Очистка воды от примесей уравнение

Современные способы и методы очистки воды

Системы водочистки являются неотъемлемой частью современной жизни и практически все потребители (от частных лиц до предприятий) нуждаются в качественной и правильно подготовленной воде.

Реализованные в них методы и технологии бывают разными, с особенностями каждого варианта стоит познакомиться заранее.

Какие существуют по принципу действия?

В зависимости от принципа действия выделяют такие способы очистки воды как:

  • Физические (грубая механическая чистка).
  • Химические (смешение воды с реагентами).
  • Физико-химические (сложные комплексные мероприятия).
  • Биологические (воздействие живых микроорганизмов).

Физические методы

Данные методы предназначены для очищения воды от твердых крупнофракционных частиц (чаще всего – нерастворимых).

Они успешно задействуются на этапах первичной и грубой очистки и в разы реже – при глубоких и тонких воздействиях.

Среди главных физических методов выделяют:

  • Процеживание – очищение жидкостей от крупнофракционных посторонних включений при проходе через ячеистые прослойки (сетки, решетки, полипропиленовую мешковину). К преимуществам этого метода относят простоту и эффективное улавливание крупного мусора, к минусам – потребность в частой промывке фильтрующих элементов, пропускание патогенных микроорганизмов, солей и любых мелких нежелательных примесей.
  • Отстаивание – осаждение посторонних фракций под действием собственного веса вниз с последующим отбором более чистой воды. Этот метод используются как на предварительных, так и на промежуточных этапах водоподготовки, его производительность существенно ограничена временем и объемами отстойников.
  • Фильтрование – схожий с процеживанием, но более совершенный метод, позволяющий очищать воду от ненужных примесей с разным размером фракций (минимальный порог – до микронов) при прохождении через пористый фильтрующий слой. Метод активно используется в быту и на производстве, из всех физических видов он считается самым эффективным.
  • УФ-дезинфекция – обработка предварительно очищенной от крупных фракций воды УФ-лучами с длиной волн в пределах 200-400 нм с целью обеззараживания. Состав и физические свойства жидкости этот метод не меняет.

Химические

Эти методы ценятся за эффективность и высокую производительность.

Исходя из вида протекающих реакций выделяют такие химические методы водоочистки как:

  1. Нейтрализация – выравнивание PH-баланса воды за счет добавления особых реагентов (аммиачной воды, гидроксидов калия или натрия, кальцированной соды) или ее пропускании через кислые газы. Чаще всего к этому методу обращаются при регенерации промышленных стоков, забираемая из скважин или водоемов вода изначально имеет нейтральную среду и корректировке баланса не нуждается.
  2. Окисление – обезвреживание токсичных водных растворов и хлорирование воды при добавлении активных окислителей. Несмотря на высокую эффективность (микроорганизмы убиваются быстро и надолго) метод считается опасным для здоровья человека.
  3. Очистку восстановлением. Данный метод выбирается при высокой доли легко восстанавливаемых веществ в исходной воде или стоках. При его выборе из воды удаляются ряд простых и переходных металлов и минералов (хрома, ртути или мышьяка) и их соединений.

Физико-химические

Данная группа представлена комплексными методами с широким спектром применения, задействуемыми на любых этапах очистки и водоподготовки.

Очистка воды при их выборе осуществляется самыми разными способами, включая воздействие растворенных газов, тонкодисперсных сред и изменение ионного состояния молекул.

Особенности наиболее востребованных физико-химических методов изложены в таблице:

НаименованиеКратное описание методаОптимальное применение/ возможные ограничения
ФлотацияОтделение и подъем твердых гидрофобных частиц при пропускании сквозь толщу воды пузырьков воздуха или других инертных газов. Формируемая на поверхности пена или прослойка легко удаляется механическими способами.Очистка жидкостей от нефтепродуктов и масел, удаление твердых примесей при низкой эффективности других методов.
СорбацияИзбирательная фильтрация ненужных примесей при поверхностном или объемном прохождении воды через материалы с пористой структурой (силикагели, уголь и их аналоги). Используемые сорбенты могут быть восстанавливаемыми или утилизируемыми после потери фильтрационных свойств.Удаление ПАВ, пестицидов, фенолов, процессы доочистки.
ЭкстракцияЗаливка в очищаемую воду мало- или несмешиваемых веществ, растворяющих грязь, с последующим активным перемешиванием, отстаиванием и разделением разнофазных сред.Удаление органический соединений, включая фенолы, регенерация стоков.
ИонообменОбмен ионами между очищаемой водой и природными (цеолиты, сульфоугли) или искусственными (синтетические смолы) ионитами.Умягчение воды/ метод не предназначен для бытовой очистки больших объемов сильнозагрязненной воды.
ЭлектродиализОчищаемая вода последовательно проходит камеры с ионоселективными мембранами и электродами постоянного тока. В первых камерах вода избирательно обессоливается, в крайних – накапливает концентрат солей с последующим разделением.Обессоливание и удаление нежелательных ионов. Регенерация стоков на химических предприятиях.
Обратный осмосВода пропускается через мембраны с микроскопическими ячейками под избыточным гидростатическим давлением с последующей утилизацией выделенного загрязненного раствора.Обессоливание, отделение нежелательных микроорганизмов, растворенных газов и коллоидных веществ.
Термические методыСуть данных метолов состоит в получении дистиллята или максимально очищенной воды после ее выпаривания, вымораживания или термического окисления (распыление и пропускание через высокотемпературные продукты сгорания).Нейтрализация или удаление токсичных или слабо разлагающихся примесей.

Биологические

Эти методы преимущественно задействуются при очищении стоковых вод и базируются на использовании живых организмов.

К последним относят как бактерии (окисляющие и разрушающие токсичные и азотосодержащие соединения, поглощающие фосфаты), простейшие грибы и водоросли, так и многоклеточные (черви, насекомые).

Водоочистка биологическими методами проводится в:

  • Естественных или искусственных водоемах, очищающих сравнительно небольшие объемы воды со средней степенью загрязненности при минимуме усилий и трат.
  • Биофильтрах – специальных сооружениях с фильтрующей прослойкой из аэробных микроорганизмов с естественным или принудительным воздухообменом.
  • Аэротенках – сложных автоматизированных комплексах с принудительной аэрацией.
  • Метатенках – устройствах анаэробного брожения для переработки концентрированных стоковых осадков.

Современные технологии очищения

В современных системах водоподготовки приведенные методы используются в комплексе.

Ярким примером служат многоступенчатые бытовые фильтры с механическими предфильтрами, ионообменными или сорбционными картриджами и обратноосмотическими мембранами. Такие установки обеспечивают полноценную подготовку питьевой воды вне зависимости от ее исходных параметров.

К инновационным тенденциям в сфере водоподготовки относят:

  • Отказ от метода хлорирования в пользу озонирования (окисление жидким кислородом) и/или УФ-обработки.
  • Использование ультрафильтров и нанофильтрационных мембран с пониженной селективностью.
  • Вывод взвесей и растворенных органических примесей с помощью электроприборов фотокатализации.

При всех своих преимуществах такие технологии нельзя назвать бюджетными, соответствующие фильтры, мембраны и другие расходные материалы обходятся дорого и в быту не окупаются.

Проверенные новые методы (ионообмен, обратный осмос, многоступенчатое исполнение фильтра), наоборот, становятся более доступными для частных лиц.

Фильтрация на предприятиях

Взаимосвязь между областью использования и требуемым типом системы водоподготовки отражена в таблице:

Отрасль производстваТребуемые функции основной линии подготовки
МеталлургияОбессоливание
Пищевая промышленностьОбеспечение ионного обмена, обеззараживание, умягчение
Добыча и переработка нефти и газаИсключение посторонних примесей, обезжелезивание, обратный осмос
Энерго- и тепло- и водоснабжениеОбессоливание, УФ-фильтрация, хлорирование или озонирование
ФармацевтикаОбратный осмос, дистилляция

В целях экономии средств приведенные методы реализуются в комплексе с механическим фильтрованием.

Отдельные требования выдвигаются к системам переработки стоков предприятий химической или металлургической отрасли, отбираемый концентрат может быть ценным или нуждаться в обязательной утилизации.

Переработка стоков

Полный цикл переработки стоков на производстве и в общественных линиях включает:

  1. Подачу стоков на усреднитель при необходимости разбавления.
  2. Отстаивание механическим способом.
  3. Основную чистку (активное использование живых организмов).
  4. Глубокую чистку (удаление всех посторонних примесей с помощью обратноосмотических мембран или тонких фильтров).
  5. Обеззараживание (УФ-обработка, хлорирование, озонирование).

Выделяемый на 2, 3 и 4 стадиях осадок в обязательном порядке регенерируется или утилизируется. Эти процессы происходят в метатенках, отжимных или сушильных аппаратах.

К дорогостоящим физико-химическим методам прибегают лишь при повышенных требованиях к чистоте состава или при низкой результативности других способов.

Бытовое очищение стоков требует меньше усилий. Владельцы индивидуальных домов, но подключенных к канализационным сетям используют септики (как с днищем, так и без), сорбенты или коагулянты.

Более подробно об очистке сточных вод читайте здесь.

Удаление тяжелых металлов

Потребность в принятии дополнительных мер возникает при отклонении ПДК тяжелых металлов в воде от санитарно-гигиенически норм. Чаще всего такая ситуация наблюдается при близости скважины к септику или попадании этих веществ извне (осадки, протекание зараженных грунтовых вод, контакт с металлически фитингами).

Для удаления этих веществ в быту и промышленности используются следующие химические и физико-химические методы:

Тип металлаДопустимая концентрация в воде, не более мг/лРекомендуемый метод очистки воды
Марганец и железо0,1Ионообмен, аэрация с последующей подачей в засыпной фильтр с каталитическим зарядом, окисление гипохлоритом натрия, дозированная подача сильнодействующих окислителей
Сероводород0,01, вещество очень токсичноОкисление, выветривание, насыщение кислородом
Свинец0,03Обратный осмос, окисление и восстановление
Ртуть0,001Обратный осмос, а также окисление и восстановление
Хром0,05Окисление, обратный осмос и восстановление
Никель0,1Окисление и восстановление

Системы обратного осмоса при несомненной эффективности редко используются из-за дороговизны и ускоренного использования ресурсов мембран.

Заключение

Приведенные методы непрерывно совершенствуются и дополняют друг друга, при выборе конкретного варианта стоит ознакомиться с их особенностями и возможными ограничениями заранее.

Ни один из методов, который существует, нельзя назвать универсальным, при правильной организации водоподготовки они задействуются в комплексе.

Вне зависимости от выбранного метода к потребителю или на промышленные объекты подается вода с контролируемыми параметрами.

Химия очистки воды, химические реакции и реагенты

ТОВАРЫ

Блок автоматического дозирования реагентов предназначен для химической обработки воды. Основные элементы установки — насос-дозатор Tekna, импульсный счетчик воды.

7 типов фильтров от железа — 7 преимуществ. Цена в СПб

  1. Сапфир-Br/м — ручное управление, низкая цена, энергонезависимость,
  2. Сапфир-Br/нс — ручное управление, энергонезависимость, нижний слив для консервации на зиму для дач, корпус — пищевая нержавейка
  3. Сапфир-Br/в — ручное управление, низкая цена, энергонезависимость, для водопровода
  4. Сапфир-Br-А/р — автоматическое управление, клапан Runxin, низкая стоимость,
  5. Сапфир-Br-А/л — автоматическое управление, клапан Logix обслуживаемый, срок службы 10-12 лет,
  6. Сапфир-Br-А/к — автоматическое управление, клапан Clack обслуживаемый, срок службы 10-12 лет, для водопровода
  7. Сапфир-Br-А/нс — автоматическое управление, клапан Logix обслуживаемый, корпус — нерж сталь, легко мыть поверхность, для чистых производств

Ионообменные фильтры предназначены для удаления из воды ионов, концентрация которых превышает нормативы. Чаще всего это ионы кальция, магния, железа, марганца, органических и других примесей.

1. Реакции окисления

Такие примеси, как органические вещества, ионы металлов в низших степенях окисления, а также бактерии, легко удаляются (обезвреживаются) химическими методами очистки воды. Рассмотрим наиболее часто применяемые реагенты, их достоинства и недостатки, а также характерные химические реакции в процессах очистки воды.

Хлор, Cl2

Хлорирование является наиболее распространенным методом окисления и обеззараживания (дезинфекции) воды. В процессе хлорирования вода практически полностью освобождается от железа, под воздействием хлора легко разрушаются и гуматы, и лигно-гуминовые вещества, и другие органические соединения железа (Fe 2+ ), переводя последнее в легкогидролизуемые соли трехвалентного железа, которые быстро выпадают в осадок.

Хлор также легко окисляет марганец (Mn 2+ ), различного вида органические соединения, сероводород. Основной недостаток данного метода – сложность транспортирования и хранения больших объемов жидкого и высокотоксичного хлора. Поэтому в качестве альтернативы чистому хлору используют водные растворы гипохлоритов, и чаще всего для окисления и обеззараживания воды применяют гипохлорит натрия.

Гипохлорит натрия, NaOCl

Гипохлорит натрия позволяет осуществлять безопасное хлорирование очищаемой воды, поэтому гипохлорит натрия можно назвать «мягким» хлорирующим агентом. Обычно, гипохлорит натрия получают в виде концентрированного раствора пропусканием хлора через водный раствор гидроокиси натрия. Другим способом является электрохимический способ получения NaOCl . Как и чистый хлор, гипохлорит переводит железо (Fe 2+ ) в железо (Fe 3+ ):

2 Fe(HCO3)2 + NaOCl + H2O = 2 Fe(OH)3 (осадок) + 4 CO2 (газ) + NaCl

Гипохлорит натрия также окисляет марганец (Mn 2+ ), органику, сероводород и обеззараживает воду. Удобен в применении как в промышленных масштабах, так и для установок водоочистки индивидуального пользования.

Кислород воздуха, О2

Самый распространенный и доступный реагент для окисления, однако он имеет недостаточную химическую активность при нормальных условиях, поэтому ограниченно используется в водоочистке. Но есть примеси, удаление которых сравнительно легко окисляется кислородом – это железо (Fe 2+ ) и марганец (Mn 2+ ).

Взаимодействие этих примесей в низших степенях окисления с кислородом воздуха переводит их в окисленную форму, которая легко (особенно в присутствии каталитических систем) взаимодействует с водой (гидролизуется) и переходит в малорастворимые соединения, которые выпадают в осадок. Частички осадка укрупняются и накапливаются на поверхности частиц засыпного материала в фильтрах обезжелезивателях, а затем легко удаляются простой обратной промывкой фильтра.

Озон, О3

Озон близок к кислороду, но гораздо более химически активен и при этом не привносит в воду посторонние химические вещества. Использование озона позволяет наряду с обеззараживанием достигнуть обесцвечивания воды, окисления железа и марганца, устранить посторонние привкусы и запахи воды. Стоит отметить очень высокую скорость реакции, даже по сравнению с таким окислителем, как хлор, и возможность получение озона на месте использования.

Основной недостаток – большой удельный расход электроэнергии, потребляемый озонаторами, а также сложность и достаточно высокая стоимость оборудования.

Перманганат калия (марганцовокислый калий, марганцовка), KMnO4

Перманганат калия (всем известная аптечная марганцовка) широко используется в водоподготовке как окислитель железа и марганца. Дозируется либо путем введения в трубопровод, подводящий исходную воду в фильтр обезжелезиватель, либо подачей раствора перманганата на стадии регенерации загрузки в фильтрах -обезжелезивателях.

Однако, слив воды при регенерации фильтров в локальные станции биологической очистки сточных вод недопустим, так как может привести к гибели бактерий, перерабатывающих канализационные стоки.Марганцовокислый калий иногда применяется в сочетании с гипохлоритом натрия.

К недостаткам перманганата калия следует отнести то, что он является достаточно дорогим реагентом, а кроме того существует опасность его передозировки, поэтому не исключена возможность вторичного загрязнения воды опасными для здоровья человека соединениями марганца.

2. Реакции ионного обмена

Ионный обмен используется для замещения ионов вредных примесей воды на безвредные. Различают анионообменный и катионообменный способы очистки воды. Наиболее часто катионный обмен применяют для снижение жесткости воды, а анионный обмен — для улавливания анионов слабых органических кислот (органики — продуктов естественной трансформации в земной коре древесины и растительных остатков). Реагентами в процессах ионного обмена являются специальные материалы — ионообменные смолы.

После насыщения ионообменных смол ионами вредных примесей требуется проводить их регенерацию растворами реагентов. В процессах водоподготовки для регенерации ионообменных смол чаще всего используется раствор пищевой соли. При этом происходит обратный процесс ионного обмена: ионы вредных примесей замещаются ионами Na + — при катионном обмене и ионами Cl — — при анионном обмене. Фильтры ионного обмена легко масштабируются, поэтому производительность этого метода практически не ограничена.

Более подробно об ионитах читайте на страничке ионообменные смолы.

3. Реакции нейтрализации

Реакция нейтрализации с применением подщелачивающих либо подкисляющих веществ также используется для очистки воды. В качестве подщелачивающих веществ чаще всего используют разбавленный раствор каустической соды (едкого натра) NaOH или пищевой соды (бикарбоната натрия) Na2HCO3.

В качестве подкисляющих веществ обычно применяют растворы слабых органических кислот, например, лимонной кислоты или разбавленный раствор минеральной кислоты, например, серной. Как правило, этим методом корректируют кислотно-щелочной баланс, нарушения которого, например, возникают в процессе очистки воды от тяжелых металлов.

Методические рекомендации по выполнению лабораторной работы №7

на заседании комиссии математического и общего естественнонаучного цикла

Протокол № __ от «__»________2013 г.

Пр. № __от «__»_______ 2013 г.

По дисциплине: «Естествознание»

Наименование работы: «Очистка загрязненной воды»

По специальности:080110 «Банковское дело» (базовая и углубленная подготовка)

Работа рассчитана на 2 часа

ЛАБОРАТОРНАЯ РАБОТА № 7

Тема: «Очистка загрязненной воды»

Цели урока:

1. Образовательная: научиться очищать воду от механических и химических примесей и уметь определять содержание примесей в воде. Закрепить навыки написания уравнений химических реакций диссоциации солей.

2. Развивающая: развивать навыки решения задач, логическое мышление и творческое воображение. Формирование умений пользоваться теоретическими и экспериментальными методами химической науки для обоснования выводов по изучаемой теме.

3. Воспитательная: развитие самостоятельности, взаимопомощи.

Формируемые компетенции: ОК 2, ОК 4, ОК 8, ОК 11.

Литература: , , под ред. Алексашиной 10 класс (базовый уровень) — М.: Просвещение, 2010, Гл.3, §48, стр.146-148. Гл. 4, §62, стр.190-193.

Карпенков естествознание Гл. 5, §3, стр.244-252.

Оборудование: круглодонная колба, термометр, прямой холодильник, аллонж, насадка Вюрца, приемник, перманганат калия, делительная воронка, фильтровальная бумага, спиртовая горелка, электрический чайник, секундомер.

Инструктаж по технике безопасности и проведению эксперимента. (5 мин.)

Контрольные вопросы допуска

1. Назовите способы очистки загрязненной воды.

2. Дайте определение химического загрязнения воды.

3. Перечислите существующие методы очистки воды.

1. Проводим очистку воды разными способами:

Опыт № 1. Очистка воды методом фильтрования.

Приготовьте делительную воронку, поместив в неё фильтр. Вылейте на фильтр воду с механическими примесями. Что наблюдаете?

Опыт № 2. Очистка воды методом перегонки.

Соберите устройство для перегонки воды. Изучите работу прибора. Перегоняем воду с перманганатом калия.

Опыт № 3. Очистка воды методом отстаивания. Набираем воду из под крана и отстаиваем ее в течении 2 суток.

Опыт № 4. Очистка воды методом вымораживания. Воду из под крана наливаем в плоскую посуду и помещаем в морозильную камеру холодильника, когда вода наполовину замерзнет, декантируем незамерзшую часть. Замерзшую воду размораживаем.

1. Результаты очистки анализируем по качеству полученной воды. Проводим серию измерений времени закипания одинакового количества образцов воды (из под крана, профильтрованную, вымороженную, отстаявшуюся, перегнанную, бутилированную) в электрическом чайнике.

2. Результаты оформляем в виде диаграммы.

3. Делаем выводы о качестве воды и использованных методах очистки.

Форма отчета о работе: диаграмма и выводы в тетради для лабораторных работ.

Краткие теоретические сведения

Получение чистой воды – очень важная проблема. Чистая вода необходима многим отраслям современной промышленности, она используется для проведения многих технологических процессов. Очищенная питьевая вода применяется в бытовых целях. В природной воде всегда имеются механические примеси и растворённые вещества. Вода – прекрасный растворитель и поэтому невозможно встретить в природе жидкую «чистую» воду, то есть ту воду, в которой не растворены неорганические и органические вещества. В результате жизнедеятельности человека количество загрязняющих воду веществ постоянно растёт, и на сегодняшний день их насчитывается более 50 000. Поэтому проведение тестов на определение концентрации такого количества химических веществ, которые могут присутствовать в воде, просто невозможно.

Традиционно для оценки качества воды используют физические, санитарно — бактериологические и химические показатели.

К физическим показателям относят температуру, запахи и привкусы, цветность и мутность.

К санитарно-бактериологическим показателям относят бактериальную загрязнённость воды, загрязнённость кишечной палочкой, содержание в воде токсичных и радиоактивных микрокомпонентов.

К химическим показателям относят водородный показатель воды рН, жёсткость и щёлочность, минерализацию, а также содержание главных ионов. Качество воды определяется содержанием ионов, обуславливающих жёсткость воды, а также ионов тяжёлых металлов Рb2+, Рg2+, Cr3+, Fe3+, SO42-, Cl-, Mg2+, которые часто встречаются.

Технологии очистки воды и принципы работы очистных устройств можно условно разделить на физико-химические, биологические и механические.

Химический процесс очистки воды, как правило, заключается в ее хлорировании или озонировании. Иногда, в особых случаях, используются и иные технологии.

Сейчас способ очистки воды хлорированием уже устарел и постепенно уходит в прошлое, но раньше он повсеместно применялся на крупных станциях водоподготовки. Озонирование же – технология хоть и хорошая, но весьма дорогостоящая и сложная, поэтому широкого распространения он не имеет.

Существуют и другие химические способы очистки воды, применяемые индивидуально. Есть специальные препараты, входящие в различные комплекты выживания, с помощью которых можно обрабатывать небольшие объемы загрязненной и изначально непригодной для употребления воды.

Под физическими способами очистки воды подразумевается, как не сложно догадаться, некое физическое воздействие. Простейшей физической технологией водоочистки можно назвать, пожалуй, кипячение. Кипячение, с одной стороны, полностью очищает воду от любых болезнетворных организмов, но с другой стороны, такой принцип очистки воды не позволяет избавиться от различных химических загрязнений и может применяться лишь в ограниченных объемах.

Другая технология физической очистки – это облучение воды ультрафиолетом. Надо отметить, что это актуальный и современный метод очистки воды, применяемый массово на крупных объектах водоочистки. В процессе очистки воды облучением уничтожаются все вредные микроорганизмы, а вода при этом не обрабатывается вредными для здоровья химикатами.

Технология вымораживания заключается в том, что чистая вода замерзает быстрее раствора солей.

Механические технологии водоочистки предполагают использование всевозможных фильтров. Фильтры бывают разные: грубые – для очистки воды от крупного мусора и песка – и тонкие – позволяющие отфильтровать очень мелкую пыль, а некоторые механические устройства очистки воды помогают удалить даже химические примеси и микроорганизмы.

Биологический метод очистки воды заключается в использовании микроорганизмов, способных питаться органическими веществами и тем самым уничтожать их, очищая воду от коллоидных примесей и тонких суспензий.

Конечно, при применении новых методов очистки воды вышеперечисленные способы, для достижения наилучшего результата, как правило, комбинируются. Фильтры высокотехнологичных устройств очистки воды могут сочетать в себе и химические, и механические, и биологические принципы работы.

Современные системы очистки воды бывают, как правило, многоступенчатыми, и в каждой его «ступени» применяется последовательно тот или иной метод очистки воды от загрязнений. В статьях этого раздела мы более подробно осветили все эти современные методы очистки воды.

Биологические методы очистки воды заключаются в том, что микроорганизмы в процессе переработки органики, являющейся для них питательными веществом, воздействуют на процессы окисления и восстановления различных органических субстанций. Подобные субстанции образуют коллоидные системы или тонкие суспензии, рассеянные в канализации. В ходе такой переработки сточных вод, микроорганизмы очищают воду от твердых и жидких продуктов жизнедеятельности человека и хозяйственно-бытовых органических загрязнений.

Очистные системы, реализующие биологические методы очистки воды условно можно подразделить на естественные и искусственные сооружения:

1. Очистные системы, обрабатывающие воду в условиях, приближенных к естественным обстоятельствам.

Суть их работы заключается в том, что очистные сооружения фильтруют сточные воды через почву или водоемы. Таким образом, при помощи данных систем можно очищать как поля орошения или фильтрации, так и естественные проточные водоемы (пруды, ручьи и т. д.).

В отличие от искусственных систем очистки воды, здесь микроорганизмы обеспечиваются кислородом, поступающим извне, без каких-либо дополнительных способов аэрации.

2. Очистные системы, работающие в искусственно созданных условиях.

Биологический метод очистки воды в данных системах заключаются в том, что микроорганизмы очищают сточные воды в аэротенках, а также аэро — и биофильтрах. В процессе функционирования искусственно созданных систем, микроорганизмы могут дышать кислородом благодаря механической аэрации или диффундированию кислорода через поверхность очищаемых вод (реаэрации).

Такая очистка воды более интенсивна, чем та, что проводится в естественных условиях. Она способствует более быстрому развитию микроорганизмов и, соответственно, благотворно влияет на активность их работы.

Физико-химические методы очистки воды используются для обеззараживания жидкости и ликвидации органических частиц, образующих мелкодисперсные и коллоидные массы в канализационных системах. Помимо того, химическая водоочистка позволяет избавиться от нежелательных ионов, кислот и оснований.

Физико-химическая очистка воды основывается на:

· фильтрации и гиперфильтрации;

· флокуляции и коагуляции;

Если не вдаваться в подробности, не пытаться рассматривать все нюансы физических и химических методов очистки воды и объяснить все общедоступным языком, то можно выделить такие принципы очистки воды.

Фильтрация как способ химической водоочистки

Смысл фильтрации состоит в том, что при помощи некоторых средств (например, ионообменных смол) можно отделить от жидкости загрязняющие вещества и элементы и тем самым произвести физико-химическую очистку воды.

Проходя через фильтр для очистки воды, содержащий слабо — и сильнокислотные катиониты и аниониты, жидкость очищается за счет того, что при вступлении в реакцию обмена, нежелательные элементы и частицы оседают на ионообменных смолах.

Данный метод химической очистки воды достаточно полезен тем, что он позволяет выделить из жидкости вполне определенные вещества и оставить те элементы, которые в фильтрации не нуждаются.

Гиперфильтрация

Физико-химическая очистка воды посредством гиперфильтрации, заключается в применении метода обратного осмоса. Суть процесса состоит в том, что специальная мембрана позволяет очень тщательно отсеять загрязняющие элементы и пропустить чистую воду. Гиперфильтрация как правило нуждается в заблаговременной механической очистке воды от крупных частиц.

Флокуляция и коагуляция

Флокуляция и коагуляция – химические методы очистки воды, вызывающие взаимодействие химических элементов с коллоидными и мелкодисперсными примесями, позволяющее очистить воду посредством вступления их в соответствующую реакцию. После подобной очистки, в воде появятся некие «хлопья», которые без каких-либо затруднений можно механически удалить или отфильтровать.

Нейтрализация

Этот химический метод очистки воды состоит в применении нейтрализующих веществ (соды, извести, аммиака и так далее). Вступая во взаимодействие с загрязняющими воду элементами, щелочные реагенты позволяют очистить жидкость от различных кислот.

Деструкция

Деструкция – это разложение нежелательных веществ на вполне безвредные составляющие.

Физико-химические методы очистки воды достаточно разнообразны и способы их применения зависят от потребностей и финансовых возможностей заказчиков.

Электрохимическая очистка воды базируется на окислительно-восстановительных реакциях и представляет собой, собственно, воздействие электрического тока на сточные воды. Если говорить более доступным языком, можно сказать, что сильный ток делит воду на «живую» и «мертвую» и тем самым очищает ее.

Электрохимическая очистка воды достаточно экономична и весьма распространена в России в связи с тем, что может быть довольно продуктивной при очень маленьких финансовых затратах. Тем не менее, за рубежом, подобный метод не используется для бытовых вод, а применяется исключительно для промышленной очистки воды.

Электрохимическая очистка воды позволяет уничтожить все микроорганизмы, но при этом, она может негативно повлиять на различные органические вещества. В связи с тем, что в воде могут содержаться совершенно разные микроорганизмы и вещества, а точный анализ сточных вод, как правило, не делается, результат воздействия тока на эту воду никто предсказать не сможет. Соответственно, из-за непредсказуемой реакции веществ в воде, в ходе ее очистки могут получиться не очень безопасные соединения.

Очистка воды серебром известна людям уже много веков и благотворное воздействие серебра используется повсеместно. Бактерицидное действие металла связано с тем, что ионы серебра соединяются с оболочками бактерий и их ферментными системами и тем самым очищают воду.

Тем не менее, мало кому известно, что очистка воды серебром – далеко не самый идеальный способ дезинфекции, несмотря на рекламные похвальбы различных средств массовой информации в адрес таких установок очистки воды. Дело в том, что серебро – это ни что иное, как тяжелый металл, и оно может повредить здоровью не меньше, чем свинец, кобальт и иные подобные, подчас ядовитые, вещества. Серебро может постепенно накапливаться в нашем организме, что впоследствии способно привести к отравлению металлом.

Очистка воды серебром может остановить рост бактерий – именно такое – бактериостатическое – действие оказывают разрешенные концентрации серебра (50 мкг/л). Убить микроорганизмы смогут только очень высокие концентрации серебра, однако для очистки воды они запрещены. Кроме того, некоторые микроорганизмы нечувствительны к серебру, поэтому, независимо от объемов используемого металла, они будут размножаться.

Соответственно, серебро нельзя назвать идеальным материалом для очистки воды. Серебро уместно скорее не для очистки, а для долгого хранения воды в различных удаленных от источника воды объектах, вплоть до космических станций. Также серебро можно использовать для производства очистительных фильтров, созданных с применением активированного угля. В данном случае серебро поможет избежать накопления на фильтре бактерий. Микроорганизмы очень любят органические вещества, накапливающиеся на фильтре, а серебро позволит предотвратить их рост.

Доведение воды до состояния питьевой

Наиболее эффективным методом подготовки питьевой воды является метод очистки воды по принципу обратного осмоса. С помощью этого метода можно проводить глубокую очистку воды со степенью очистки 97-99%. Разделение воды и содержащихся в ней веществ достигается с помощью полупроницаемой мембраны. Сами мембраны изготавливаются из различных материалов, например, полиамида или ацетатцеллюлозы и выпускаются в виде полых волокон или рулонов. Через микроскопически малые поры этих мембран (размер порядка 0,0001 микрона), могут пройти только молекулы воды и кислорода, а микроорганизмы, растворенные в воде соли и органические соединения и т. п. задерживаются мембраной.

Перед подачей воды на обратноосмотическую мембрану её необходимо предварительно подготовить: отфильтровать механические примеси и, при необходимости, очистить от хлора. Всё необходимые задачи в комплексе решаются с помощью бытовых (под кухонную мойку), коммерческих (кафе, рестораны и т. п.) и промышленных (высокопроизводительных) обратноосмотических систем. Особые преимущества этих систем заключаются в их высокой экологической безопасности.

При очистке воды методом обратного осмоса получают питьевую воду высшего качества без применения для очистки химических реагентов!

На практике при решении задачи получения чистой воды для бытовых или производственных нужд, требуется обязательное проведение анализа состава воды. И только после него можно говорить о выборе методов очистки воды и о количестве ступеней очистки, входящих в систему.


источники:

http://water-filter-spb.ru/vse-o-vode/metody-ochistki-vody/khimiya-ochistki-vody-khimicheskie-reagenty-i-reaktsii/

http://pandia.ru/text/80/224/44633.php