Однородная система уравнений имеет ненулевое решение когда

Определение общего решения СЛУ. Базисные и свободные неизвестные.

Системой уравнений называется общим решением совместная система A1x1+A2x2+…+Anxn=B (1), если выполняется следующее условие:
A1’x1+A2’x2+…+An’xn=B (2)
система (2) общее решение сист. (1)
условия:1)система (1) и (2) должны быть равносильны
2)система векторов A1,A2. An в сист. уравнений (2) явл. Разрешённой системой векторов

Набор неизвестных системы уравнения (1) называются базисными, если векторы при этих неизвестных образуют базис системы A1A2…An
не базисные неизвестные принято называть свободными.

Однородные СЛУ. Свойства однородной СЛУ. Теорема о нулевом и ненулевом решении СЛУ,

Однородная система — система, у которой все свободные члены равны нулю.

Однородная системавсегда совместна, так как x1=x2=x3=. =xn=0является решением системы.

Теоремы о ненулевых решениях однородной системы :

    Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг r ее основной матрицы был меньше числа n неизвестных, т. е. r

а) вектора F1,F2..Fk линейно-независимы

б) k=n-r(A) – число решений равно разности количества неизвестных и ранга системы

Теорема об условии существования ФСР однородной СЛУ

Любое линейное однородное дифференциальное уравнение n -го порядка с непрерывными коэффициентами имеет фундаментальную систему решений, т.е. систему из n линейно независимых решений.

53. Однородные системы уравнений

Линейное уравнение называется Однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

Очевидно, что всякая однородная система совместна и имеет нулевое (тривиальное) решение. Поэтому применительно к однородным системам линейных уравнений часто приходится искать ответ на вопрос о существовании ненулевых решений. Ответ на этот вопрос можно сформулировать в виде следующей теоремы.

Теорема. Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ее ранг меньше числа неизвестных.

Доказательство: Допустим, система, ранг которой равен, имеет ненулевое решение. Очевидно, что не превосходит . В случае система имеет единственное решение. Поскольку система однородных линейных уравнений всегда имеет нулевое решение, то именно нулевое решение и будет этим единственным решением. Таким образом, ненулевые решения возможны только при .

Следствие 1: Однородная система уравнений, в которой число уравнений меньше числа неизвестных, всегда имеет ненулевое решение.

Доказательство: Если у системы уравнений , то ранг системы не превышает числа уравнений , т. е. . Таким образом, выполняется условие и, значит, система имеет ненулевое решение.

Следствие 2: Однородная система уравнений с неизвестными имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю.

Доказательство: Допустим, система линейных однородных уравнений, матрица которой с определителем , имеет ненулевое решение. Тогда по доказанной теореме , а это значит, что матрица вырожденная, т. е. .

Однородная система уравнений имеет ненулевое решение когда

СИСТЕМА ОДНОРОДНЫХ ЛИНЕЙНЫХ УРАВНЕНИЙ

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда Δ ≠ 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Теорема. Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.

Итак, если определитель Δ ≠ 0, то система имеет единственное решение. Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.

, а значит x=y=z=0.

  • СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ МАТРИЦЫ

    Пусть задана квадратная матрица , X – некоторая матрица–столбец, высота которой совпадает с порядком матрицы A. .

    Во многих задачах приходится рассматривать уравнение относительно X

    ,

    где λ – некоторое число. Понятно, что при любом λ это уравнение имеет нулевое решение .

    Число λ, при котором это уравнение имеет ненулевые решения, называется собственным значением матрицы A, а X при таком λ называется собственным вектором матрицы A.

    Найдём собственный вектор матрицы A. Поскольку EX = X, то матричное уравнение можно переписать в виде или . В развёрнутом виде это уравнение можно переписать в виде системы линейных уравнений. Действительно .

    И, следовательно,

    Итак, получили систему однородных линейных уравнений для определения координат x1, x2, x3 вектора X. Чтобы система имела ненулевые решения необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.

    Это уравнение 3-ей степени относительно λ. Оно называется характеристическим уравнением матрицы A и служит для определения собственных значений λ.

    Каждому собственному значению λ соответствует собственный вектор X, координаты которого определяются из системы при соответствующем значении λ.

      Найти собственные векторы и соответствующие им собственные значения матрицы .

    Составим характеристическое уравнение и найдём собственные значения

      При λ1 = –1 получаем систему уравнений

    Если x1 = t, то, где t Î R.
    Если λ2 = 5

    ВЕКТОРНАЯ АЛГЕБРА. ПОНЯТИЕ ВЕКТРОРА

    При изучении различных разделов физики встречаются величины, которые полностью определяются заданием их численных значений, например, длина, площадь, масса, температура и т.д. Такие величины называются скалярными. Однако, кроме них встречаются и величины, для определения которых, кроме численного значения, необходимо знать также их направление в пространстве, например, сила, действующая на тело, скорость и ускорение тела при его движении в пространстве, напряжённость магнитного поля в данной точке пространства и т.д. Такие величины называются векторными.

    Введём строгое определение.

    Направленным отрезком назовём отрезок, относительно концов которого известно, какой из них первый, а какой второй.

    Вектором называется направленный отрезок, имеющий определённую длину, т.е. это отрезок определённой длины, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец. Если A – начало вектора, B – его конец, то вектор обозначается символом, кроме того, вектор часто обозначается одной буквой . На рисунке вектор обозначается отрезком, а его направление стрелкой.

    Модулем или длиной вектора называют длину определяющего его направленного отрезка. Обозначается || или ||.

    К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают. Он обозначается . Нулевой вектор не имеет определенного направления и модуль его равен нулю ||=0.

    Векторы и называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. При этом если векторы и одинаково направлены, будем писать , противоположно .

    Векторы, расположенные на прямых, параллельных одной и той же плоскости, называются компланарными.

    Два вектора и называются равными, если они коллинеарны, одинаково направлены и равны по длине. В этом случае пишут .

    Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства.

    1. Если дан вектор , то, выбрав любую точку , можем построить вектор , равный данному, и притом только один, или, как говорят, перенести вектор в точку .
    2. Если рассмотреть квадрат ABCD, то на основанииопределения равенства векторов, мы можем написать и , но , , хотя все они имеют одинаковую длину.

    ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

      Умножение вектора на число.

    Произведением вектора на число λ называется новый вектор такой, что:

    1. ;
    2. вектор коллинеарен вектору ;
    3. векторы и направлены одинаково, если λ>0 и противоположно, если λ


    источники:

    http://matica.org.ua/metodichki-i-knigi-po-matematike/analiticheskaia-geometriia-lineinaia-algebra/53-odnorodnye-sistemy-uravnenii

    http://toehelp.ru/theory/math/lecture15/lecture15.html