Общий метод решения иррациональных уравнений

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Иррациональные уравнения в математике с примерами решения и образцами выполнения

Задача:

В треугольнике ABC (рис. 75):

AD = 2 см, DC = 5 см,
АВ + ВС = 9 см.
Найти BD.

Решение:

Пусть длина отрезка BD равна х см. Тогда

Получилось уравнение, в котором неизвестное входит в подкоренное выражение. Такое уравнение называется иррациональным. Решение этого уравнения приведено на странице 310.

Определение:

Уравнение, в котором неизвестное входит в какое-либо выражение, стоящее под знаком корня, называется иррациональным.

Во многих случаях иррациональное уравнение, как это ниже показано на примерах, может быть преобразовано в рациональное, являющееся его следствием. Но прежде чем показать это на примерах, мы изложим предварительные сведения, необходимые для понимания процесса решения иррациональных уравнений.

1. Всякий корень четной степени из положительного числа, входящий в иррациональное уравнение, мы будем считать, как и раньше, арифметическим. Поясним это. Если А > 0 и в иррациональное уравнение входит , то всегда будем считать, что

Принимая во внимание сказанное выше, мы должны считать, что, например, уравнение

не имеет корней. Действительно,

при
при
при — мнимое число.

Таким образом, никогда не может равняться числу — 1, а это и значит, что уравнение

корней не имеет.

Было бы ошибкой считать число 4 корнем уравнения , так как . Аналогично можно убедиться, что ни одно из следующих уравнений также не имеет корней.

Теорема:

Если обе части уравнения А=В возвысить в квадрат, то полученное уравнение будет иметь своими корнями все корни данного уравнения А = В и корни уравнения А = — В, (Уравнение А = —В будем называть сопряженным уравнению А = В.) Но прежде чем доказывать эту теорему, поясним ее содержание на примере. Рассмотрим уравнение х + 1 = 5 и уравнение, ему сопряженное, т. е. х + 1 = —5. У первого уравнения имеется единственный корень 4, а у второго —6. Возведя левую и правую части уравнения х + 1 = 5 в квадрат, получим, что

Решив это уравнение, убедимся, что его корнями будут числа 4 и — 6, т. е. только корни данного уравнения х + 1 = 5 и сопряженного ему уравнения х + 1 = —5 .

Как раз в этом и заключается смысл сформулированной выше теоремы.

Доказательство:

Уравнение равносильно уравнению , или уравнению . Но. это последнее уравнение удовлетворяется как при А = В, так и при А = — В и никогда больше. Теорема доказана.

Следствие:

Из доказанной теоремы вытекает, что при переходе от уравнения А = В к уравнению потери корней не произойдет, но могут появиться посторонние корни, а именно корни уравнения
А = —В.

Если окажется, что уравнение А = — В не имеет корней, то не появляется и посторонних корней.

Иррациональные уравнения, содержащие только один радикал

Уединив корень, получим:

Возведем обе части этого уравнения в квадрат. В результате получим рациональное уравнение

Решив последнее уравнение, получим, что

Теперь необходимо проверить, являются ли числа 6 и 1 корня-ми данного уравнения. Проверка показывает, что число 6 является корнем уравнения , а число 1 его корнем не является. Мы возводили в квадрат левую и правую части уравнения . Значит, число 1 есть корень сопряженного уравнения, т. е. уравнения

Итак, иррациональное уравнение

имеет лишь один корень, равный числу 6.

Возьмем еще одно уравнение, содержащее только один радикал, а именно:

Здесь корень уже уединен. Поэтому, возведя обе части уравнения в квадрат, получим:

Проверка показывает, что число 105 является корнем данного уравнения. Здесь мы не получили постороннего корня, потому что сопряженное уравнение, т. е. уравнение , корней не имеет.

Примеры:

Проверка показывает, что оба числа 5 и —55 являются корнями уравнения

Значит, сопряженное уравнение, т. е. уравнение

корней не имеет.

Уравнения, содержащие два квадратных радикала

Пример:

Уединим один из корней:

Возведем в квадрат левую и правую части последнего уравнения:

Уединим один оставшийся корень:

Проверкой устанавливаем, что данное уравнение имеет только один корень, равный числу 20.

Пример:

В качестве второго примера решим уравнение

составленное по условиям задачи, поставленной в начале настоящей главы.

Легко убедиться, что оба числа являются корнями уравнения . Но мы знаем, что не всякий корень уравнения, составленного по условиям задачи, обязательно должен являться и решением самой задачи. В данном случае решением задачи будет только положительный корень . Значит, искомая высота BD треугольника ABC будет равна см.

Пример:

Уединим один из корней:

Возведем в квадрат левую и правую части этого уравнения:

Последнее уравнение корней не имеет, ибо его левая часть есть отрицательное число, а правая часть ни при каком значении х не может быть числом отрицательным. Значит, и первоначальное уравнение корней не имеет.

Искусственные приемы решения иррациональных уравнений

Пример:

Примем новое неизвестное и положим, что Тогда и данное уравнение примет вид: ^-3(/ + 2 = 0.

Отсюда

Приняв , получим, что

Приняв затем . получим, что . Оба числа 8 и 1 являются корнями данного уравнения.

Пример:

Положим, что Тогда и Относительно нового неизвестного у данное уравнение примет вид:

Освободившись от корня, получим:

Отсюда

Значение следует отбросить, так как буквой у мы
обозначили который отрицательных значений принимать не может.

Взяв у = 2 и подставив это значение неизвестного у в уравнение получим или Откуда

Числа 0 и 2 являются корнями первоначального уравнения. Других действительных корней данное уравнение не имеет.

Пример:

Подстановкой убеждаемся, что 1 не есть корень данного уравнения. Поэтому, разделив обе части уравнения на получим уравнение

После сокращения последнее уравнение принимает вид:

Обозначив через у, получим:

Составим производную пропорцию, воспользовавшись тем, что сумма членов первого отношения так относится к их разности, как сумма членов второго отношения к их разности. Получим, что

Способ решения иррационального уравнения с помощью системы рациональных уравнений

Решение всякого иррационального уравнения можно свести к решению соответствующей системы рациональных уравнений. Общий метод, позволяющий это сделать, покажем на примерах.

1. Решить уравнение

Пользуясь тем, что

и тем, что получим уравнение

Отсюда 1) аb = 6 и 2) аb = 44.

Теперь остается решить две системы:

Первая система дает а = 2, b = 3 и а = 3, b = 2.
Вторая система действительных решений не имеет.

Пользуясь, например, уравнением и полученными значениями неизвестного а, найдем действительные корни данного иррационального уравнения:

2. Решить уравнение:

или равносильную ей систему:

Отсюда а = 6.

Из уравнения находим, что х = 29.

3. Решить уравнение:

Из последних двух равенств будем иметь:

илн равносильную ей систему:

Пользуясь уравнением и найденными значениями неизвестного а, найдем корни первоначального уравнения:

Дополнение к иррациональным уравнениям и примеры с решением

Уравнения, в которых переменная находится под знаком корня, называются иррациональными. Решение иррациональных уравнений сводится к переходу от иррационального уравнения к рациональному путем возведения обеих частей уравнения в степень, равную показателю степени корня. Если показатель степени четный, то необходимо либо предварительно выписывать ограничения: подкоренное выражение должно быть неотрицательным, выражение, равное арифметическому корню, также должно быть неотрицательным, т. к. в четную степень без приобретения посторонних корней можно возводить только неотрицательные выражения, либо делать проверку полученных решений.

Этот материал взят со страницы решения задач по математике:

Возможно вам будут полезны эти страницы:

Уравнения, содержащие знак модуля

1.Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель радикала — четное число, то подкоренное выражение должно быть неотрицательным; при этом значение радикала также является неотрицательным;

2) если показатель радикала — нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак радикала совпадает со знаком подкоренного выражения.

Рассмотрим уравнение вида

Если то уравнение (1) не имеет корней, так как левая часть уравнения (1) не может принимать отрицательные значения ни при каких значениях .

Если же то при возведении обеих частей уравнения (1) в квадрат получим равносильное уравнение. Таким образом, уравнение (1) равносильно системе

Замечание:

При решении уравнения (1) нет необходимости предварительно находить ОДЗ левой части (1), решая неравенство которое может оказаться довольно сложным. Достаточно найти корни уравнения (2) и, не прибегая к непосредственной подстановке этих корней в уравнение (1), выяснить, какие из найденных корней удовлетворяют неравенству (3). Эти корни, и только они, являются корнями уравнения (1).

2.Из определения модуля (абсолютной величины) числа следует, что

1)

2)

3) если и — произвольные точки числовой оси, то расстояние между ними равно

Пример:

Решение:

Уравнение (4) равносильно системе

Уравнение (5), равносильное каждому из уравнений имеет корни из которых лишь корень удовлетворяет условию (6).

Ответ.

Пример:

Решение:

Возведя обе части уравнения (7) в квадрат, получим уравнение

равносильное (7), так как обе части уравнения (7) неотрицательны. Уравнение (8) равносильно уравнению

Возведя в квадрат обе части уравнения (9), получим уравнение

которое имеет корни

Заметим, что уравнение (11) является следствием уравнения (7), так как Число — корень уравнения (7), а число — посторонний корень для уравнения (7): при левая часть уравнения (7) больше четырех.

Ответ.

В рассмотренном примере можно было сначала перенести один из радикалов в правую часть уравнения (метод уединения радикала), а затем возвести обе части полученного уравнения в квадрат.

Воспользуемся этим приемом при решении следующего примера.

Пример:

Решение:

Применив метод уединения радикала, получим уравнение

равносильное уравнению (12).

Заметим, что нет необходимости находить ОДЗ уравнения (13), но следует обратить внимание на подкоренные выражения. Если ввести новое неизвестное (выполнить замену переменной), полагая , то уравнение (13) примет вид

При (в ОДЗ уравнения (14)) это уравнение равносильно каждому из уравнений

Корни и уравнения (15) удовлетворяют условию и поэтому являются корнями уравнения (14).

Если то откуда Если то откуда

Ответ.

В примерах 1-3 был использован метод возведения обеих частей уравнения в квадрат. В отдельных случаях применяются другие приемы, которые могут оказаться более эффективными.

Пример:

Решение:

Положим тогда и уравнение (16) примет вид

Уравнение (17) равносильно каждому из уравнений

Используя тождество запишем уравнение (18) в виде

Так как то уравнение (18) и равносильное ему уравнение (19) можно записать в виде откуда т. е.

Ответ.

Пример:

Решение:

Полагая преобразуем уравнение к виду

Уравнение (20) имеет корни Если то откуда Если то откуда

Оба найденных корня являются корнями исходного уравнения, так как в процессе решения было использовано (наряду с заменой неизвестного) только преобразование вида при котором получается равносильное уравнение.

Ответ.

Пример:

Решение:

Так как и — это расстояния от искомой точки до точек и соответственно, то из равенства (21) следует, что искомая точка находится на одинаковом расстоянии от точек и . Таким образом, точка — середина отрезка и поэтому

Ответ.

Пример:

Решение:

Полагая получаем уравнение

Если то (23) имеет вид откуда находим

Поскольку при замене на уравнение (23) не меняется, число также является корнем уравнения (23), а корни уравнения (2) — числа и

Ответ.

Пример:

Решение:

Положим тогда уравнение (24) примет вид

Решить уравнение (25) — значит найти все такие точки числовой оси (рис. 8.1), для которых сумма расстояний от каждой из них до точек 1 и 3 равна 6. Заметим, что искомые точки лежат вне отрезка [1,3], так как сумма расстояний от любой точки отрезка до его концов равна 2.

Пусть — искомая точка, лежащая правее точки 3; -расстоя-ние от точки до точки 3, — сумма расстояний от точки до точек 3 и 1. Тогда откуда а точке соответствует число Аналогично, корнем уравнения (25) является точка находящаяся на расстоянии 2 от точки 1.

Таким образом, задача сводится к решению уравнений Первое из них не имеет действительных корней, а второе имеет два корня.

Ответ.

Пример:

Решение:

Функция меняет знак при а функция — при и причем при и Поэтому

а уравнение (26), записанное без знака модуля на промежутках равносильно совокупности следующих систем:

Первой из этих систем удовлетворяют все значения из промежутка второй системе — значение остальные две системы не имеют решений.

Ответ.

Решение иррациональных уравнений

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Способы решения иррациональных уравнений

Муниципальное общеобразовательное учреждение

Способы решения иррациональных уравнений

Выполнила: Егорова Ольга,

Раздел 1. Методы решения иррациональных уравнений…………………………………6

1.1 Решение иррациональных уравнений части С……….….….……………………21

Раздел 2.Индивидуальные задания……………………………………………. ………. 24

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать. Одним из этих видов являются иррациональные уравнения.

Уравнение, содержащее неизвестное (либо рациональное алгебраическое выражение от неизвестного) под знаком радикала, называют иррациональным уравнением. В элементарной математике решения иррациональных уравнений отыскивается в множестве действительных чисел.

Всякое иррациональное уравнение с помощью элементарных алгебраических операций (умножение, деление, возведение в целую степень обеих частей уравнения) может быть сведено к рациональному алгебраическому уравнению. При этом следует иметь в виду, что полученное рациональное алгебраическое уравнение может оказаться неэквивалентным исходному иррациональному уравнению, а именно может содержать «лишние» корни, которые не будут корнями исходного иррационального уравнения. Поэтому, найдя корни полученного рационального алгебраического уравнения, необходимо проверить, а будут ли все корни рационального уравнения корнями иррационального уравнения.

В общем случае трудно указать какой-либо универсальный метод решения любого иррационального уравнения, так как желательно, чтобы в результате преобразований исходного иррационального уравнения получилось не просто какое-то рациональное алгебраическое уравнение, среди корней которого будут и корни данного иррационального уравнения, а рациональное алгебраическое уравнение образованное из многочленов как можно меньшей степени. Желание получить то рациональное алгебраическое уравнение, образованное из многочленов как можно меньшей степени, вполне естественно, так как нахождение всех корней рационального алгебраического уравнения само по себе может оказаться довольно трудной задачей, решить которую полностью мы можем лишь в весьма ограниченном числе случаев.

Виды иррациональных уравнений

Решение иррациональных уравнений четной степени всегда вызывает больше проблем, чем решение иррациональных уравнений нечетной степени. При решении иррациональных уравнений нечетной степени изменение ОДЗ не происходит. Поэтому ниже будут рассматриваться иррациональные уравнения, степень которых является четной. Существует два вида иррациональных уравнений:

1.

2..

Рассмотрим первый из них.

ОДЗ уравнения: f(x) ≥ 0. В ОДЗ левая часть уравнения всегда неотрицательна – поэтому решение может существовать только тогда, когда g(x) ≥ 0. В этом случае обе части уравнения неотрицательны, и возведение в степень 2n дает равносильное уравнение. Мы получаем, что

Обратим внимание на то, что при этом ОДЗ выполняется автоматически, и его можно не писать, а условие g(x) ≥ 0 необходимо проверять.

Примечание: Это очень важное условие равносильности. Во-первых, оно освобождает учащегося от необходимости исследовать, а после нахождения решений проверять условие f(x) ≥ 0 – неотрицательности подкоренного выражения. Во-вторых, акцентирует внимание на проверке условия g(x) ≥ 0 – неотрицательности правой части. Ведь после возведения в квадрат решается уравнение т. е. решаются сразу два уравнения (но на разных промежутках числовой оси!):

1. — там, где g(x) ≥ 0 и

2. — там, где g(x) ≤ 0.

Между тем многие, по школьной привычке находить ОДЗ, поступают при решении таких уравнений ровно наоборот:

а) проверяют, после нахождения решений, условие f(x) ≥ 0 (которое автоматически выполнено), делают при этом арифметические ошибки и получают неверный результат;

б) игнорируют условие g(x) ≥ 0 — и опять ответ может оказаться неверным.

Примечание: Условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решение тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия g(x) ≥ 0 не всегда просто сделать.

Рассмотрим второй вид иррациональных уравнений.

. Пусть задано уравнение . Его ОДЗ:

В ОДЗ обе части неотрицательны, и возведение в квадрат дает равносильное уравнение f(x) = g(x). Поэтому в ОДЗ или

При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую.

Раздел 1. Методы решения иррациональных уравнений

1 метод. Освобождение от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень

Наиболее часто применяемым методом решения иррациональных уравнений является метод освобождения от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень. При этом следует иметь в виду, что при возведении обеих частей уравнения в нечетную степень полученное уравнение, эквивалентное исходному, а при возведении обеих частей уравнения в четную степень полученное уравнение будет, вообще говоря, неэквивалентным исходному уравнению. В этом легко убедиться, возведя обе части уравнения в любую четную степень. В результате этой операции получается уравнение , множество решений которого представляет собой объединение множеств решений: и . Однако, несмотря на этот недостаток, именно процедура возведения обеих частей уравнения в некоторую (часто четную) степень является самой распространенной процедурой сведения иррационального уравнения к рациональному уравнению.

, где — некоторые многочлены. В силу определения операции извлечения корня в множестве действительных чисел допустимые значения неизвестного определяются условиями . Возведя обе части этого уравнения в квадрат, получим уравнение .

После повторного возведения в квадрат уравнение превращается в алгебраическое уравнение .

Так как обе части 1 уравнения возводились в квадрат, может оказаться, что не все корни 2 уравнения будет являться решениями исходного уравнения, необходима проверка корней.

.

Возведя обе части уравнения в квадрат, получим уравнение 5х + 1 = х -1, т. е. уравнение х2 – 7х = 0, являющееся следствием исходного уравнения. Найдем его корни: х1 = 0 и х2 = 7. Подставим найденные числа в исходное уравнение. Пусть х = 0. Тогда левая часть уравнения равна 1, а правая -1. Поскольку 1 ≠ -1, то х = 0 не является корнем исходного уравнения. Пусть х = 7. тогда исходное уравнение обращается в верное числовое тождество 6 = 6. поэтому х = 7 – единственный корень данного уравнения.

Возводя обе части уравнения в куб, получим

Учитывая, что получим уравнение, которое является следствием исходного:(Последнее уравнение может иметь корни, которые, вообще говоря, не являются корнями уравнения ).

Возводим обе части этого уравнения в куб: . Перепишем уравнение в виде х3 – х2 = 0 ↔ х1 = 0, х2 = 1. проверкой устанавливаем, что х1 = 0 – посторонний корень уравнения (-2 ≠ 1), а х2 = 1 удовлетворяет исходному уравнению.

2 метод. Замена смежной системой условий

При решении иррациональных уравнений, содержащих радикалы четного порядка, в ответах могут появится посторонние корни, выявить которые не всегда просто. Чтобы легче было выявить и отбросить посторонние корни, в ходе решений иррациональных уравнений его сразу же заменяют смежной системой условий. Дополнительные неравенства в системе фактически учитывают ОДЗ решаемого уравнения. Можно находить ОДЗ отдельно и учитывать его позднее, однако предпочтительнее применять именно смешанные системы условий: меньше опасность что-то забыть, не учесть в процессе решения уравнения. Поэтому в некоторых случаях рациональнее использовать способ перехода к смешанным системам.

Решить уравнение:

Данное уравнение равносильно системе

Ответ: — единственный корень уравнения.

Решить уравнение:

Данное уравнение равносильно системе

Ответ: уравнение решений не имеет.

3 метод. Использование свойств корня n-ой степени

При решении иррациональных уравнений используются свойства корня n-ой степени. Арифметическим корнем n-й степени из числа а называют неотрицательное число, n-я степень числа которого равна а. Если n – четное(2n), то а ≥ 0, в противном случае корень не существует. Если n – нечетное(2n+1), то а – любое и = — . Функции являются возрастающими.

Свойства корня n-й степени для любого натурального n: Пусть f и g — некоторые функции, Тогда:

1.

2.

3.

4.

5.

Применяя любую из этих формул, формально (без учета указанных ограничений), следует иметь ввиду, что ОДЗ левой и правой частей каждой из них могут быть различными. Например, выражение определено при f ≥ 0 и g ≥ 0, а выражение — как при f ≥ 0 и g ≥ 0, так и при f ≤ 0 и g ≤ 0.

Для каждой из формул 1-5 (без учета указанных ограничений) ОДЗ правой ее части может быть шире ОДЗ левой. Отсюда следует, что преобразования уравнения с формальным использованием формул 1-5 «слева — направо» (как они написаны) приводят к уравнению, являющемуся следствием исходного. В этом случае могут появится посторонние корни исходного уравнения, поэтому обязательным этапом в решении исходного уравнения является проверка.

Преобразования уравнений с формальным использованием формул 1-5 «справа – налево» недопустимы, так как возможно суждение ОДЗ исходного уравнения, а следовательно, и потеря корней.

Решить иррациональное уравнение:

Используя формулы 4 и 5, получим уравнение,

являющееся следствием исходного. Решение этого уравнения сводится к решению совокупности уравнений .

Из первого уравнения этой совокупности находим . Из второго следует, что откуда находим . Таким образом корнями данного уравнения могут быть только числа (-1) и (-2). Проверка показывает, что оба найденных корня удовлетворяют данному уравнению.

Решите уравнение: .

Решение: на основании тождеств первое слагаемое заменить на . Заметить, что как сумма двух неотрицательных чисел левой части. «Снять» модуль и после приведения подобных членов решить уравнение. Так как , то получаем уравнение . Так как и , то и . Поэтому и, значит, . Так как , то и поэтому

4 метод. Введения новых переменных

Другим примером решения иррациональных уравнений является способ введения новых переменных, относительно которых получается либо более простое иррациональное уравнение, либо рациональное уравнение.

Решение иррациональных уравнений путем замены уравнения его следствием (с последующей проверкой корней) можно проводить следующим образом:

1. Найти ОДЗ исходного уравнения.

2. Перейти от уравнения к его следствию.

3. Найти корни полученного уравнения.

4. Проверить, являются ли найденные корни корнями исходного уравнения.

Проверка состоит в следующем:

А) проверяется принадлежность каждого найденного корня ОДЗ исходного уравнения. Те корни, которые не принадлежат ОДЗ, являются посторонними для исходного уравнения.

Б) для каждого корня, входящего в ОДЗ исходного уравнения, проверяется, имеют ли одинаковые знаки левая и правая части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень. Те корни, для которых части какого-либо возводимого в четную степень уравнения имеют разные знаки, являются посторонними для исходного уравнения.

В) только те корни, которые принадлежат ОДЗ исходного уравнения и для которых обе части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень, имеют одинаковые знаки, проверяются непосредственной подстановкой в исходное уравнение.

Такой метод решения с указанным способом проверки позволяет избежать громоздких вычислений в случае непосредственной подстановки каждого из найденных корней последнего уравнения в исходное.

Решить иррациональное уравнение:

.

Множество допустимых значений этого уравнения:

.

Положив , после подстановки получим уравнение

или эквивалентное ему уравнение

,

которое можно рассматривать как квадратное уравнение относительно. Решая это уравнение, получим

.

Следовательно, множество решений исходного иррационального уравнения представляет собой объединение множеств решений следующих двух уравнений:

, .

Возведя обе части каждого из этих уравнений в куб, получим два рациональных алгебраических уравнения:

, .

Решая эти уравнения, находим, что данное иррациональное уравнение имеет единственный корень х = 2 (проверка не требуется, так как все преобразования равносильны).

Решить иррациональное уравнение:

Обозначим 2×2 + 5x – 2 = t. Тогда исходное уравнение примет вид . Возведя обе части полученного уравнения в квадрат и приведя подобные члены, получим уравнение , являющееся следствием предыдущего. Из него находим t = 16.

Возвращаясь к неизвестному х, получим уравнение 2×2 + 5x – 2 = 16, являющееся следствием исходного. Проверкой убеждаемся, что его корни х1 = 2 и х2 = — 9/2 являются корнями исходного уравнения.

Ответ: х1 = 2, х2 = -9/2.

5 метод. Тождественное преобразование уравнения

При решении иррациональных уравнений не следует начинать решение уравнение с возведения обеих частей уравнений в натуральную степень, пытаясь свести решение иррационального уравнения к решению рационального алгебраического уравнения. Сначала необходимо посмотреть, нельзя ли сделать какое-нибудь тождественное преобразование уравнения, которое может существенно упростить его решение.

Множество допустимых значений данного уравнения:. Сделаем следующие преобразования данного уравнения:

Разделим данное уравнение на .

.

Далее, записывая уравнение в виде

, получим:

При а =0 уравнение решений иметь не будет; при уравнение может быть записано в виде

;

при данное уравнение решений не имеет, так как при любом х, принадлежащем множеству допустимых значений уравнения, выражение, стоящее в левой части уравнения, положительно;

при уравнение имеет решение

Принимая во внимание, что множество допустимых решений уравнения определяется условием , получаем окончательно:

При решением этого иррационального уравнения будет .

При всех остальных значениях х уравнение решений не имеет, т. е. множество его решений – пустое множество.

Ответ: При решением уравнения будет . При всех остальных значениях х уравнение решений не имеет.

Решить иррациональное уравнение: .

Решим данное уравнение с помощью тождественных преобразований:

Решение квадратного уравнения системы дает два корня: х1 = 1 и х2 = 4. первый из полученных корней не удовлетворяет неравенству системы, поэтому х = 4.

1) Проведение тождественных преобразований позволяет обходиться без проверки.

2) Неравенство х – 3 ≥0 относится к тождественным преобразованиям, а не к области определения уравнения.

3) В левой части уравнения стоит убывающая функция, а в правой части этого уравнения расположена возрастающая функция. Графики убывающей и возрастающей функций в пересечении их областей определения могут иметь не больше одной общей точки. Очевидно, что в нашем случае х = 4 является абсциссой точки пересечения графиков.

6 метод. Использование области определения функций при решении уравнений

Этот метод наиболее результативен при решении уравнений, в состав которых входят функции в этом случае нужно перенести все члены уравнения в левую часть, рассмотреть функцию и найти ее область определения (f). При этом если Ø, то уравнение решений не имеет, если , то действительные решения данного уравнения находятся среди чисел ; необходимо проверить, какие из них являются решениями данного уравнения; если , то нужно проверить верно ли уравнение на концах промежутка, причем, если а 0, то необходима проверка на промежутках (а;0) и [0;b).

Решить иррациональное уравнение:

Найдем область определения уравнения:

Возведем обе части уравнения в квадрат:

Повторное возведение в квадрат дает: Корни квадратного уравнения . Заметим, что решение исходного уравнения дает два корня, входящих в область определения. Проверка из-за громоздкости корней оказывается гораздо сложнее нахождения самих корней уравнения. Вместе с тем в левой части решаемого уравнения стоит сумма двух возрастающих функций, т. е. функция возрастающая. Она может принимать х ≥ 0,5 значение, равное 4, единственный раз, поскольку при ч = 0,5 левая часть уравнения имеет значение , а с ростом х значение функции возрастает. Очевидно, что х1 не является корней уравнения, так как первый радикал левой части уравнения уже больше 10, а второй радикал положителен.

Ответ:

Решить иррациональное уравнение:

. Рассмотрим функцию и найдем ее область определения D(f): .

Проверим, являются ли эти значения корнями данного уравнения: если х = 1, то и равенство неверно, х = 1 не является корнем уравнения; если, то является корнем данного уравнения.

7 метод. Использование области значений функций при решении уравнений (метод оценки)

Наиболее результативным данный метод является при решении уравнений, в состав которых входят функции, области значений которых ограничены, а именно: .

При каких значениях а уравнение имеет хотя бы один корень.

Рассмотрим функции

Так как , то данное уравнение равносильно системе

Решая первое уравнение системы, получим

Подставим найденное решение во второе уравнение системы

Отсюда следует, что при , данная система уравнений, а значит, и данное уравнение имеет хотя бы один корен.

Ответ: х =

Найдите наименьшее целое значение функции.

Выражаем подкоренное выражение через cos2 x: Находим множество значений подкоренного выражения: так как cos2 x принимает все значения от 0 до 1, то принимает все значения от 1 до 4. Находим множество Е(у) значений функции и выбираем из него наименьшее целое число: принимает все значения от 1 до 2, и Е(у) = [2.5;5]. Наименьшее целое число в Е(у) равно 3.

8 метод. Применение производной при решении иррациональных уравнений

Чаще всего при решении уравнений с помощью метода применения производной используется метод оценки.

Решите уравнение: (1)

Решение: Так как , уравнение (1) можно преобразовать к виду , или (2). Рассмотрим функцию . Это нечетная функция, так как . Поэтому уравнение (2) можно последовательно преобразовать так как: , так как — нечетная функция. Далее, при всех и, следовательно, возрастает. Поэтому уравнение равносильно уравнению , имеющему корень , являющимся корнем исходного уравнения.

Ответ:

Решить иррациональное уравнение:

Область определения функции есть отрезок [2;4]. Найдем наибольшее и наименьшее значение значения этой функции на отрезке [2;4]. Для этого найдем производную функции f(x):

Значение производной обращается в 0 при . Найдем значения функции f(x) на концах отрезка [2;4] и в точке : Значит, Но и, следовательно, равенство возможно лишь при условии откуда . Проверка показывает, что число 3 – корень данного уравнения.

9 метод. Функциональный

На экзаменах иногда предлагают решить уравнения, которые можно записать в виде , где — это некоторая функция.

Например, некоторые уравнения: 1) 2) . Действительно, в первом случае , во втором случае . Поэтому решать иррациональные уравнения с помощью следующего утверждения: если функция строго возрастает на множестве Х и для любого , то уравнения и т. д. равносильны на множестве Х .

Решить иррациональное уравнение: (1)

Функция строго возрастает на множестве R, и для любого . Тогда на основании вышеизложенного утверждения уравнение (1) равносильно уравнению А это уравнение, в сою очередь, равносильно уравнению которое имеет единственный корень Следовательно, и равносильное ему уравнение (1) также имеет единственный корень

Решить иррациональное уравнение: (1)

В силу определения квадратного корня получаем, что если уравнение (1) имеет корни, то они принадлежат множеству Поэтому далее будем рассматривать уравнение (1) на этом множестве. На нем уравнение (1) можно переписать в виде

. (2)

Рассмотрим функцию на множестве Х. Ясно, что строго возрастает на этом множестве для любого . Уравнение (2) можно записать в виде , поэтому на основании известного уже нам утверждения уравнение (2) равносильно на множестве Х уравнению которое имеет единственный корень Следовательно, и равносильное ему на множестве Х уравнение (1) имеет единственный корень

Ответ:

10 метод. Графический

При решении иррациональных уравнений иногда полезно рассмотреть эскиз графиков их правой и левой частей в одной и той же системе координат. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения было очевидно.

При каких значениях a найдутся вещественные x и y, удовлетворяющие уравнению

Решение: Данное уравнение равносильно смешанной системе

Длина отрезка PK равна поэтому окружность, заданная уравнением, и полуплоскость, заданная неравенством, имеют общие точки, если радиус окружности, равный будет больше или равен OP, т. е. . Отсюда найдем a,

Ответ:

Решить графически уравнение:

Для графического решения, преобразуем уравнение к виду:

Теперь ясно, что надо построить графики функций и .

Графиком функции является ветвь параболы, направленная.

влево вдоль оси OX, с вершиной в точке (25; 0).

Построение графика функции можно выполнить в несколько этапов:

1) построить график функции , которым является ветвь параболы, направленная вдоль оси OX вправо, лежащая выше оси OX, с вершиной в точке ;

2) эту ветвь надо перенести параллельно самой себе вдоль оси OY на 2 единицы вниз, тогда получим график функции ;

3) полученную кривую, надо симметрично отразить в оси OX, тогда получится график функции . Графики не имеют точек пересечения, значит, уравнение не имеет решений.

Ответ: корней нет.

1.1 Решение иррациональных уравнений части С

Для решения иррациональных уравнений , т. е. уравнений части С Единого Государственного Экзамена нужно использовать несколько методов сразу.

Решите уравнение:

Решение: Если

Ответ: , , .

Найдите наименьшее целое значение функции .

Решение: . Так как принимает все значения от 0 до 1, то принимает все значения от 1 до 4. Значит, принимает все значения от 1 до 2, и . Наименьшее целое число в равно 3.

Найдите множество значений функции: .

Решение: Так как .

Поэтому .

Так как — убывающая и непрерывная функция, то и.

Следовательно,

Ответ:

При каком целом положительном х значение выражения

ближе всего к -0,7?

1) Преобразовываем выражение к максимально простому виду (к функции y = y(x)).

2) Функцию y = y(x) исследовать на монотонность и найти целые положительные числа, ближайшие к корню уравнения y(x) = -0,7.

3) Произвести отбор среди найденных целых положительных чисел.

1) ОДЗ выражения есть множество По условию х > 0, поэтому можно считать, что При х = 5 знаменатель второго сомножителя обращается в нуль. Значит, x > 5.

Преобразуем числитель второго сомножителя:

Так же преобразуем знаменатель второго сомножителя и получим, что

2) Функция убывает, так как Кроме того Из убывания функции следует, что -0,7 ближе всего или у(18), или у(19).

3) Вычислим расстояние между -0,7 и у(18): .

Так же вычислим расстояние между -0,7 и у(19):

Раздел 2. Индивидуальные задания

1) Укажите промежуток, которому принадлежат нули функции .

2) Найдите наименьшее значение функции .

3) Решите уравнение

4) Найдите область определения функции

5) Найдите сумму корней уравнения = 0.

6) Решите уравнение

7) Решите уравнение . В ответе запишите корень уравнения или сумму корней, если их несколько.

8) Найдите область определения функции .

9) Решите уравнение .

(Если уравнение имеет более одного корня, то в ответе запишите сумму всех его корней).

10) Найдите множество значений функции: .

11) Сколько решений имеет уравнение ?

12) Решите уравнение .

13) Сколько решений имеет система ?

14) Найдите значение выражения , если .

15) Найдите х + у, если .

16) Найдите сумму корней уравнения: .

17) Найдите произведение корней уравнения .

18) Решите уравнение: .

19) Решите уравнение: .

20) Решите уравнение: .

[]


источники:

http://lfirmal.com/irratsionalnyie-uravneniya-zadachi-s-resheniem/

http://pandia.ru/text/78/021/1528.php