Одномерное цилиндрическое температурное поле описывается уравнением

Температурное поле

Температурным полем называется совокупность значений температур в данный момент времени во всех точках рассматриваемого пространства, занятого теплом.

Если температура поля с течением времени t изменяется, то оно называетсянестационарным и описывается уравнением:

где x,y,z – координаты точки поля.

Если же температура в каждой точке поля с течением времени t, остается неизменной, то такое температурное поле называетсястационарным. Температура, в этом случае, является функцией только пространственных координат

В каждый момент времени в температурном поле можно выделить поверхности, имеющие одинаковые температуры. Такие поверхности называются изотермическими. В стационарном температурном поле изотермические поверхности с течением времени не меняют свой вид и расположение, в то время как в нестационарном поле они со временем изменяются.

Одной из характеристик температурного поля является температурный градиент, представляющий собой вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры. На рис.4.1. изображены изотермические поверхности, температуры которых отличаются на DТ.

Рис. 1. К понятию температурного градиента

Из рисунка видно, что интенсивность изменения температуры по разным направлениям (из точки А лучи п и l) неодинакова. Наибольшая разность температур на единицу длины наблюдается в направление нормали п к изотермической поверхности в точке А, так как расстояние между соседними изотермами Dn при этом меньше, чем в точке В.

Предел отношения изменения температуры DТ к расстоянию между изотермами по нормали Dn, когда Dn стремится к нулю, называетсятемпературным градиентом:

В общем случае для различных точек одной и той же изотермической поверхности (например, для точек А и В) градиент температуры различен не только по направлению, но и по величине. За положительное направление градиента принято направление возрастания температур.

Основы теплового расчета

Несмотря на многообразие конструкций и принципов работы теплообменных аппаратов, процессы теплообмена в них подчиняются общим закономерностям, а основные положения методики их расчета могут быть рассмотрены в общей постановке.

До недавнего времени расчет теплообменных аппаратов приводился только для стационарных режимов, и при этом в основном решались две задачи:

1. Для заданных параметров на входе и выходе из аппарата и типе теплообменной поверхности определить требуемую площадь поверхности теплообмена и произвести его конструктивную разработку. Это есть проектный расчет.

2. Для реально существующего аппарата при заданных параметрах потоков на входе определить количество передаваемой теплоты и параметры потоков на выходе из аппарата. Это задача проверочного расчета.

К этим двум задачам можно добавить третью, так называемый оптимальный расчет теплообменного аппарата. Решение этой задачи возможно благодаря использованию ЭВМ. Суть этой задачи сводится к расчету оптимального теплообменника по выбранному критерию.

Тепловой расчет теплообменных аппаратов базируется на уравнениях теплового баланса и теплопередачи.

Решение нестационарных задач теплообмена возможно только при использовании математических моделей, записанных на основе моделей структуры потоков теплоносителей.

Проектный расчет теплообменного аппарата

Задачей проектного расчета является определение геометрических размеров и режима работы теплообменника, необходимого для отвода или подвода заданного количества теплоты к теплоносителю.

При проектном расчете задают:

1. Тип аппарата и общие геометрические характеристики поверхности теплообмена (размеры труб, оребрения, толщина стенок и др.).

2. Параметры теплоносителей на входе и выходе из аппарата (температура, давление и т.д.)

3. Тепловую мощность аппарата Q или расход сред.

Взаимность изменений температур теплоносителей определяется условием теплового баланса, которое для бесконечно малого элемента теплообменника имеет вид:

Здесь G1, G2, Cp1, CP2 расходы и теплоемкости теплоносителей 1 и 2, T1 и Т2 их температуры в произвольном сечении аппарата. Уравнение теплового баланса для всего аппарата получается путем интегрирования уравнения (4.4) и имеет вид:

Уравнение (4.5) содержит две неизвестные: G1 или G2 и Tk1 или Tk2. Следовательно, это уравнение является неопределенным. Общий прием решения этих задач заключается в использовании метода последовательных приближений, состоящего в том, что в начале принимаются определенные решения относительно конструкции аппарата и неизвестных технологических параметров, затем путем пересчета проверяется до получения результатов с желаемой степенью точности.

Проверочный расчет теплообменного аппарата

Целью проверочного расчета теплообменного аппарата заданной конструкции является определение его мощности и температур потоков на выходе Тk1, Tk2 при заданных площадях поверхности теплообмена F, расхода сред G1, G2 и их температурах на входе Тh1 и Тh2.

Математические модели теплообменников

Обычно принимают, что движение потоков теплоносителя и хладоагента характеризуется гидродинамическими моделями идеального смешения, идеального вытеснения, ячеечной моделью ОДМ или их комбинацией.

Если гидродинамическая структура потоков в теплообменном аппарате соответствует модели идеального смешения, то во всем потоке происходит полное смешение молекул потока. В таком случае любое изменение температуры потока на входе в зону идеального смешения мгновенно распространяется по всему объему зоны.

Гидродинамическая структура потоков теплоносителя, соответствующая модели идеального смешения, имеет место в теплообменных аппаратах с изменением агрегатного состояния потоков – в конденсаторах, кипятильниках, испарителях. Уравнение, описывающее изменение температуры для теплообменника в зоне идеального смешения, имеет вид:

, (6)

где V – объем зоны идеального смешения; v – объемная скорость; Твх, Т – температура потока на входе и в зоне идеального смешения; Ср теплоемкость потока; t – время.

Условие физической реализуемости модели идеального вытеснения выполняются в случае поршневого потока, когда предполагается, что в направлении его движения смещение полностью отсутствует, а в направлении, перпендикулярном движению, происходит идеальное смешение. Гидродинамическая структура потоков, соответствующая модели идеального вытеснения, характерна для движения потоков в трубном пространстве кожухотрубчатых теплообменников различных конструкций, а также для теплообменного аппарата типа «труба в трубе».

Уравнение, описывающее изменение температуры в зоне идеального вытеснения, имеет вид:

, (7)

где Sb сечение зоны идеального вытеснения; l – координата длины аппарата.

Диффузионная модель гидродинамической структуры потоков соответствует такому движению потоков, когда в направлении его движения существует продольное смещение, а перпендикулярном направлении предполагается наличие идеального смешения.

Диффузионная модель значительно лучше, чем модель идеального вытеснения, описывает гидродинамические условия в реальных кожухотрубчатых теплообменниках. Уравнение, характеризующее изменение температуры по длине зоны, имеет вид:

, (8)

где ет коэффициент продольного переноса теплоты.

Температуры потоков в теплообменных аппаратах могут изменяться в каждой точке потока не только в результате его движения, но также из-за теплообмена с окружающей средой или за счет источника теплоты. Интенсивность источника теплоты записывается следующим образом:

где F – поверхность теплообмена, отнесенная к единице объема; К – коэффициент теплопередачи; – разность температур.

Уравнения (4.6) и (4.7) для температур потока с учетом источника теплоты в потоке имеет вид:

;(10)

. (11)

Учитывая (4.9) и зная, что V = S*L из (4.11) получим:

или

. (12)

Аналогично для ДДМ с учетом (4.9) имеем:

. (13)

Для описания гидродинамической структуры потоков в реальных теплообменных аппаратах используются комбинированные модели движения потоков: ячеечная модель; модель идеального смешения с застойной зоной; модель идеального смешения с байпасом; последовательное соединение двух моделей МИС и МИВ. Применение таких моделей для описания гидродинамической структуры потоков позволяет описать изменение профиля температур как по длине, так и в объеме теплообменного аппарата.

Теплообменник типа «перемешивание-перемешивание»

Математическая модель такого теплообменника (рис.4.2) представляет собой систему уравнений типа (4.7), записанных для теплоносителя и хладоагента:

, (14)

где T1 – T2 = DT, при этом T1 и T2 имеют постоянные значения в каждой точке объема идеального перемешивания V1 и V2; Твх1, Твх2 – температуры первичного и вторичного теплоносителей на входе в аппарат; Тк1 = Т2 и Тк2 = Т2 – конечные температуры первичного и вторичного теплоносителей. Величина FK(T1 – T2) имеет знак «минус» в уравнении описания потока теплоносителя, который отдает тепло, и знак «плюс», если тепло воспринимается теплоносителем.

Рис. 2. Схематическое изображение теплообменника типа «перемешивание-перемешивание»

Теплообменник типа «перемешивание-вытеснение»

Математическая модель такого теплообменника (рис.4.3) включает уравнение модели идеального перемешивания для потока теплоносителя и уравнение модели идеального вытеснения для хладоагента:

;

, (15)

где DT = T1 – T2 при этом значения T1 остается одинаковыми в каждой точке объема идеального перемешивания, а Т2 изменяются по длине зоны идеального вытеснения.

Рис. 3. Схематическое изображение теплообменника типа «перемешивание — вытеснение»

Теплообменник типа «вытеснение-вытеснение»


Рассмотрим моделирование широко распространенного в химической технологии теплообменника «труба в трубе», структура потоков которого соответствует модели «вытеснение – вытеснение» (рис.3.1).

Рис.4. Схема теплообменника типа «труба в трубе»

Это так называемый прямоточный теплообменник, для которого модель имеет вид:

;

, (16)

где DT = T1 – T2, при этом Т1 и Т2 изменяются по длине соответствующих зон идеального вытеснения. Цель работы: построить математическую модель и рассчитать теплообменный аппарат с известной структурой потоков.

Теплопроводность через цилиндрическую однослойную стенку

Российский государственный университет

Нефти и газа им. И.М. Губкина

«ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ
ТЕПЛОИЗОЛЯЦИОННых МАТЕРИАЛов МЕТОДОМ трубы»

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Российский государственный университет

нефти и газа им. И.М. Губкина

Кафедра термодинамики и тепловых двигателей

«ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ
ТЕПЛОИЗОЛЯЦИОННых МАТЕРИАЛов МЕТОДОМ трубы»

Методические указания к лабораторной работе по курсам «Термодинамика» и «Теплотехника»

для подготовки бакалавров, дипломированных специалистов и магистров по направлению 130500 «Нефтегазовое дело» и специальностям: 150205, 151001, 151202, 240401, 240403, 280201.

Под редакцией проф. Б. П. Поршакова

Купцов С.М. «Определение коэффициента теплопроводности теплоизоляционных материалов методом трубы»: Методические указания к лабораторной работе по курсам «Термодинамика» и «Теплотехника». – М.: РГУ нефти и газа, 2005. – 21 с.

Излагаются теоретические основы передачи теплоты теплопроводностью. Даны справочные значения коэффициентов теплопроводности некоторых веществ и материалов.

Представлена схема лабораторной установки для определения коэффициента теплопроводности теплоизоляционных материалов. Изложена методика проведения лабораторной работы и обработки опытных данных.

Для контроля знаний студентов предложены вопросы.

Рецензент – проф., к.т.н. К. Х. Шотиди

© Российский Государственный Университет нефти и газа

им. И.М. Губкина, 2005

Цель лабораторной работы:изучение стационарной теплопроводности.

Содержание лабораторной работы:экспериментальноеопределение коэффициента теплопроводности теплоизоляционного материала и выявление его температурной зависимости.

Теоретическая часть

Самопроизвольный необратимый процесс передачи теплоты в пространстве с неоднородным распределением температуры называется теплообменом. Теория теплообмена или теплопередача – это наука, изучающая процессы и законы передачи теплоты. Перенос теплоты представляет собой процесс обмена внутренней энергией между рассматриваемыми элементами и системами тел. Теплообмен между телами возможен лишь при наличии разности температур между ними.

Температурное поле

В общем случае процесс передачи теплоты сопровождается изменением температуры как, в пространстве, так и во времени. Совокупность значений температуры t для всех точек пространства в данный момент времени , называется температурным полем

Уравнение (1) является математическим выражением температурного поля. Различают стационарноеи нестационарное температурные поля.

Стационарное температурное поле характеризуется постоянством температуры во времени, в противном случае температурное поле называется нестационарным.

Температура в пространстве может изменяться по трем, двум и одной координатам. Соответственно, температурное поле называется трех-, двух и одномерным.

Простейшее одномерное стационарное температурное поле имеет вид:

. (2)

Температурный градиент

Изотермической поверхностью называется геометрическое место точек, имеющих одинаковую температуру. Так как в одной точке тела одновременно не может быть двух различных значений температуры, изотермические поверхности не пересекаются, они или замыкаются внутри тела либо обрываются на его границах.

При пересечении изотермических поверхностей плоскостью получаются изотермы − линии постоянной температуры. Наибольшее изменение температуры на единицу длины наблюдается в направлении нормали n к изотермической поверхности (рис 1). Возрастание температуры в направлении к изотермической поверхности характеризуется градиентом температур.

Рис 1. Температурный градиент

Температурный градиент есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный пределу отношения изменения температуры к расстоянию между изотермами по нормали

, К/м. (3)

Количество теплоты Qτ, проходящее в единицу времени через изотермическую поверхность, называется тепловым потоком Q (Вт). Тепловой поток, проходящий через единицу площади изотермической поверхности, называется плотностью теплового потока

, Вт/м 2 .(4)

Передача теплоты осуществляется различными способами. Различают три основных формы: теплопроводность, конвективный теплообмен и лучистый теплообмен.

Теплопроводность – процесс передачи теплоты при непосредственном соприкосновении различных тел или отдельных частиц тела, имеющих разные температуры.

Конвекция – процесс передачи теплоты при перемещении объемов жидкости или газа в пространстве из области с одной температурой в область с другой. При этом перенос энергии неразрывно связан с перемещением самой среды.

Тепловое излучение – это процесс передачи энергии путем электромагнитных волн. Теплообмен излучением представляет процесс последовательного превращения внутренней энергии одного тела в энергию излучения, распространения ее в пространстве и превращения энергии излучения во внутреннюю энергию другого тела.

В природе и технике элементарные процессы передачи теплоты – теплопроводность, конвекция и тепловое излучение – очень часто происходят совместно.

Теплопроводность

Теплопроводность представляет собой процесс передачи теплоты соприкасающимися, беспорядочно движущимися структурными частицами вещества (молекулами, атомами, электронами). Структурные частицы более нагретой части тела, обладающей большей энергией, соприкасаясь с окружающими частицами, передают им часть своей энергии. Как правило, теплопроводность в чистом виде возможна только в сплошных по структуре твердых телах.

Этот вид теплообмена наблюдается в любых термически неравновесных телах или системах тел. Механизм переноса энергии зависит от физического состояния тел.

В металлах перенос теплоты осуществляется путем движения (диффузии) свободных электронов; передача теплоты за счет упругих колебаний кристаллической решетки второстепенна.

В жидкостях, в твердых телах – диэлектриках перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества.

В газах перенос теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения (путем диффузии молекул и атомов).

Закон Фурье

Изучая явление теплопроводности, Фурье установил, что количество передаваемой теплоты пропорционально градиенту температуры, времени и площади сечения, перпендикулярного направлению распространения теплоты. Математическое выражение для определения теплового потока называется основным законом теплопроводности – законом Фурье:

где l – коэффициент теплопроводности, Вт/(м.К).

Для плотности теплового потока закон Фурье имеет вид:

Знак “” показывает, что вектора теплового потока (плотности теплового потока) и градиента температуры направлены в противоположные стороны.

Физический смысл коэффициента теплопроводности l – количество теплоты, переданное в единицу времени через единицу площади изотермической поверхности при единичном значении температурного градиента. Численное значение l характеризует способность вещества передавать теплоту.

Значения коэффициента теплопроводности веществ находятся в пределах l » 0,006 ¸ 420 Вт/(м.К).

Коэффициент теплопроводности однородных твердых тел зависит только от температуры, для жидкостей и тем более газов на значения l влияет давление. Для пористых твердых тел (тепловая изоляция, строительные материалы, горные породы и т.д.) на величину коэффициента теплопроводности дополнительно влияет объем порового пространства и степень заполнения его жидкостью или газом.

Лучшими проводниками теплоты являются металлы, у которых коэффициент теплопроводности l » 10 ¸ 420 Вт/(м.К). Меньшие значения l характерны для жаропрочных сплавов, наибольшие значения коэффициента теплопроводности характерны для чистых и особенно благородных металлов. Как правило, с увеличением температуры для чистых металлов наблюдается уменьшение численного значения l, а для сплавов – увеличение l.

Значения коэффициента теплопроводности жидкостей изменяются в пределах l » 0,07 ¸ 0,7 Вт/(м.К). Для большинства жидкостей, кроме воды и глицерина, наблюдается уменьшение численных значений коэффициента теплопроводности с ростом температуры.

Хуже всего теплоту теплопроводностью передают газы. Коэффициент теплопроводности для них возрастает с увеличением температуры и изменяется в пределах l » 0,006 ¸ 0,1 Вт/(м.К).

Материалы, имеющие значение коэффициента теплопроводности при нормальных условиях l £ 0,25 Вт/(м.К) называются теплоизоляционными.

Теплоизоляционные материалы могут быть неорганического происхождения (асбест, минеральная, шлаковая ваты), органического (шерсть, хлопок, дерево, кожа, и т.д.) и смешанными. Материалы органического происхождения используются в области температур, не превышающих +150 °С. При более высоких температурах применяют теплоизоляционные материалы неорганического происхождения.

Так как теплоизоляционные материалы являются пористыми телами, а поры заполнены газами (воздухом), то чем больше пористость, тем меньше значение коэффициента теплопроводности. Если поровое пространство вместо газа будет заполнено жидкостью, то значение коэффициента теплопроводности материала существенно увеличится.

Для теплоизоляционных материалов с увеличением температуры возрастают численные значения коэффициента теплопроводности.

Температурная зависимость значений коэффициента теплопроводности веществ и материалов для определенного температурного интервала обычно принимается линейной:

где l0 – коэффициент теплопроводности при температуре 0 °C; β – постоянная, характеризующая увеличение (уменьшение) l материала при повышении его температуры на 1 °C (1 К), b = l0×β– температурный коэффициент, характеризующий тангенс угла наклона линейной зависимости l = l(t).

При проведении теплотехнических расчетов используются значения коэффициентов теплопроводности из справочников. Значения l и температурного коэффициента некоторых материалов представлены в табл. 1.

Значения коэффициентов теплопроводности

и температурных коэффициентов некоторых материалов

№№ ппМатериалl0, Вт/(м.К)b, Вт/(м. о С 2 )
Алюминий (99%)0,05
Медь (99,9%)-0,0685
Латунь (67% Cu, 33% Zn)0,165
Сталь 450,012
Сталь 1Х130,006
Сталь 0Х18Н12Б0,01
Чугун серый
Асбест0,1270,00019
Асбозурит0,1620,000169
Бетон с каменным щебнем1,28
Минеральная вата0,060,00018
Пенобетон0,11
Пенополиуретан0,04
Совелит0,0900,00087
Шлаковая вата0,060,000145

Знание численных значений коэффициентов теплопроводности веществ и материалов необходимо специалисту нефтянику, газовику и нефтехимику для правильного проведения теплотехнических расчетов на различных стадиях технологического процесса в нефтегазовом деле.

Теплопроводность через цилиндрическую однослойную стенку

Любая практическая задача теплообмена в итоге сводится к вычислению теплового потока или определения температурного поля.

Для определения температурного поля без внутренних источников теплоты используется дифференциальное уравнение теплопроводности:

, (8)

где – коэффициент температуропроводности, характеризующий скорость изменения температуры в теле, м 2 /с; ср – удельная массовая изобарная теплоемкость, Дж/(кг.К); r – плотность, кг/м 3 ; – оператор Лапласа.

В цилиндрических координатах уравнение (8) имеет вид

, (9)

где – радиус-вектор; – угол наклона радиуса-вектора, z – вертикальная координата.

Для стационарного температурного поля в однослойной цилиндрической стенке ( , и ) при λ = idem дифференциальное уравнение теплопроводности принимает вид:

. (10)

Для решения дифференциального уравнения (10) введем новую переменную , тогда уравнение (10) запишется в виде

. (11)

После интегрирования дифференциального уравнения (11), получается

. (12)

Потенцируя выражение (12) и переходя к первоначальной переменной t, получаем

. (13)

Уравнение стационарного температурного поля в цилиндрической однослойной стенке получается после интегрирования выражения (13)

. (14)

Постоянные интегрирования С1 и С2 определяются из граничных условий I рода:

, . (16)

Решение уравнений (16) позволяет найти постоянные интегрирования

, (17)

После подставки полученных значений С1 и С2 в уравнение (14), окончательно получается уравнение стационарного одномерного стационарного температурного поля в цилиндрической однослойной стенке (рис. 2):

, (18)

где tc1, tc2 – температуры на внутренней и наружной поверхностях цилиндрической стенки; r1, r2 – внутренний и наружный радиусы; r – текущий радиус (r1 £ r £ r2).

Полученное выражение температурного поля представляет собой уравнение логарифмической кривой.

Рис. 2. Стационарное температурное поле в цилиндрической однослойной стенке

Так как температура в рассматриваемом случае изменяется только в зависимости от текущего радиуса, то температурный градиент с соотношений (13) и (17) определяется следующем образом:

. (19)

Тепловой поток, передаваемый теплопроводностью через цилиндрическую однослойную стенку, определяется по закону Фурье (5) с учетом выражения температурного градиента (19) и площади поверхности (F = 2πrl) теплообмена:

= , (20)

Тепловой поток, отнесенный к единице длины цилиндрической стенки l, называется линейной плотностью теплового потока.

, Вm/м (21)

Значения теплового потока Q и линейной плотности теплового потока ql не меняются во времени и по толщине стенки.

Формулы для определения теплового потока (20) и линейного теплового потока (21) можно представить в виде:

Q = , (22)

где R = , Rl = R/l − полное и удельное линейные термические сопротивления теплопроводности однослойной цилиндрической стенки.

Из соотношений (22) видно, что при стационарной теплопроводности перепад температур на цилиндрической стенке прямо пропорционален термическому сопротивлению и обратно пропорционален величине коэффициента теплопроводности.

Теплопроводность при стационарном режиме

Теплопроводность при стационарном режиме

  • В установившемся состоянии температурное поле T (x, yₜr, t) не зависит от времени. То есть,^ = 0.Дифференциальное уравнение теплопроводности (II-55)^ = aV2T (IV-I) DX is (П-56 И Р-57) Eh2du * Ldz2(IV-2)для решения конкретной задачи в Формулу (IV-2) необходимо добавить соответствующее граничное условие. Рассмотрим несколько простых случаев Определение стационарного температурного поля для объектов различной формы. § 1.

To рассмотрим теплопроводность тела плоская стенка неограниченная плоская стенка с подходящим температурным полем Его толщина равна 6, его поверхность параллельна плоскостям Y, z декартовой системы координат и находится при x = 0 и x = 6(рис. IV-1).Давайте поддержим его этими поверхностями Соответственно, задаются температуры 7 \и Т₂, то есть граничные условия типа 1(Глава 2,§ 5).

Выражение (IV-3) немедленно интегрируется. Людмила Фирмаль

Если Γ и T₂ не зависят от координат y и z, то, очевидно, искомое температурное поле Уравнение (IV-2), которое зависит от этих координат и определяет температуру T (x), принимает вид

= 0 (IV-3) dx2V ’при граничном условии. Г= 7 \ при x-0 (IV-4) T-X Tn-6.Общая форма решения T (x)=C₁X4-C₂,(1V-5).Где C. И C₂-произвольная константа, определяемая из граничного условия. (IV-4).фактически, если вы установите x = 0 в(IV-5)и используете первую формулу (IV-4), вы получите 2-е условие (IV-4) и (на основе) Л=С₂, (IV-6), x = 6. (IV-6) есть фига IV -!.

Теплопроводность плоской стенки т = С.6+С₂ = С.6+ 7 ′., (IV-7) где C = ^, 16 наконец, решение уравнения (IV-3) при граничном условии(1V-4) видно из (IV-8)(1V-8 T(x)линейно зависит от x, и эта зависимость T (x)= f (x)показана на рисунке вдоль толщины стенки. IV-1.Тепловой поток q можно определить по закону Фурье (1-3): q = — XgradГ, или В нашем случае, дифференцируя распределение температуры по толщине стенки (IV-8), мы видим, что dxowhence (IV-9) получается из Формулы (IV-9), которая равна 7′. > Flux тепловой поток положительный, то есть он направлен вдоль положительного направления оси X. В 7 \7 ′ 2 он направлен в противоположную сторону.

Этот результат является результатом второго закона термодинамики. В частности, тепло передается от нагретого тела к неотапливаемому. Количество тепла, проходящего через стенку за единицу времени, легко вычисляется с помощью (IV-9), q = ^ = X (T₁ — ^ 7′) 4 -/⁷. (1V-10) перепишите уравнение Фурье (P-54) в цилиндрической системе координат с цилиндрическим wall. To сделайте это, декартовы координаты и Цилиндрические координаты (рис. IV-2), x = r cos B, y = r sin B, z = R.

После проведения изменения этой переменной форма уравнения цилиндрической системы координат (P-54) равна dT / dTT- = а-э \ ДГ * \ _ ДТ Р ДГ \ &т р * ДВ. Рассмотрим 1D процесс стационарной теплопроводности на бесконечной цилиндрической стенке (рис. IV-3).Если на рисунке IV-2.Соотношение Прямоугольные и цилиндрические координаты T рис. 1в-3.Теплопроводность цилиндрической стенки, внутренней (r = r) и внешней (r-RJ) поверхности стенки.

Они не зависят от угла Вига, искомое температурное поле не зависит от этих переменных, и если оно стационарно, то уравнение (IV-11) имеет вид (FT (g) 1 dT ® Q dr-r dr (IV-12) при заданном граничном условии типа 1 R = r₁T =Г= = ₂ ₂t =t 決定 определяет распределение температуры по всей толщине стенки. Формула (IV-12) Переписывание (IV-13) (IV-14) Теперь 1 раз integration. As в результате после 2-го интеграла получаем общее решение уравнения. (IV-14): T(g)= CJn g 4-C₂. (IV-15) постоянная интеграция C! И С₂ должно быть определено из граничного условия(IV-13).Р= rxT₁=С₁1пг₁+С₂]и (IV-16)⁼ГГ2Т2⁷ ⁷1ПГ₂4″ С₂.

Если вы решите для (IV-16) относительно Ca, вы найдете первую интегральную константу Ca≥1n-и вторую константу Ca₂C = Tj-Cjlnr ^-br ^ linr ^ 1гг-ЛПП. ’1′ 1 замена Найдя значения Cb и C₂ в Формуле (IV-15), получим искомое распределение температуры по всей толщине цилиндрической стенки In-T ® =Tₗ+(T,-T₁) — I. (IV-17) ’ I следовательно T(g) Логарифмически зависит от радиусной координаты r. плотность теплового потока q определяется по закону Фурье. Основываясь на (IV-17), существует проходящее количество тепла.

Цилиндрическую стенку, которая указывает на единицу длины трубы, можно определить по формуле: Q-qF-q-2nr = inK (T1-T.). (IV-19) — — — в ri Q естественно не зависит от R. Тепло не будет накапливаться anywhere. By по аналогии с многослойной цилиндрической стенкой(1-6) принимается тепловое сопротивление многослойной цилиндрической стенки (рис. IV-4). Равна сумме тепловых сопротивлений отдельных слоев. На основе этого утверждения можно использовать формулу (IV-19) для создания формулы, определяющей количество тепла, которое проходит через нее.

Q-присваивается единице длины стены. Преобразуйте уравнение сферической стенки (P-54) в сферическую систему координат. Используйте его для этого Следующая зависимость между Декартовыми координатами и сферическими координатами (рис. IV-5): x = r sinccosф, y = r sin 8 sinФ, z = r cos 8.Проводимость многослойной цилиндрической стенки В В сферической системе координат форма уравнения (P-54) равна dTha2?Как туда добраться, 2 at, 1 d F. dT \ₜdtL3r3g dr’g2sinea\ ae /1_g2sin26dF2] (IV-2I) рассмотрим стационарный процесс Теплопроводность внутренней поверхности (r = rx) и наружной поверхности (r =r₂) сферической стенки (оболочки) (рис. IV-6) соответственно.

Т₂. Семь Т₂ является постоянным. То есть она не зависит от направления, которое определяется углом 8 и cp. Поэтому требуемое температурное поле сферической стенки не зависит от этих переменных、 Функция радиальной переменной r. вид дифференциального уравнения (1V-2I) в этом случае равен IV-5.Корреляция декартовых и сферических координат IV-6. Для решения задачи теплопроводности граничного значения сферической конформации (IV-22, IV-23) необходимо определить распределение температуры по всей толщине сферической стенки. Переписывание Формулы (IV-22) (Ив-24) \ m2dr доктор! сначала в результате первого интеграла получается dr r* второй .

Интеграл дает Г ® =Г (IV-25).Общее использование граничных условий (IV-23) Решите уравнение (1V-25) для определения любых констант Ci и C2:r — — — rx m \ — — ^ + c2, T \ A = — — — ^ + C2. для r = r2 G # Если вы решите эти уравнения относительно C и C₂, вы получите 1 _ _ _ _ _ 1_ Заменяет \ G «-G1 G1 gg и G₂-G1 Cx и C₂ общим решением (IV-25).Упрощенный, наконец m = r = +(T₁-t₁) r \ yr от Gg-gx (IV-26) (IV-26), температура T (g) Она изменяется по толщине сферической стенки вдоль гиперболы. Определите тепловой поток из раствора (IV-26) — CL-L) ’ 1 ’» количество тепла, передаваемого через сферу 1 yy-yy.

В единицу времени, 2 =₉Г=₉.4лг2 = 4ях (л-Г₂) -!он равен а^ -. (IV-27) / ■ » — ’ 1 не зависит от r по тем же причинам, что и для цилиндрических стенок.§ 2.Теплопроводность тела с Внутренние источники тепла процессы теплопроводности в твердых телах обусловлены внешними условиями, то есть распределением температуры и теплового потока Подвод (отвод) тепла от поверхности тела и образующейся в результате внешней среды.

Математически это выражалось в выделении определенных граничных условий на поверхности тела. Рассмотрим процесс теплопередачи, когда помимо такого внешнего источника тепла существует еще и внутренний источник (сток), который распределяется определенным образом. Объем тела. Вы можете привести много примеров таких processes. It ограничивается упоминанием о том, что тепло образуется, когда электрический ток протекает через проводник.

Тепло Количество тепловыделяющих элементов выделяется и в замедлителях реактора. Когда в рассматриваемом объеме тела происходит определенная химическая реакция, он высвобождается(поглощается) В таком вопросе теплопроводности желательным обычно является распределение температуры внутри тела субъекта, а мощность внутреннего источника тепла (стока) принимается во внимание Это было дано. Мощность источника (стока) — это количество тепла, которое выделяется (поглощается) единицей объема тела за единицу времени.

Эта сумма показана в qᵥ、 Килоджоули / кубический метр / сек (kA s /l13-sec).В зависимости от характера процессов, происходящих в рассматриваемом теле, источник тепла (Сток) может выбираться по-разному. Или концентрируйтесь на определенной части или точке объема тела в течение определенного времени, или равномерно распределяйтесь по всему объему, в зависимости от температуры. Уравнения Теплопроводность при наличии внутреннего источника тепла описывается в виде cp% — = Ky’t +qᵥ. (IV-28) изменение теплоты на единицу объема за 01 единицу времени、 .

Здесь имеет место не только процесс теплопроводности, который является первым членом в правой части формулы (IV-28), но и выделение (поглощение) тепла в единице объема qv, которое мы рассмотрим ниже. Рассматривается задача о постоянном во времени и равномерно распределенном по всему источнику тепла. Теплопроводность бесконечной стенки с внутренним источником тепла плоскость YY и неограниченная стенка (рисунок IV-7) очищаются с обеих сторон при постоянной температуре жидкости Tf. Коэффициент теплопередачи .

A и выход равномерно распределены Объем qᵥ стенки источника тепла равен given. It необходимо найти распределение температуры по всей толщине стенки. Состояние поверхности стенки x = — I n x = I является постоянным, то есть, В зависимости от координат y и z температура будет функцией только от x, а уравнение (IV-28) будет иметь вид xs_ ⁼vv IV IV’2⁾.Однако, — 1 — = а(Тх ₌ / — г.) (IV-30) dx x = 1 * последний и В других случаях источник тепла может зависеть не только от координат, но и от температуры. Для аналогичных условий симметрия на поверхности x—I .

Температурное поле для плоскости x = 0 может быть заменено условием dx x-o (IV-31).От температуры очищающего раствора вводят Счетную температуру (IV-32)и затем кромку Задача (IV-29 напишите qydx2X dx x> = Q. интегрируйте уравнение (IV-33).d / \ _ _ _ _ _ Chu ’dx \ dx j X и IV-31) re — (IV-33) (IV) B 7 1 Tf X g *’ / 1 1 x рисунок IV-7.Теплопроводность плоской стенки с источником тепла после первого уплотнения приобретает вид (IV-35), а после второго уплотнения общий раствор (IV-33) получается в виде x 4-Cj. х 4-Cₜ. Граничное условие (IV-36) (IV-34) используется для определения констант /

Cx и C₂. Из (IV-35) и 2-го граничного условия (IV-34), C,= 0. dx (IV-37) в начале условия, где x = I (IV-34), получаем 2A. то есть, подставляя значение константы произведения С₂ в (IV-37), получаем решение вида (IV-38). Решение квадратично зависит от x (параболически).С другой стороны, если не было внутреннего источника, зависимость была линейной[ссылка(Iv-8)].Представьте себе решение(IV-38) Обобщенная координата. Если вы выбираете как раздел/2Liv, то все термины (IV-38), количество с размером температуры, и половина своей толщины / характерного размера стены.

  • Левая сторона (IV-39) (IV-39) является безразмерной температурой поиска. А правая сторона содержит независимые переменные в виде безразмерных координат-y и комплексных параметров Виде био-стандартом. Следовательно, (IV-39)-это (P1-13a) * q.. l2(характеристическая температура Oo = — ^ y — |является специфической функцией вида, которая получается на основе анализа) Решите уравнение (IV-33) с граничным условием (IV-34).Теплопроводность цилиндрической стенки с источником тепла делают цилиндрическую стенку (рис. IV-8) однородной.

Распределенный по всей его толщине источник тепла охлаждается снаружи жидкостью с температурой Tf \коэффициентом теплопередачи a и прочностью источника тепла qᵥ.It требуется Найти распределение температуры= = T-Tf по толщине стенки. •В этом случае вводить параметрические критерии не требуется. Если полый цилиндр в вопросе можно рассматривать Для d (g) используется уравнение dr2g, поскольку если температура окружающей среды.

Есть рисунок 1В-8.Теплопроводность цилиндрической стенки с источником тепла chu g, Cx dr X 2. Людмила Фирмаль

Tf постоянна, то желаемое распределение температуры зависит только от радиальных координат. на внешней поверхности цилиндрической стенки dr X (IV-40) r = r, предполагая, что теплообмен происходит по закону Ньютона,=: ab |(IV-41)dr r =rₜ (Ив-42) рублей. df> dr тогда dr \ dr J X если записать формулу (IV-40) в виде интеграла, то получится 1 2. ′ g (IV-44) итерационно интегрируют и получают общее решение уравнения (IV-43) 0 =—+Cilⁿr+ C»- Используйте (IV-45) A 4 граничных условия (IV-41) и (IV-42) для определения любых констант Cx и C₂.

Из условия (IV-42), M, C, ₀dr r ^rₜ2X q», то есть из условия (IV-41) определим С₂ отсюда (IV-45) и подставив значение и С₂ получим конкретное решение формулы(IV-40). Представьте себе решение (IV-46) с цилиндрической стенкой (IV-46) с обобщенными координатами(1V-46).Разделите все члены (IV-46) и выберите внешний (охлаждающий) радиус в качестве характерного размера С поверхности r2 цилиндрической стенки получаем O 4X. левая сторона (IV-47) является безразмерной искомой температурой, как и в(1V-39), а независимая переменная переходит в правую сторону. Джи! составной параметр в виде ссылки Biot, в виде g₂.

Как и в случае (IV-39), Формула (IV-47)является специфической функцией вида(1P-13a).Для цилиндрических стержень (r,= 0)обобщенная зависимость (IV-47) принимает вид (IV-48)§ 3. Теплопроводность тела с 2-мерным температурным полем 2-мерное температурное поле T-f (x, y) Получение аналитических решений, удовлетворяющих дифференциальным уравнениям и граничным условиям, рекомендуется для объектов простой формы. Для тела сложной формы решением является.

Громоздкие, в некоторых случаях недоступные. Тогда для фактического расчета аналитическое решение либо упрощается одним из численных методов аппроксимации, либо ставится задача Решайте численно в электронных вычислительных машинах и тому подобное. Мы найдем аналитическое решение дифференциального уравнения для некоторых граничных условий, которые будут представлены ниже.

Для двумерного Формат температурного поля уравнения T = T (x, y) (P-54) имеет вид^ 4-^ = 0. в качестве решения dhadu1 (IV-49)мы применяем метод разделения переменных. Найти решение уравнения в виде Произведение 2 функций, то есть T = f(x, y)= X (x)Y (y), (IV-50), где X (x) — функция только переменной x. Y (y) является функцией только переменной y. Формула т из(IV-50) (1V-49), после деления на X и Y,\ _dtY__________ 1 вы получите d * XY dy * XX1 (IV-51).Поскольку левая сторона (IV-51) не зависит от x и равна значению (правая сторона), это если вы не зависите от y, общие (оба) значения не зависят от x или y. таким образом, общее значение (для обеих частей) уменьшается до постоянного значения. Это полезно для принятия формы k2.

Как и в (IV-56), напишите общее решение (IV-53) X = Cxeⁱkx+C₂e〜ⁱkx, (IV-59).Здесь (\и С₂-произвольные константы. Однако формулы e1x и е-1 actually на самом деле фактические значения х, кроме Х = 0.Используя Эйлера официальный e±ТТХ₌потому что£Х±З Син х (ИЖ-60) (ИЖ-59)* х — сов / экс-ЖБ грех КХ. (ИЖ-61) Можно написать общее решение Формулы (IV-59) на основе (IV-60) в виде T = x XU =(AcosЛх4-Bsin KX) (SEC>〜J-de-K>) (IV-62).

Применяйте его для решения конкретных задач. Теплопроводность плоских стенок с 2-мерным температурным полем рассмотрим конкретную задачу теплопроводности плоских стенок (рис. IV-9).Пусть T-форма температурного поля на стене = /(х,//), температуры в направлении оси Z во всех точках (вдоль стены толщина) X = СЈ е ’ * — r4C₂e -и KX = Ки(coskx + я грешу опций)-| −4- СГ (потому что / с GX-мне грех КХ)=(СЈ-Ф-C₂) потому что с KX + я (Cₜ-C₂) грех КХ — = а потому что КХ ^ — ПБ грех КХ -, (а = с ^ СГ, 5 = ^ −0.).

Тот же смысл. Избыточная температура(гл. Уравнение Лапласа (P-56) для этой задачи в 111,§ 2) имеет вид dx2du2. Граничное условие типа 1 O = T-Ta = 0 задается для x = 0 и x = L. где 0-искомая избыточная температура стенки. Ta-поддерживается температура боковой стенки Постоянный. (IV-63) (IV-64) 0 — > 0 как y — > — oo. (IV-66) (рисунок 1V-9) рисунок IV-9. Теплопроводность в 2D температурном поле, Т= / (*•У) где 7 \ — температура на нижнем конце (см. Рисунок). 1В-9) стены поддерживаются постоянными.

Решением уравнения (IV-63) будет уравнение (1V-62). в последнем случае абсолютная переменная температуры T заменяется избыточной переменной F. Используя граничные условия (IV-64 и IV-66), определите постоянные коэффициенты A, B, C, D. Из первого условия(1V-64) выполните x-0 и A-0. x = 0 должен быть равен нулю, но cosx |z₌ ₀ = coso = 1, то есть если он не равен пуле, то коэффициент a должен быть равен нулю. Поскольку нас интересуют нетривиальные решения, а именно, они не равны нулю Аналогично коэффициент B равен нулю, поэтому если x = L, то требуется sinkL 0.Значение нетривиального решения, удовлетворяющего границе уравнения (IV-63) .

Условие (IV-64) называется собственным значением, а нетривиальное решение этой задачи называется собственной функцией, соответствующей заданному eigenvalue. So кл- ПЛ, вот н= 0、1、2、3、…в результате k>/ / L, k₂-2n / L,…kₙ= !! Си.,…Из условия (IV-66) следует, что коэффициент C = 0 (y — * oo, если e * y неограничен) Рост.) При A = 0, C-0 решение(1V-62) не может принимать вид^-BDe sin ^-^-x ^ =£e sin ^ — ^ ^ x ^ (IV-67) решение (IV-67) удовлетворяет дифференциальному уравнению (1V-63). любое натуральное значение n. из полученного решения (IV-67) видно, что для 7 -Ta 0 условие (IV-65) не выполняется для выбора E-En. 0 после этого .

Единственным решением проблемы является тривиальное решение 0 = 0.С другой стороны, сумма любых 2 (и, следовательно, любого конечного числа) решений линейных однородных производных Уравнение также является решением. Если мы суммируем число решений типа (IV-67) до бесконечности, то увидим, что мы можем выбрать E = En так, чтобы условие (IV-65) было выполнено(или、 Условие (IV-66)] и бесконечная сумма d = 2£e_T «sin (- ^x’) (IV-68) сходятся, а краевые задачи (IV-63), (IV-64), (IV-65) и (IV-66) сходятся.

Как найти Ep Используйте граничное условие (IV-68) (IV-65). если y = 0, то форма выражения (IV-68) равна (IV-69). чтобы понять формулу (IV-69), вспомним следующее положение из математики. Функция является F (x)с периодом 2n дифференцируема или, по крайней мере, кусочно дифференцируема и может быть расширена рядом Фурье следующих форм: где a0, an и bn Величина, которая называется коэффициентом ряда Фурье и определяется по формуле: lnp-j /(x) cosnxJx (l = 1,2 t 3,…(IV-71) — — — l l°0 = ’ T (IV-713) — — — l l 6n = — J — (F (x) sin nxdx(n = l, 2, 3. ). л.(ИЖ-72) с / — — — Л. Если F (х) нечетная функция (χχ) потому что NX-это странно. Помнишь? В случае нечетной функции выполняется равенство f (- x)= — f (x).

Тогда об этом л§f (x) dx = 0-и, следовательно, в случае (IV-71) an = jf (x) cos nx dx = 0(n = 1, 2, 3,…). — Я имею в виду… Вид ряда Фурье нечетных функций (IV-70) имеет вид f(x)= S b sin px. Чтобы определить bn из (IV-73) n = I (IV-72), для четной функции используйте равенство f (- X) 0), то, изменив переменную, можно переписать Формулы (IV-73) и (IV-75) в виде ZW = BS&». грех (- ПХ) (IV-76) и L sino теперь возвращаются к Формуле (IV-69).

Положим Dx)=в этом случае Формулы (IV-69)и(IV-76) идентичны. Таким образом, выражение (IV-69) представляет собой ряд Фурье следующих констант: Интервал 10, ZJ(Z7 > 0).Константа En равна Ln и по формуле (IV-77) y-x)/ x, где n = 1,2,3……….(IV-77) 0 n = 1, 3, 5, cos pl—1 = n = 2, 4, 6, cos pl-4-1 и En = 0.Конкретные решения (IV-68) могут быть записаны в окончательном виде (IV-78).Здесь мы используем следующие результаты: если функция Dx) с периодом разлагается равномерно В случае сходящегося ряда последний должен быть ближе к Фурье. (Серия (IV-78) четко сходится равномерно.

Отметим, что согласно (IV-78), температура стенки в любой точке не зависит. Теплопроводность в случае учета отсутствия теплового потока на стене. Из полученного решения также ясно, что если = 0, то решение 0 = 0.§ 4. При передаче тепла от жидкости (а.) до падения теплопроводности в ребрах определенных пересечений через сплошную стенку к газу (А₂), общее тепловое сопротивление!K определяется. 4 -= по формуле (1-12)-+ 4-± ИЖ — ⁷⁹ > к-Аль — Xa₂ последний срок 1 /a₂ вносит наибольший вклад в общее тепловое сопротивление, 1, а в некоторых случаях и 2-х значное число больше, чем первых 2-х значное число членов 1 / aP обычно, a₂ не может быть увеличен.

Кроме того, для усиления теплопередачи поверхность стенки со стороны газа увеличена ребрами. Рассмотрим теплопроводность некоторой кромки Раздел 1112).Упростите фактический процесс и предположите следующее: 1)температура ребра T изменяется только вдоль оси Z. 2) тепло передается только в окружающую среду Верхняя (Lb) и нижняя (Lb) поверхности ребра. 3) коэффициент передачи тепла от края нервюры к окружающей среде a постоянн значение, и поток тепла Формула = a (T-T.), (IV-80), где Tf-температура окружающей среды.

Выведем дифференциальное уравнение теплопроводности для ribs. To для этого создадим уравнение теплового равновесия выделенного объема qz2hb-qz + bz2hb-a (2b & z) (T-Tj)= ребро в виде 0 (рисунок IV-10).Разделите все члены полученного уравнения на 2 hb и найдите ограничение Az O (IV-81) dz h. подставьте (IV-81) вместо q. Значение из уравнения закона Фурье (1-Za). в результате получаем искомое дифференциальное уравнение теплопроводности для рассматриваемого ребра dza.

Дополнительные граничные условия: 1) t = Tda (IV-83) решение z = O, z-L обозначается обобщенной переменной (III-13a).Введение температурных безразмерных параметров (IV-84) ’W-координата 2 tf= -^ -. (IV-85) (IV-82) эталонный Bi = — y и параметрический эталонный P = — (для характерных размеров ребер、 Его длина L и половина толщины L). в этом случае наиболее удобное для решения сочетание критериев Bi и P принимает вид: условие задачи обобщенной переменной описывается следующим образом:.

Дифференциальные уравнения (IV-82) (IV-86) дополнительные граничные условия (IV-87) и решение системы br = o = 1 (IV-88) (IV-86, IV-87, IV-88) получены с помощью гиперболической функции в виде Или позвольте мне ввести характеристики эффективности реберной кости 8-NZ-(THN) sh NZ (IV-89) chN (l-Z) ch N (IV-90).Используйте отношение тепло которое на самом деле в качестве его меры Тепло, рассеиваемое поверхностью ребра, рассеивается, если температура всей поверхности ребра равна Tw. As в рассматриваемом случае и эффективность ребер Формула fOdZ-т — — — — — — — — — — — 5-L «1-г > I» (IV-91) о (IV-92) может быть определена.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://megapredmet.ru/1-32873.html

http://lfirmal.com/teploprovodnost-pri-stacionarnom-rezhime/