Объясните физический смысл уравнения клапейрона

Что нужно знать об уравнении Менделеева-Клапейрона для идеального газа

Что такое идеальный газ

Реальный газ является сложной системой, поэтому физики рассматривают его простейшую физическую модель — идеальный газ.

Физическая модель — упрощенная копия исследуемой реальной системы, которая отражает ее наиболее существенные свойства.

Физические модели получили широкое применение при моделировании.

Во внимание принимаются лишь те молекулы, учет которых необходим для объяснения закономерностей поведения реального газа в определенных интервалах давления и температуры.

В молекулярно–кинетической теории идеальным газом называют газ, состоящий из молекул, взаимодействие между которыми настолько мало, что им можно пренебречь.

То есть, мы предполагаем, что средняя кинетическая энергия молекул идеального газа во много раз больше потенциальной энергии их взаимодействия.

При достаточно большом разрежении, т.е. когда среднее расстояние между молекулами во много раз больше их размеров, реальный газ ведет себя почти так же как идеальный.

В данном случае мы можем пренебречь силами притяжения между молекулами.
Силы отталкивания проявляются в течение ничтожно малых промежутков времени, когда молекулы сталкиваются друг с другом.

Идеальный газ бывает:

  • одноатомный (пример:He, Ar);
  • двухатомный (пример: H 2 , O 2 );
  • многоатомный (пример: C O 2 , воздух).

Свойства идеального газа

  • расстояние между молекулами намного больше самих молекул, поэтому взаимодействие между ними ничтожно мало, им можно пренебречь;
  • размеры молекул несущественны;
  • молекулы представляют собой упругие шары;
  • их движение подчиняется законам Ньютона;
  • силы отталкивания возникают только при упругом соударении;
  • давление газа на стенки сосуда оказывается за счет ударов молекул газа;
  • молекулы движутся хаотично, т.е. все направления равноправны.

Макроскопические параметры идеального газа

Макроскопические параметры состояния газа — физические величины, характеризующие состояние макроскопических тел в целом, без учета их молекулярного строения.

Всего величин 3:

  • T — температура, единица измерений — [К];
  • V — объем, единица измерений — [ м 3 ] ;
  • P — давление, единица измерений — [Па].

Определение 3

Процессы, которые протекают, когда один из данных параметров неизменен, называют изопроцессами.

Газовым законом называют количественную зависимость между двумя параметрами при определенном значении третьего.

Абсолютный нуль — предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю при неизменном давлении.

Уравнение Менделеева-Клапейрона

В 1834 году Эмиль Клапейрон — французский физик и инженер — проанализировав уже ранее открытые газовые законы, вывел уравнение, названное в его честь.

В 1874 Д. И. Менделеев объединил его с законом Авогадро, образуя объем Vm и отнеся его для 1 моля, вывел уравнение состояния идеального газа.

p V = m M R T — для произвольной массы газа.

  • p — давление (Па);
  • V — объем ( m 3 );
  • m — масса (кг);
  • M — молярная масса (кг/моль);
  • R — универсальная газовая постоянная: R = 8 , 31 Д ж / ( м о л ь * К ) ;
  • T — температура (К);
  • k — постоянная Больцмана: k = 1 , 38 * 10 — 23 Д ж * K — 1 ;
  • N A — постоянная Авогадро.

Киломоли всех веществ содержат одинаковое количество молекул, равное числу Авогадро: N A = 6 , 02 * 10 2 3 .

Смысл уравнения Менделеева-Клайперона — это зависимость между параметрами идеального газа.

Является основной формулой для решения задач на термодинамику.

Уравнение состояния идеального газа позволяет вычислить его плотность при различных условиях:

d = p M R T ,
где d — плотность.

Вывод уравнения Менделеева–Клапейрона

Представим вывод формулы с пояснением:

Связываем две данные формулы.

В формулу p V T = K N

подставляем N = m N A M .

p V T = m M N A k

Конечный вид формулы:

Для более краткой записи T можно перенести в правую часть формулы, а m M заменить на v — количество вещества.

Предлагается выбрать более удобную для себя форму записи.

Объясните физический смысл уравнения клапейрона

Уравнение Менделеева-Клапейрона — уравнение состояния для идеального газа, отнесенное к 1 молю газа. В 1874 г. Д. И. Менделеев на основе уравнения Клапейрона объединив его с законом Авогадро, используя молярный объем Vm и отнеся его к 1 молю, вывел уравнение состояния для 1 моля идеального газа:

pV = RT , где R — универсальная газовая постоянная,

R = 8,31 Дж/(моль . К)

Уравнение Клапейрона-Менделеева показывает, что для данной массы газа возможно одновременно изменение трех параметров, характеризующих состояние идеального газа. Для произвольной массы газа М, молярная масса которого m: pV = (М/m) . RT. или pV = NАkT,

где NА — число Авогадро, k — постоянная Больцмана.

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из параметров — давление, объем или температура — остается постоянным, а изменяются только остальные два и получить теоретически газовые законы для этих условий изменения состояния газа.

Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.

Изотермический процесс — процесс изменения состояния системы при постоянной температуре. Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется. Это закон Бойля — Мариотта.

Для того, чтобы температура газа оставалась в процессе неизменной, необходимо, чтобы газ мог обмениваться теплотой с внешней большой системой — термостатом. Роль термостата может играть внешняя среда (воздух атмосферы). Согласно закону Бойля-Мариотта, давление газа обратно пропорционально его объему: P1V1=P2V2=const. Графическая зависимость давления газа от объема изображается в виде кривой (гиперболы), которая носит название изотермы. Разным температурам соответствуют разные изотермы.

Изобарный процесс — процесс изменения состояния системы при постоянном давлении. Для газа данной массы отношение объема газа к его температуре остается постоянным, если давление газа не меняется. Это закон Гей-Люссака. Согласно закону Гей-Люссака, объем газа прямо пропорционален его температуре: V/T=const. Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Изохорный процесс — процесс изменения состояния системы при постоянном объеме. Для данной массы газа отношение давления газа к его температуре остается постоянным, если объем газа не меняется. Этот газовый закон Шарля. Согласно закону Шарля, давление газа прямо пропорционально его температуре: P/T=const. Графически эта зависимость в координатах P-Т изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Закон Шарля не соблюдается в области низких температур, близких и температуре сжижения (конденсации) газов.

Итак, из закона pV = (М/m) . RT выводятся следующие законы:

p = const => V/T = const — закон Гей — Люссака .

V= const => p/T = const — закон Шарля

Если идеальный газ является смесью нескольких газов, то согласно закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Парциальное давление — это такое давление, которое производил бы газ, если бы он один занимал весь объем, равный объему смеси.

Некоторых, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро NA = 6,02·10 23 ? Значение числа Авогадро было экспериментально установлено только в конце XIX – начале XX века. Опишем один из таких экспериментов.

В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10 -4 атм (при температуре 27 о С). Изменением массы радия за год можно пренебречь. Итак, чему равна NA?

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

Запишем уравнение Клапейрона-Менделеева PV = nRT и заметим, что число молей гелия n = N/NA. Отсюда:

NA = NRT = 5,83 . 10 17 . 0,0821 . 300 = 6,02 . 10 23

PV 7,95 . 10 -4 . 3 . 10 -2

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

Конспект по теме «Уравнение Клапейрона-Менделеева»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

№24. Уравнение Клапейрона-Менделеева. Уравнение состояния идеального газа. Молярная газовая постоянная.

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом .

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клапейрона.

Уравнение Клапейрона можно записать в другой форме.

Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.

Ее численное значение в СИ R = 8,31 Дж/моль·К

называется уравнением состояния идеального газа.

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре T находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV=RT для нагретого газа: p (V + ΔV ) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A.

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Из уравнения состояния вытекает связь между давлением, объемом и температурой идеального газа, который может находиться в двух любых состояния.

Если индексом 1 обозначить параметры, относящиеся к первому состоянию, а индексом 2 – ко второму состоянию, то согласно уравнению состояния для газа данной массы

= и =

Правые части равны, следовательно, равны и левые

= = const

Это уравнение называется уравнением Клапейрона

Процессы, при которых один из параметров состояния газа остается постоянным называют изопроцессами.

Газовые законы – это законы, описывающие изопроцессы в идеальном газе.

Газовые законы были открыты экспериментально, но все они могут быть получены из уравнения Менделеева-Клапейрона.

Рассмотрим каждый из них.

Изотермический процесс – процесс перехода идеального газа из одного состояния в другое без изменения температуры.

Закон, описывающий связь между параметрами газа при таком процессе, называется закон Бойля-Мариотта в честь двух учёных, практически одновременно выведших его: англичанина Роберта Бойля и француза Эдма Мариотта (рис. 2). Запишем его:

Получаем: для любых различных состояний газа, или же просто:

— закон Бойля-Мариотта

Из этого закона, очевидно, следует обратно пропорциональная связь давления и объёма: при увеличении объёма наблюдается уменьшение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть P и V, имеет следующий вид и называется изотермой:

Разным постоянным температурам соответствуют различные температуры.

Изотермическим процессом приближенно можно считать процесс медленного сжатия воздуха или расширение газа под поршнем насоса при откачке его из сосуда.

Изобарный (или изобарический) процесс – процесс перехода идеального газа из одного состояния в другое при постоянном значении давления.

Впервые такой процесс рассмотрел французский учённый Жозеф-Луи Гей-Люссак, поэтому закон носит его имя.

Получаем: для любых различных состояний газа, или же просто:

— закон Гей-Люссака

Из этого закона очевидно следует прямо пропорциональная связь между температурой и объёмом: при увеличении температуры наблюдается увеличение объёма, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и V, имеет следующий вид и называется изобарой

Следует обратить внимание на то, что работая с абсолютной шкалой температур, на графике присутствует область, близкая к абсолютному нулю температур, в которой данный закон не выполняется. Поэтому прямую в области, близкой к нулю, следует изображать пунктирной линией.

Изохорный (или изохорический) процесс – процесс перехода идеального газа из одного состояния в другое при постоянном значении объёма .

Процесс рассмотрен впервые французом Жаком Шарлем, поэтому закон носит его имя. Запишем закон Шарля:

Получаем: для любых различных состояний газа, или же просто:

— закон Шарля

Из этого закона очевидно следует прямо пропорциональная связь между температурой и давлением: при увеличении температуры наблюдается увеличение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и P, имеет следующий вид и называется изохорой

В районе абсолютного нуля для графиков изохорного процесса также существует лишь условная зависимость, поэтому прямую также следует доводить до начала координат пунктиром.

Стоит обратить внимание, что именно такая зависимость температуры от давления и объёма при изохорных и изобарных процессах соответственно определяет эффективность и точность измерения температуры с помощью газовых термометров.

Интересен также тот факт, что исторически первыми были открыты именно изопроцессы, которые, как мы показали, являются частными случаями уравнения состояния, а уже потом уравнения Клапейрона и Менделеева-Клапейрона. Хронологически сначала были исследованы процессы, протекающие при постоянной температуре, затем при постоянном объёме а последними – изобарические процессы.

Теперь для сравнения всех изопроцессов мы собрали их в одну таблицу Обратите внимание, что графики изопроцессов в координатах, содержащих неизменяющийся параметр, собственно говоря, и выглядят как зависимость константы от какой-либо переменной.

До какой температуры нужно изобарически охладить некоторую массу газа с начальной температурой 37º C , чтобы объем газа уменьшился при этом на одну четверть?

Изобарный процесс описывается законом Гей-Люссака:

Газ нужно охладить до температуры 233К

В закрытом сосуде находится газ под давлением 200 кПа. Каким станет давление газа, если температуру повысить на 30%?

Так как сосуд с газом закрытый, объем газа не меняется. Изохорный процесс описывается законом Шарля:

Ответ Давление газа станет равным 260 кПа.

Задание 3 Представить этот цикл в координатах ( p , T ) и ( V , T )

* Как будет выглядеть график данного процесса в координатах P-V?


источники:

http://www.sites.google.com/site/opatpofizike/uravnenie-mendeleeva-klapejrona

http://infourok.ru/konspekt-po-teme-uravnenie-klapejrona-mendeleeva-5778194.html