Однородная система линейных уравнений имеет бесконечно много решений

Однородные системы линейных алгебраических уравнений. Фундаментальная система решений. Первая часть.

Однородные системы линейных алгебраических уравнений. Нулевое (тривиальное) решение.

Для начала стоит вспомнить, что такое однородные системы линейных алгебраических уравнений. В теме «Система линейных алгебраических уравнений. Основные термины. Матричная форма записи» вопрос классификации систем осуществлялся подробно, здесь же лишь вкратце напомню основные термины. Итак, система линейных алгебраических уравнений (СЛАУ) называется однородной, если все свободные члены этой системы равны нулю. Например, система $\left \ < \begin& 2x_1-3x_2-x_3-x_4=0;\\ & -4x_1+5x_2+3x_4=0. \end \right.$ является однородной, так как все свободные члены этой системы (т.е. числа, стоящие в правых частях равенств) – нули.

Любая однородная СЛАУ имеет хотя бы одно решение – нулевое (его ещё называют тривиальное), в котором все переменные равны нулю. Подставим, например, $x_1=0$, $x_2=0$, $x_3=0$ и $x_4=0$ в записанную выше систему. Получим два верных равенства:

Однако следствие из теоремы Кронекера-Капелли однозначно указывает на то, что если СЛАУ имеет решение, то есть только два варианта. Либо это решение единственно (и тогда СЛАУ называют определённой), либо этих решений бесконечно много (такую СЛАУ именуют неопределённой). Возникает первый вопрос: как выяснить, сколько решений имеет заданная нам однородная СЛАУ? Одно (нулевое) или бесконечность?

Та однородная СЛАУ, которая рассмотрена выше, имеет не только нулевое решение. Подставим, например, $x_1=1$, $x_2=-1$, $x_3=2$ и $x_4=3$:

Мы получили два верных равенства, поэтому $x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$ – тоже является решением данной СЛАУ. Отсюда, кстати, следует вывод: так как наша СЛАУ имеет более чем одно решение, то эта СЛАУ является неопределенной, т.е. она имеет бесконечное количество решений.

Кстати сказать, чтобы не писать каждый раз выражения вроде «$x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$», пишут все значения переменных в матрицу-столбец: $\left(\begin 1 \\ -1 \\ 2 \\ 3 \end \right)$. Эту матрицу тоже называют решением СЛАУ.

Теперь можно вернуться к вопросу о количестве решений однородной СЛАУ. Согласно следствию из теоремы Кронекера-Капелли, если $r=n$ ($n$ – количество переменных), то СЛАУ имеет единственное решение. Если же $r < n$, то СЛАУ имеет бесконечное количество решений.

Случай $r=n$ не интересен. Для однородных СЛАУ он означает, что система имеет только нулевое решение. А вот случай $r < n$ представляет особый интерес.

Этот случай уже был рассмотрен в теме «Базисные и свободные переменные. Общее и базисное решения СЛАУ». По сути, однородные СЛАУ – это всего лишь частный случай системы линейных уравнений, поэтому вся терминология (базисные, свободные переменные и т.д.) остаётся в силе.

Что такое базисные и свободные переменные? показать\скрыть

Прежде чем дать определение этим терминам, стоит вспомнить, что означает фраза «ранг матрицы равен $r$». Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют. Теперь можно дать следующее определение:

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Фундаментальная система решений однородной СЛАУ.

С однородными СЛАУ связано дополнительное понятие – фундаментальная система решений. Дело в том, что если ранг матрицы системы однородной СЛАУ равен $r$, то такая СЛАУ имеет $n-r$ линейно независимых решений: $\varphi_1$, $\varphi_2$. $\varphi_$.

Часто вместо словосочетания «фундаментальная система решений» используют аббревиатуру «ФСР». Если решения $\varphi_1$, $\varphi_2$. $\varphi_$ образуют ФСР, и $X$ – матрица переменных данной СЛАУ, то общее решение СЛАУ можно представить в таком виде:

$$ X=C_1\cdot \varphi_1+C_2\cdot \varphi_2+\ldots+C_\cdot \varphi_, $$

где $C_1$, $C_2$. $C_$ – произвольные постоянные.

Что значит «линейно независимые решения»? показать\скрыть

В данной ситуации под решением понимается матрица-столбец, в которой перечислены значения неизвестных.

Решения $\varphi_1$, $\varphi_2$, $\ldots$, $\varphi_n$ называются линейно зависимыми, если существуют такие константы $\alpha_1,\;\alpha_2,\;\alpha_3,\ldots,\alpha_n$, что выполняется следующее равенство:

$$ \alpha_1\cdot \varphi_1+\alpha_2\cdot \varphi_2+\ldots+\alpha_n\cdot \varphi_n=O $$

при условии, что среди коэффициентов $\alpha_i$ есть хотя бы один, не равный нулю.

Если же указанное выше равенство возможно лишь при условии $\alpha_1=\alpha_2=\ldots=\alpha_n=0$, то система решений называется линейно независимой.

Буква «$O$» в данном определении обозначает нулевую матрицу. Проще всего пояснить это определение на конкретном примере. Давайте рассмотрим ту СЛАУ, о которой шла речь в начале темы. Мы уже проверили, что $\varphi_1=\left(\begin 1 \\-1 \\2 \\3 \end\right)$ – решение данной СЛАУ. Точно так же можно показать, что $\varphi_2=\left(\begin 16 \\ 11 \\ -4 \\ 3 \end\right)$, $\varphi_3=\left(\begin -5 \\ -4 \\ 2 \\ 0 \end\right)$, $\varphi_4=\left(\begin 7 \\ 5 \\ -2 \\ 1\end\right)$ – решения данной системы.

Примем $\alpha_1=-1$, $\alpha_2=0$, $\alpha_3=4$, $\alpha_4=3$. Выясним, чему же равно выражение $\alpha_1\cdot \varphi_1+\alpha_2\cdot \varphi_2+\alpha_3\cdot \varphi_3+\alpha_4\cdot \varphi_4$:

$$ \alpha_1\cdot \varphi_1+\alpha_2\cdot \varphi_2+\alpha_3\cdot \varphi_3+\alpha_4\cdot \varphi_4= -1\cdot \left(\begin 1 \\-1 \\2 \\3 \end\right)+ 0\cdot \left(\begin 16 \\ 11 \\ -4 \\ 3 \end\right)+ 4\cdot \left(\begin -5 \\ -4 \\ 2 \\ 0 \end\right)+ 3\cdot \left(\begin 7 \\ 5 \\ -2 \\ 1\end\right)=\\ =\left(\begin -1+0-20+21\\ 1+0-16+15 \\ -2+0+8-6 \\ -3+0+0+3\end\right)= \left(\begin 0\\ 0\\ 0\\0\end\right). $$

Итак, существуют такие значения констант $\alpha_1$, $\alpha_2$, $\alpha_3$, $\alpha_4$, не все одновременно равные нулю, что выполняется равенство $\alpha_1\cdot \varphi_1+\alpha_2\cdot \varphi_2+\alpha_3\cdot \varphi_3+\alpha_4\cdot \varphi_4=O$. Вывод: совокупность решений $\varphi_1$, $\varphi_2$, $\varphi_3$, $\varphi_4$ – линейно зависима.

Для сравнения: равенство $\alpha_1\cdot \varphi_1+\alpha_2\cdot \varphi_2=O$ возможно лишь при условии $\alpha_1=\alpha_2=0$ (я не буду это доказывать, поверьте на слово 🙂 ). Следовательно, система $\varphi_1$, $\varphi_2$ является линейно независимой.

Если система является неопределённой, указать фундаментальную систему решений.

Итак, мы имеем однородную СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая однородная система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ \left( \begin 3 & -6 & 9 & 13 & 0 \\ -1 & 2 & 1 & 1 & 0 \\ 1 & -2 & 2 & 3 & 0 \end \right) \rightarrow \left|\begin & \text<поменяем местами первую и третью>\\ & \text<строки, чтобы первым элементом>\\ & \text <первой строки стала единица.>\end\right| \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 0\\ -1 & 2 & 1 & 1 & 0 \\ 3 & -6 & 9 & 13 & 0 \end \right) \begin \phantom <0>\\ II+I\\ III-3\cdot I\end \rightarrow \left( \begin 1 & -2 & 2 & 3 & 0\\ 0 & 0 & 3 & 4 & 0 \\ 0 & 0 & 3 & 4 & 0 \end\right) \begin \phantom <0>\\ \phantom<0>\\ III-II\end \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 0\\ 0 & 0 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end\right). $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $\rang A=\rang\widetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $\left( \begin 3 & -6 & 9 & 13 \\ -1 & 2 & 1 & 1 \\ 1 & -2 & 2 & 3 \end \right)$, так и в преобразованной матрице системы, т.е. в $\left( \begin 1 & -2 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end\right)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_<2>^<(1)>=\left| \begin 1 & -2 \\ 0 & 0 \end\right|=1\cdot 0-(-2)\cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №2 и №4:

$$ M_<2>^<(2)>=\left| \begin 2 & 3\\ 3 & 4 \end\right|=2\cdot 4-3\cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №2 (он соответствует переменной $x_2$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_2$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Количество свободных переменных, как и количество решений в ФСР, равно $n-r=2$. Свободными переменными будут $x_2$ и $x_4$. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $\left( \begin 1 & -2 & 2 & 3 & 0\\ 0 & 0 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end\right)$ от нулевой строки:

$$ \left( \begin 1 & -2 & 2 & 3 & 0\\ 0 & 0 & 3 & 4 & 0 \end\right) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Почему меняются знаки? Что вообще значит это перенесение столбцов? показать\скрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $\left( \begin 1 & -2 & 2 & 3 & 0\\ 0 & 0 & 3 & 4 & 0 \end\right)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=0$, а вторая строка соответствует уравнению $3x_3+4x_4=0$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ \left( \begin 1 & 2 & 2 & -3\\ 0 & 3 & 0 & -4 \end\right) \begin \phantom <0>\\ II:3 \end \rightarrow \left( \begin 1 & 2 & 2 & -3\\ 0 & 1 & 0 & -4/3 \end\right) \begin I-2\cdot II \\ \phantom <0>\end \rightarrow \\ \rightarrow \left(\begin 1 & 0 & 2 & -1/3\\ 0 & 1 & 0 & -4/3 \end\right). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Вспоминая, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, получим:

Нами найдено общее решение заданной однородной СЛАУ. Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=2x_2-\frac<1><3>x_4$ и $x_3=-\frac<4><3>x_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3\cdot \left(2x_2-\frac<1><3>x_4\right)-6x_2+9\cdot \left(-\frac<4><3>x_4\right)+13x_4=0. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Теперь найдем фундаментальную систему решений. ФСР будет содержать $n-r=2$ решения. Для нахождения ФСР составим таблицу. В первой строке таблицы будут перечислены переменные: сначала базисные $x_1$, $x_3$, а затем свободные $x_2$ и $x_4$. Всего в таблице будут три строки. Так как у нас 2 свободные переменные, то под свободными переменными запишем единичную матрицу второго порядка, т.е. $\left(\begin 1 & 0 \\0 & 1\end\right)$. Таблица будет выглядеть так:

Теперь будем заполнять свободные ячейки. Начнём со второй строки. Мы знаем, что $x_1=2x_2-\frac<1><3>x_4$ и $x_3=-\frac<4><3>x_4$. Если $x_2=1$, $x_4=0$, то:

Найденные значения $x_1=2$ и $x_3=0$ запишем в соответствующие пустые ячейки второй строки:

Заполним и третью строку. Если $x_2=0$, $x_4=1$, то:

Найденные значения $x_1=-\frac<1><3>$ и $x_3=-\frac<4><3>$ запишем в соответствующие пустые ячейки третьей строки. Таким образом таблица будет заполнена полностью:

Из второй и третьей строки таблицы мы и запишем ФСР. Матрица неизвестных для нашей системы такова: $X=\left(\begin x_1 \\x_2 \\x_3 \\x_4 \end\right)$. В том же порядке, в котором в матрице $X$ перечислены переменные, записываем значения переменных из таблицы в две матрицы:

$$ \varphi_1=\left(\begin 2 \\1 \\0 \\0 \end\right);\; \varphi_2=\left(\begin -1/3 \\0 \\ -4/3 \\1 \end\right). $$

Совокупность $\varphi_1=\left(\begin 2 \\1 \\0 \\0 \end\right)$, $\varphi_2=\left(\begin -1/3 \\0 \\ -4/3 \\1 \end\right)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1\cdot \varphi_1+C_2\cdot \varphi_2$. Или в развёрнутом виде:

$$ X=C_1\cdot\left(\begin 2 \\1 \\0 \\0 \end\right)+C_2\cdot\left(\begin -1/3 \\0 \\ -4/3 \\1 \end\right), $$

где $C_1$ и $C_2$ – произвольные постоянные.

Ответ: Общее решение: $\left\ <\begin& x_1=2x_2-\frac<1><3>x_4;\\ & x_2\in R;\\ & x_3=-\frac<4><3>x_4;\\ & x_4 \in R. \end\right.$. Или так: $X=C_1\cdot\left(\begin 2 \\1 \\0 \\0 \end\right)+C_2\cdot\left(\begin -1/3 \\0 \\ -4/3 \\1 \end\right)$, где $C_1$ и $C_2$ – произвольные константы. Фундаментальная система решений: $\varphi_1=\left(\begin 2 \\1 \\0 \\0 \end\right)$, $\varphi_2=\left(\begin -1/3 \\0 \\ -4/3 \\1 \end\right)$.

Записать ФСР однородной СЛАУ

зная общее решение. Записать общее решение с помощью ФСР.

Общее решение уже было получено в теме «метод Крамера» (пример №4). Это решение таково:

Опираясь на предыдущий пример №1, попробуйте составить ФСР самостоятельно, а потом сверить с ответом.

Ранг матрицы системы $r=3$ (поэтому у нас три базисных переменных), количество переменных $n=5$. Количество свободных переменных и количество решений ФСР равно $n-r=2$.

Так же, как и в предыдущем примере, составим ФСР. При составлении учтём, что $x_1$, $x_2$, $x_3$ – базисные переменные, а $x_4$, $x_5$ – свободные переменные.

Совокупность $\varphi_1=\left(\begin -17/19 \\-15/19 \\20/19 \\1\\0 \end\right)$, $\varphi_2=\left(\begin 144/19 \\ 41/19 \\ -4/19\\0\\1 \end\right)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1\cdot \varphi_1+C_2\cdot \varphi_2$. Или в развёрнутом виде:

$$ X=C_1\cdot\left(\begin -17/19 \\-15/19 \\20/19 \\1\\0 \end\right)+C_2\cdot\left(\begin 144/19 \\ 41/19 \\ -4/19\\0\\1 \end\right), $$

где $C_1$ и $C_2$ – произвольные постоянные.

Ответ: Фундаментальная система решений: $\varphi_1=\left(\begin -17/19 \\-15/19 \\20/19 \\1\\0 \end\right)$, $\varphi_2=\left(\begin 144/19 \\ 41/19 \\ -4/19\\0\\1 \end\right)$. Общее решение: $X=C_1\cdot\left(\begin -17/19 \\-15/19 \\20/19 \\1\\0 \end\right)+C_2\cdot\left(\begin 144/19 \\ 41/19 \\ -4/19\\0\\1 \end\right)$, где $C_1$ и $C_2$ – произвольные константы.

Продолжение этой темы рассмотрим во второй части, где разберём ещё один пример с нахождением общего решения и ФСР.

12. Однородная система линейных уравнений и ее решения

Система линейных уравнений

У которой столбец свободных членов — нулевой, называется однородной.

Однородная СЛУ (ОСЛУ) всегда совместна, так как нулевое решение (0,0,0) ей всегда удовлетворяет.

Поэтому, если однородная СЛУ имеет единственное решение, тогда оно — нулевое, так как для данного вида систем нулевое решение всегда имеет место.

Однородная СЛУ имеет ненулевые решения, если решений бесконечно много.

Утверждение 9. (Критерий существования ненулевых решений ОСЛУ).

Для того, чтобы однородная СЛУ имела ненулевые решения, необходимо и достаточно, чтобы определитель системы был равен нулю.

Пример №31. Решить однородную СЛУ

= = 30

Определитель однородной системы отличен от нуля, следовательно решение единственное – нулевое.

Пример №32. Решить однородную СЛУ

= = 0

Определитель однородной системы равен нулю, следовательно — решений бесконечно много.

Общее решение ищем с помощью метода Гаусса

Далее записываем систему, соответствующую полученной ступенчатой матрице, и являющуюся эквивалентной исходной.

=> => ,

Метод Гаусса — определение и вычисление с примерами решения

Содержание:

Базисные и свободные переменные:

Пусть задана система

Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:

  1. исключение из системы уравнения вида
  2. умножение обеих частей одного из уравнений системы на любое действительное число ;
  3. перестановка местами уравнений системы;
  4. прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число не равное нулю.

Элементарные преобразования преобразуют данную систему уравнений в эквивалентную систему, т.е. в систему, которая имеет те же решения, что и исходная.

Для решения системы т линейных уравнений с т неизвестными удобно применять метод Гаусса, называемый методом последовательного исключения неизвестных, который основан на применении элементарных преобразований системы. Рассмотрим этот метод.

Предположим, что в системе (6.1.1). Если это не так, то переставим уравнения системы так, чтобы .

На первом шаге метода Гаусса исключим неизвестное из всех уравнений системы (6.1.1), начиная со второго. Для этого последовательно умножим первое уравнение системы на множители

и вычтем последовательно преобразованные уравнения из второго, третьего, . последнего уравнения системы (6.1.1). В результате получим эквивалентную систему:

(6.1.2)

в которой коэффициенты вычислены по формулам:

На втором шаге метода Гаусса исключим неизвестное из всех уравнений системы (6.1.2) начиная с третьего, предполагая, что (в противном случае, переставим уравнения системы (6.1.2)

чтобы это условие было выполнено). Для исключения неизвестного последовательно умножим второе уравнение системы (6.1.2) на множетели и вычтем последовательно преобразованные уравнения из третьего, четвёртого, последнего. уравнения системы (6.1.2). В результате получим эквивалентную систему:

в которой коэффициенты вычислены по формулам:

Продолжая аналогичные преобразования, систему (6.1.1) можно привести к одному из видов:

Совокупность элементарных преобразований, приводящих систему (6.1.1) к виду (6.1.4) или (6.1.5) называется прямым ходом метода Гаусса.

Отметим, что если на каком-то шаге прямого хода метода Гаусса получим уравнение вида:

, то это означает, что система (6.1.1) несовместна.

Итак, предположим, что в результате прямого хода метода Гаусса мы получили систему (6.1.4), которая называется системой треугольного вида. Тогда из последнего уравнения находим значение подставляем найденное значение в предпоследнее уравнение системы (6.1.4) и находим значение ; и т.д. двигаясь снизу вверх в системе (6.1.4) находим единственные значения неизвестных которые и определяют единственное решение системы (6.1.1). Построение решения системы (6.1.4) называют обратным ходом метода Гаусса.

Если же в результате прямого хода метода Гаусса мы получим систему (6.1.5), которая называется системой ступенчатого вида, то из последнего уравнения этой системы находим значение неизвсстного которое выражается через неизвестные . Найденное выражение подставляем в предпоследнее уравнение системы (6.1.5) и выражаем неизвестное через неизвестные и т.д. Двигаясь снизу вверх в системе (6.1.5) находим выражения неизвестных через неизвестные При этом неизвестные называются базисными неизвестными, а неизвестные — свободными. Так как свободным неизвестным можно придавать любые значения и получать соответствующие значения базисных неизвестных, то система (6.1.5), а, следовательно, и система (6.1.1) в этом случае имеет бесконечное множество решений. Полученные выражения базисных неизвестных через свободные неизвестные называются общим решением системы уравнений (6.1.1).

Таким образом, если система (6.1.1) путём элементарных преобразований приводится к треугольному виду (6.1.4), то она имеет единственное решение, если же она приводится к системе ступенчатого вида (6.1.5), то она имеет бесконечное множество решений. При этом неизвестные , начинающие уравнения ступенчатой системы, называются базисными, а остальные неизвестные — свободными.

Практически удобнее преобразовывать не саму систему уравнений (6.1.1), а расширенную матрицу системы, соединяя последовательно получающиеся матрицы знаком эквивалентности.

Формализовать метод Гаусса можно при помощи следующего алгоритма.

Алгоритм решения системы m линейных уравнений с n неизвестными методом Гаусса

1. Составьте расширенную матрицу коэффициентов системы уравнений так, чтобы было не равно нулю:

2. Выполните первый шаг метода Гаусса: в первом столбце начиная со второй строки, запишите нули, а все другие элементы вычислите по формуле

Матрица после первого шага примет вид

3. Выполните второй шаг метода Гаусса, предполагая, что : во втором столбце начиная с третьей строки, запишите нули, а все другие элементы вычислите по формуле

После второго шага матрица примет вид

4. Продолжая аналогичные преобразования, придёте к одному из двух случаев:

а) либо в ходе преобразований получим уравнение вида

тогда данная система несовместна;

б) либо придём к матрице вида:

где . Возможное уменьшение числа строк

связано с тем, что в процессе преобразований матрицы исключаются строки, состоящие из нулей.

5. Использовав конечную матрицу, составьте систему, при этом возможны два случая:

Система имеет единственное,решение , которое находим из системы обратным ходом метода Гаусса. Из последнего уравнения находите . Из предпоследнего уравнения находите затем из третьего от конца — и т.д., двигаясь снизу вверх, найдём все неизвестные .

5.2. :

Тогда r неизвестных будут базисными, а остальные (n-r) — свободными. Из последнего уравнения выражаете неизвестное через . Из предпоследнего уравнения находите и т.д.

Система имеет в этом случае бесконечное множество решений.

Приведенный алгоритм можно несколько видоизменить и получить алгоритм полного исключения, состоящий в выполнении следующих шагов. На первом шаге:

  1. составляется расширенная матрица;
  2. выбирается разрешающий элемент расширенной матрицы (если , строки матрицы можно переставить так, чтобы выполнялось условие );
  3. элементы разрешающей строки (строки, содержащей разрешающий элемент) оставляем без изменения; элементы разрешающего столбца (столбца, содержащего разрешающий элемент), кроме разрешающего элемента, заменяем нулями;
  4. все другие элементы вычисляем по правилу прямоугольника: преобразуемый элемент равен разности произведений элементов главной диагонали (главную диагональ образует разрешающий элемент и преобразуемый) и побочной диагонали (побочную диагональ образуют элементы, стоящие в разрешающей строке и разрешающем столбце): — разрешающий элемент (см. схему).

Последующие шаги выполняем по правилам:

1) выбирается разрешающий элемент (диагональный элемент матрицы);

2) элементы разрешающей строки оставляем без изменения;

3) все элементы разрешающего столбца, кроме разрешающего элемента, заменяем нулями; • •

4) все другие элементы матрицы пересчитываем по правилу прямоугольника.

На последнем шаге делим элементы строк на диагональные элементы матрицы, записанные слева от вертикальной черты, и получаем решение системы.

Пример:

Решить систему уравнений:

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом

Из последней матрицы находим следующее решение системы

уравнении:

Ответ:

Пример:

Решить систему уравнений:

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом

Система привелась к ступенчатому виду (трапециевидной форме):

в которой неизвестные — базисные, а — свободные. Из второго уравнения системы (6.1.6) находим выражение через . Из первого уравнений найдём выражение через и . Система имеет бесконечное множество решений. Общее решение системы имеет вид:

в котором принимают любые значения из множества действительных чисел.

Если в общем решении положить , то получим решение , которое называется частным решением заданной системы.

Ответ: система имеет бесконечное множество решений, общее решение которой записывается в виде:

Пример:

Решить систему уравнений:

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом В последней матрице мы получили четвёртую строку, которая равносильна уравнению . Это означает, что заданная система не имеет решений.

Ответ: система несовместна.

Замечание 1. Если дана система уравнений (6.1.1), в которой число уравнений m равно числу неизвестных n (m=n) и определитель этой системы не равен нулю , то система имеет единственное решение, которое можно найти по формулам Крамера: , где определитель получен из определи-теля заменой j-ro столбца столбцом свободных членов.

Если же такую систему (m-n) записать в матричной форме AX=F, то её решение можно найти по формуле и оно является единственным.

Замечание 2. Используя метод Гаусса, тем самым и алгоритм полного исключения, можно находить обратную матрицу. Для этого составляется расширенная матрица, в которой слева от вертикальной черты записана матрица А, а справа — единичная матрица. Реализовав алгоритм полного исключения, справа от вертикальной черты получаем обратную матрицу, а слева — единичную.

Пример:

Найти обратную матрицу для матрицы:

Решение:

то обратная матрица существует. Составим расширенную мат-рицу и применим алгоритм полного исключения:

Покажем, что

ответ

Исследование совместности и определённости системы. Теорема Кронекера-Капелли

Рассмотрим систему (6.1.1) m линейных уравнений с n неизвестными при любых m и n (случай m=n не исключается). Вопрос о совместности системы решается следующим критерием.

Теорема 6.2.1. (критерий Кронкера-Капелли). Для того, чтобы система линейных уравнений(6.1.1) была совместна, необходимо и достаточно, чтобы ранг матрицы А системы был равен рангу расширенной матрицы .

Доказательство и Необходимость:

Предположим, что система (6.1.1) совместна и — какое-либо её решение (возможно единственное). По определению решения системы получаем:

Из этих равенств следует, что последний столбец матрицы есть линейная комбинация остальных ее столбцов с коэффициентами , то есть система вектор-столбцов матрицы линейно зависима (свойство 3 п.2.5) и значит последний столбец матрицы не изменяет ранга матрицы А, т.е.

.

Достаточность. Пусть . Рассмотрим r базисных

столбцов матрицы А, которые одновременно будут базисными столбцами и матрицы . В этом случае последний столбец матрицы можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, то есть

где — коэффициенты линейных комбинаций. А это означает, что — решение системы (6.1.1), следовательно,

эта система совместна.

Совместная система линейных уравнений (6.1.1) может быть либо определенной, либо неопределенной.

Следующая теорема даст критерий определенности.

Теорема 6.2.2. Совместная система линейных уравнений имеет единственное решение тогда и только тогда, когда ранг матрицы А системы равен числу п ее неизвестных.

Таким образом, если число уравнений m системы (6.1.1) меньше числа ее неизвестных n и система совместна, то ранг матрицы системы . Значит система неопределенная.

В случае по теореме 6.2.2 получаем, что система имеет единственное решение. Так как , то определитель и квадратная матрица А имеет обратную x матрицу и её решение можно найти по формуле: , где Х- столбец неизвестных, F— столбец свободных членов, или по формулам Крамера.

Следует отметить, что, решая систему (6.1.1) методом Гаусса, мы определяем и совместность, и определённость системы.

Пример:

Исследовать на совместность и определённость следующую систему линейных уравнений:

Решение:

Составим расширенную матрицу заданной системы. Определяя её ранг, находим тем самым и ранг матрицы системы. Для нахождения ранга матрицы применим алгоритм метода Гаусса.

Из последней матрицы следует, что ранг расширенной матрицы не может быть больше ранга матрицы А системы. Так как

, то заданная система совместная и неопределённая.

Однородные системы линейных уравнений

Система линейных уравнений (6.1.1) называется однородной, если все свободные члены равны нулю, то есть система имеет следующий вид:

Эта система всегда совместна, так как очевидно, что она имеет нулевое решение

Для однородной системы важно установить, имеет ли она ненулевые решения. Этот факт устанавливается следующей теоремой.

Теорема 6.3.1. Для того, чтобы однородная система имела ненулевые решения, необходимо и достаточно, чтобы ранг г матрицы А системы был меньше числа неизвестных n (rn).

Доказательство. Необходимость. Пусть система (6.3.1) имеет ненулевое решение. Тогда она неопределённая, т.к. имеет еще и нулевое решение. В силу теоремы 6.2.2 ранг матрицы неопределённой системы не может равняться n потому что при r(А)=n система определённая. Следовательно, и так как он не может быль больше n то .

Достаточность. Если , то в силу теоремы 6.2.2 система (6.3.1) имеет бесчисленное множество решений. А так как только одно решение является нулевым, то все остальные решения ненулевые.

Следствие 1. Если число неизвестных в однородной системе больше числа уравнений, то однородная система имеет ненулевые решения.

Доказательство. Действительно, ранг матрицы системы (6.3.1) не может превышать m. Но так как по условию, то и . Следовательно, в силу теоремы 6.3.1 система имеет ненулевые решения.

Следствие 2. Для того, чтобы однородная система с квадрат-ной матрицей имела ненулевые решения, необходимо и достаточно, чтобы её определитель равнялся нулю.

Доказательство. Рассмотрим однородную систему с квадратной матрицей:

(6.3.2)

Если определитель матрицы системы , то ранг матрицы , тогда в силу теоремы 6.3.1 система (6.3.2) имеет ненулевое решение, так как условие является необходимым и достаточным условием для существования ненулевого решения. Заметим, что если определитель матрицы системы (6.3.2) не равен нулю, то в силу теоремы 6.3.1 она имеет только нулевое решение.

Пример:

Решить систему однородных линейных уравнений:

Решение:

Составим матицу системы и применим алгоритм полного исключения:

Из последней матрицы следует, что и система имеет бесчисленное множество решений.

Используя последнюю матрицу, последовательно находим общее решение:

Неизвестные — базисные, — свободная неизвестная, .

Фундаментальная система решений. Общее решение неоднородной системы линейных уравнений

Рассмотрим систему однородных линейных уравнений

(6.4.1)

системы m линейных однородных уравнений с n неизвестными можно рассматривать как вектор-строку или как вектор-столбец . Поэтому имеют смысл такие понятия, как сумма двух решений, произведение решения на число, линейная комбинация решений, линейная зависимость или независимость системы решений. Непосредственной подстановкой в систему (6.4.1) можно показать, что:

1) сумма двух решений также является решением системы, т.е.

если — решения системы

(6.4.1), то и — решение системы (6.4.1);

2) произведение решенийна любое число есть решение системы, т.е. — решение системы.

Из приведенных свойств следует, что

3) линейная комбинация решений системы (6.4.1) является решением этой системы.

В частности, если однородная система (6.4.1) имеет хотя бы одно ненулевое решение, то из него умножением на произвольные числа, можно получить бесконечное множество решений.

Определение 6.4.1. Фундаментальной системой решений для системы однородных линейных уравнений (6.4.1) называется линейно независимая система решений, через которую линейно выражается любое решение системы (6.4.1).

Заметим, что если ранг матрицы системы (6.4.1) равен числу неизвестных n (r(А)=n), то эта система не имеет фундаментальной системы решений, так как единственным решением будет нулевое решение, составляющее линейно зависимую систему. Существование и число фундаментальных решений определяется следующей теоремой.

Теорема 6.4.1. Если ранг матрицы однородной системы уравнений (6.4.1) меньше числа неизвестных (r(А)n), то система (6.4.1) имеет бесконечное множество фундаментальных систем решений, причём каждая из них состоит из n-r решений и любые n-r линейно независимые решения составляют фундаментальную систему.

Сформулируем алгоритм построения фундаментальной системы решений:

  1. Выбираем любой определитель порядка n-r, отличный от нуля, в частности, определитель порядка n-r, у которого элементы главной диагонали равны единице, а остальные — нули.
  2. Свободным неизвестным придаём поочерёдно значения, равные элементам первой, второй и т.д. строк определителя, и каждый раз из общего решения находим соответствующие значения базисных неизвестных.
  3. Из полученных n-r решений составляют фундаментальную систему решений.

Меняя произвольно определитель , можно получать всевозможные фундаментальные системы решений.

Пример:

Найти общее решение и фундаментальную систему решений для однородной системы уравнений:

Решение:

Составим матрицу системы и применим алгоритм полного исключения.

Для последней матрицы составляем систему:

,

, из которой находим общее решение:

в котором — базисные неизвестные, а — свободные неизвестные.

Построим фундаментальную систему решений. Для этого выбираем определитель и свободным неизвестным придаём поочерёдно значения, равные элементам первой, а затем второй строк, т.е. положим вначале и получим из общего решения ; затем полагаем , из общего решения находим: .

Таким образом, построенные два решения (1; -1; 1; 0) и (-6; 4; 0; 1) составляют фундаментальную систему решений.

Если ранг матрицы системы однородных линейных уравнений (6.4.1) на единицу меньше числа неизвестных: то , и значит, фундаментальная система состоит из одного решения. Следовательно, любое ненулевое решение образует фундаментальную систему. В этом случае любые два решения различаются между собой лишь числовыми множителями.

Рассмотрим теперь неоднородную систему m линейных уравнений с n неизвестными (6.1.1). Если в системе (6.1.1) положить , то полученная однородная система называется приведенной для системы (6.1.1).

Решения системы (6.1.1) и её приведенной системы удовлетворяют свойствам:

  1. Сумма и разность любого решения системы (6.1.1) и любого решения её приведенной системы является решением неоднородной системы.
  2. Все решения неоднородной системы можно получить, прибавляя к одному (любому) её решению поочерёдно все решения её приведенной системы.

Из этих свойств следует теорема.

Теорема 6.4.2. Общее решение неоднородной системы (6.1.1.) определяется суммой любого частного решения этой системы и общего решения её приведенной системы.

Пример:

Найти общее решение системы:

Решение:

Составим расширенную матрицу (A|F) заданной системы и применим алгоритм полного исключения:

,

Преобразованной матрице соответствует система уравнений:

из которой находим общее решение системы:

, где — базисные неизвестные, а — свободные неизвестные.

Покажем, что это общее решение определяется суммой любого частного решения заданной системы и общего решения приведенной системы.

Подставляя вместо свободных неизвестных в общее решение системы нули, получаем частное решение исходной системы: .

Очевидно, что общее решение приведенной системы имеет вид:

Суммируя частное решение заданной системы и общее решение приведенной системы, получим общее решение (6.4.2) исходной системы.

Отметим, что общее решение системы (6.1.1) можно представить в векторном виде:

где — • некоторое решение (вектор-строка) системы (6.1.1);

— фундаментальная система решений системы (6.4.1);

— любые действительные числа.

Формула (6.4.4) называется общим решением системы (6.1.1) в векторной форме.

Запишем общее решение системы примера 6.4.1 в векторной форме. Для этого определим фундаментальную систему решений приведенной системы. Возьмём определитель и придадим поочерёдно свободным неизвестным значения, равные элементам строк. Пусть тогда из общего решения (6.4.3) приведенной системы находим ; если же , то . Следовательно, фундаментальную систему решений образуют решения: и . Тогда общее решение заданной системы в векторной форме имеет вид: , где — частное решение заданной системы; .

Определение метода Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример:

Решить систему уравнений методом Гаусса:

Решение:

Выпишем расширенную матрицу данной системы и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

б) третью строку умножим на (-5) и прибавим к ней вторую:

В результате всех этих преобразований данная система приводится к треугольному виду:

Из последнего уравнения находим Подставляя это значение во второе уравнение, имеем Далее из первого уравнения получим

Вычисление метода Гаусса

Этот метод основан на следующей теореме.

Теорема:

Элементарные преобразования не изменяют ранга матрицы.

К элементарным преобразованиям матрицы относят:

  1. перестановку двух параллельных рядов;
  2. умножение какого-нибудь ряда на число, отличное от нуля;
  3. прибавление к какому-либо ряду матрицы другого, параллельного ему ряда, умноженного на произвольное число.

Путем элементарных преобразований исходную матрицу можно привести к трапециевидной форме

где все диагональные элементы отличны от нуля. Тогда ранг полученной матрицы равен рангу исходной матрицы и равен k.

Пример:

Найти ранг матрицы

1) методом окаймляющих миноров;

2 ) методом Гаусса.

Указать один из базисных миноров.

Решение:

1. Найдем ранг матрицы методом окаймляющих миноров. Выберем минор второго порядка, отличный от нуля. Например,

Существуют два минора третьего порядка, окаймляющих минор

Т.к. миноры третьего порядка равны нулю, ранг матрицы равен двум. Базисным минором является, например, минор

2. Найдем ранг матрицы методом Гаусса. Производя последовательно элементарные преобразования, получим:

  1. переставили первую и третью строки;
  2. первую строку умножили на 2 и прибавили ко второй, первую строку умножили на 8 и прибавили к третьей;
  3. вторую строку умножили на -3 и прибавили к третьей.

Последняя матрица имеет трапециевидную форму и ее ранг равен двум. Следовательно, ранг исходной матрицы также равен двум.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Прямая линия на плоскости и в пространстве
  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Дифференциальные уравнения с примерами
  • Обратная матрица — определение и нахождение
  • Ранг матрицы — определение и вычисление
  • Определители второго и третьего порядков и их свойства

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://matica.org.ua/metodichki-i-knigi-po-matematike/elementy-matrichnoi-algebry-i-teorii-sistem-lineinykh-uravnenii/12-odnorodnaia-sistema-lineinykh-uravnenii-i-ee-resheniia

http://www.evkova.org/metod-gaussa