Однородное уравнение в обобщенном смысле

Обобщенные однородные дифференциальные уравнения первого порядка

Определение

Как определить, является ли дифференциальное уравнение обобщенным однородным

Для того, чтобы определить, является ли дифференциальное уравнение обобщенным однородным, нужно ввести постоянную t и сделать замену:
y → t α · y , x → t·x .
Если удастся выбрать такое значение α , при котором постоянная t сократится, то это – обобщенное однородное дифференциальное уравнение. Изменение производной y′ при такой замене имеет вид:
.

Пример

Определить, является ли данное уравнение обобщенным однородным:
.

Делаем замену y → t α · y , x → t·x , y′ → t α– 1 y′ :
;
.
Разделим на t α+ 5 :
;
.
Уравнение не будет содержать t , если
4 α – 6 = 0 , α = 3/2 .
Поскольку при α = 3/2 , t сократилось, то это обобщенное однородное уравнение.

Метод решения

Рассмотрим обобщенное однородное дифференциальное уравнение первого порядка:
(1) .
Покажем, что оно приводится к однородному уравнению с помощью подстановки:
t = x α .
Действительно,
.
Отсюда
; .
Подставляем в исходное уравнение (1):
;
.

Это – однородное уравнение. Оно решается подстановкой:
y = z · t ,
где z – функция от t .
При решении задач, проще сразу применять подстановку:
y = z x α ,
где z – функция от x .

Пример решения обобщенного однородного дифференциального уравнения первого порядка

Решить дифференциальное уравнение
(П.1) .

Проверим, является ли данное уравнение обобщенным однородным. Для этого в (П.1) делаем замену:
y → t α · y , x → t·x , y′ → t α– 1 y′ .
.
Разделим на t α :
.
t сократится, если положить α = – 1 . Значит – это обобщенное однородное уравнение.

Делаем подстановку:
y = z x α = z x – 1 ,
где z – функция от x .
.
Подставляем в исходное уравнение (П.1):
(П.1) ;
;
.
Умножим на x и раскрываем скобки:
;
;
.
Разделяем переменные – умножим на dx и разделим на x z 2 . При z ≠ 0 имеем:
.
Интегрируем, пользуясь таблицей интегралов:
;
;
;
.
Потенцируем:
.
Заменим постоянную e C → C и уберем знак модуля, поскольку выбор нужного знака определяется выбором знака постоянной С :
.

Возвращаемся к переменной y . Подставляем z = xy :
.
Делим на x :
(П.2) .

Когда мы делили на z 2 , мы предполагали, что z ≠ 0 . Теперь рассмотрим решение z = xy = 0 , или y = 0 .
Поскольку при y = 0 , левая часть выражения (П.2) не определена, то к полученному общему интегралу, добавим решение y = 0 .

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 03-08-2012 Изменено: 24-06-2015

Обобщенно — однородные уравнения.

Рассмотрим уравнения вида

. (5)

Уравнение (5) называется обобщенно — однородным, если существуют числа k и m такие, что

.

С помощью замены (при x

Дата добавления: 2015-04-22 ; просмотров: 11 | Нарушение авторских прав

Однородные дифференциальные уравнения
и приводящиеся к ним

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.


источники:

http://lektsii.net/3-129647.html

http://mathhelpplanet.com/static.php?p=odnorodnye-differentsialnye-uravneniya

Читайте также:
  1. Алгоритм решения биквадратного уравнения. Метод введения новой переменной.
  2. Биквадратные уравнения.
  3. В зависимости от глубины обобщенности различают эмпирическое и теоретическое мышление.
  4. Докажите, что общим решением линейного однородного дифференциального уравнения второго порядка является линейная комбинация фундаментальной системы решений этого уравнения.
  5. Какая из характеристик кредита является наиболее обобщенной?
  6. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
  7. Моделирование — это представление реальной ситуации в формализованном, обобщенном или упрощенном виде.
  8. Обобщающее слово и однородные члены выполняют одну и ту же синтаксическую функцию.
  9. Обыкновенные дифференциальные уравнения.