (y 2 — 3x 2)dx + 2xydy = 0, при начальном условии: y(0) = 0 .

Здесь M(x, y) = (y 2 — 3x 2) и N(x, y) = 2xy — однородные функции измерения 2.

Применим подстановку y = vx, при этом dy = xdv +vdx.

Получим: x 2(v 2 — 3)dx + 2x 2v(xdv +vdx) = 0.
Сгруппируем слагаемые x 2(v 2 — 3)dx + 2x 2v(xdv +vdx) = 0 относительно dx и dv и разделим переменные:

.

После интегрирования получим: x 3(v = C или

общий интеграл: x(y 2 — x 2) = C

Используя начальные условия y(0) = 0 имеем = C, отсюда C = 0.

Частное решение данного уравнения: x(y 2 — x 2) = 0

или x = y и x = — y

1.3. Линейные уравнения первого порядка

,

где и

— заданные непрерывные функции, называется линейным дифференциальным уравнением первого порядка.

Если функция , стоящая в правой части уравнения, тождественно равна нулю, т. е. ,
то уравнение называется линейным однородным, в противном случае — линейным неоднородным.
Таким образом, — линейное однородное уравнение, а — линейное неоднородное уравнение.

Рассмотрим два метода интегрирования линейных уравнений.

I метод — метод Бернулли

Для решения уравнения применим подстановку y=UV, причем функцию U=U(x) будем считать новой неизвестной функцией, а функцию мы выберем произвольно, подчинив некоторому условию. Так как при этом , то эта подстановка дает:


и
.

Используя произвольный выбор функции V, подчиним ее условию: .

Разделяя переменные и интегрируя в последнем равенстве, получаем:

.
Поэтому исходное уравнение после подстановки полученной функции V(x) имеет вид: .
Это уравнение также является уравнением с разделяющимися переменными.
Решая его, получаем:
, а после интегрирования .

Возвращаясь к переменной y=UV имеем общее решение линейного неоднородного уравнения:
.

Пример

Решить уравнение .
Здесь .
Имеем:


— общее решение линейного уравнения.

II метод — метод вариации произвольной постоянной — метод Лагранжа

В линейном однородном уравнении переменные разделяются и его общее решение, которое мы обозначим через Y , легко находится:

.

Будем теперь находить общее решение неоднородного линейного уравнения , считая, что общее решение неоднородного уравнения y имеет такую же форму, как и общее решение cоответствующего однородного уравнения Y , но где C есть не постоянная величина, а неизвестная функция от x , т. е. считая, что

.

Дифференцируя это выражение

и подставляя в рассматриваемое неоднородное уравнение, получим:

или .
Откуда находим функцию C(x) :

.

.

Полученное общее решение состоит из двух слагаемых, из которых второе является общим решением соответствующего однородного уравнения, а первое является частным решением неоднородного уравнения, получаемым из общего при .

Пример

Найти общее решение уравнения
.

Интегрируем соответствующее однородное уравнение: .
Считаем C функцией x :
Подставляем в исходное уравнение:
.

1.4. Уравнение Бернулли

Уравнением Бернулли называется уравнение вида dy/dx + P(x)y = Q(x)y n.

При n = 0 или n = 1 уравнение становится линейным, методы интегрирования которого рассматривались в предыдущем пункте.

Есть следующие два способа интегрирования этого уравнения.

1. Уравнение приводится к линейному.

Разделив все члены такого уравнения на y n, получим:

y — n(dy/dx) + P(x)y — n+1 = Q(x).

После подстановки этих выражений в уравнение оно примет вид:

Это линейное уравнение относительно функции z. После его интегрирования возвращаемся к переменной y, подставив вместо z выражение y 1-n. Получим общий интеграл уравнения Бернулли.

2. Уравнение решается по методу Бернулли с подстановкой y = UV, уже использованному для решения линейных неоднородных уравнений.

Пример

Найти общее решение уравнения .


Разделив обе части уравнения на y 2, получим:

.


Введем новую переменную , тогда .


Подставляя в уравнение, получим:

Это линейное уравнение относительно функции z(x) .

Применим метод вариации произвольной постоянной:



Интегрируя по частям, находим ,

следовательно , .

Заменяя теперь z на ,
получим: или .
Это и есть общее решение исходного уравнения.

1.5. Уравнения в полных дифференциалах

Уравнением в полных дифференциалах называется уравнение вида

,

левая часть которого есть полный дифференциал некоторой функции , т. е.

.

Переписав исходное уравнение в виде , заключим, что общий интеграл этого уравнения определяется формулой .

Как известно, полный дифференциал функции выражается формулой

.

.

Необходимое и достаточное условие того, что левая часть уравнения является полным дифференциалом некоторой функции, выражается равенством

.

Функция , входящая в формулу , находится интегрированием функций P(x, y) и Q(x, y) соответственно по x и y при этом вторая переменная считается величиной постоянной (соответственно y или x).

Пример

Проинтегрировать дифференциальное уравнение

.

Для данного уравнения

.

Так как выполнено условие (#), то данное уравнение является уравнением в полных дифференциалах, следовательно,

.

Интегрируя первое из этих уравнений ( y при этом считается постоянным), находим

,

где — функция подлежащая определению.

Дифференцируя по y функцию U(x, y) = C и принимая во внимание значение ,
получаем
,
откуда
.
Подставив выражение для

в равенство
,
найдем
.
В соответствии с формулой

получаем

или
,
где
.

Итак, общий интеграл данного уравнения:

Это уравнение является также однородным и его можно проинтегрировать другим способом.

Найти общее решение или общий интеграл уравнения с разделяющимися переменными

Общий интеграл дифференциального уравнения

Определение и формула общего интеграла дифференциального уравнения

Рассмотрим дифференциальное уравнение первого порядка (1) — \(\ F\left(x, y, y^<\prime>\right)=0 \)

Общий интеграл дифференциального уравнения (1) называется равенством (2)- \(\ \Phi(x, y, C)=0 \)

Если мы дифференцируем равенство (2) по переменной \(\ \mathbf \), при условии, что (3) — \(\ y=y(x) : \frac<\partial \Phi><\partial x>+\frac<\partial \Phi> <\partial x>\cdot y^<\prime>=0 \)

и исключить константу \(\ \mathrm \) из уравнений (2), (3), то получим дифференциальное уравнение, эквивалентное уравнению (1).

В этом случае говорят, что уравнение (1) является дифференциальным уравнением семейства функций (2), зависящих от параметра C.

Примеры решения проблем

Покажите, что функция \(\ y^<2>-x^<2>-C y=0 \) является общим интегралом дифференциального уравнения первого порядка \(\ y^<\prime>\left(x^<2>+y^<2>\right)-2 x y=0 \)

Продифференцируем данную неявную функцию \(\ y^<2>-x^<2>-C y=0 \) по переменной \(\ x \) (не забывая, что у — функция от \(\ \mathbf \), то есть \(\ y=y(x) \)

Из равенства \(\ y^<2>-x^<2>-C y=0 \) выражаем константу \(\ \mathrm \): \(\ C y=y^<2>-x^ <2>\Rightarrow C=\frac-x^<2>> \)

Замените полученную производную на заданное дифференциальное уравнение: \(\ \frac<2 x y>+y^<2>> \cdot\left(x^<2>+y^<2>\right)-2 x y=2 x y-2 x y \equiv 0 \)

Таким образом, мы заключаем, что неявно заданная функция \(\ y=y(x) \): \(\ y^<2>-x^<2>-C y=0 \) является общим интегралом рассматриваемого дифференциального уравнения \(\ y^<\prime>\left(x^<2>+y^<2>\right)-2 x y=0 \)

Что и требовалось доказать

Частный интеграл дифференциального уравнения (1) является общим интегралом (2) этого уравнения для данного (известного) значения константы C.

Например: частичный интеграл для дифференциального уравнения из последнего примера — это функция \(\ y^<2>-x^<2>=0 \)

полученный из общего интеграла этого уравнения для значения \(\ C=0 \)


источники:

http://pandia.ru/text/78/014/6708.php

http://www.homework.ru/spravochnik/obshij-integral-differencialnogo-uravneniya/