Однородное уравнения и проинтегрировать его

Однородные дифференциальные уравнения
и приводящиеся к ним

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.

Однородные дифференциальные уравнения первого порядка

Определение

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Делаем замену y → ty , x → tx .

Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u — функция от x . Дифференцируем по x :
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f ( u ) – u ) .

При f ( u ) – u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f ( u ) – u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).

Всякий раз, когда мы, в процессе преобразований, делим какое-либо уравнение на некоторую функцию, которую обозначим как g ( x, y ) , то дальнейшие преобразования справедливы при g ( x, y ) ≠ 0 . Поэтому следует отдельно рассматривать случай g ( x, y ) = 0 .

Пример решения однородного дифференциального уравнения первого порядка

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u – функция от x .
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = – x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний – к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 – 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные,
.

Применим формулу:
( a + b )( a – b ) = a 2 – b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 – 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 19-07-2012 Изменено: 24-02-2015

Однородное уравнения и проинтегрировать его

1. У равнения с разделяющимися переменными

Общий вид уравнений

С учетом равенства

уравнение (8.10) может быть записано в виде .

Разделим обе части на произведение функций M ( x ) Q ( y ) (при условии ) и после сокращения получим: . Так как переменные разделены, проин тегрируем уравнение почленно: . После нахождения интегралов получаем общий интеграл исходного ДУ. Предполагая, что , мы могли потерять решения. Следовательно, необходимо подстановкой M ( x )=0, Q ( y )=0 в исходное уравнение сделать проверку. В том случае, когда данные функции удовлетворяют уравнению, они также являются его решениями.

Пример 8.2. Проинтегрировать уравнение .

Решение . Представим уравнение в виде . Разделим переменные: . Проинтегрируем уравнение:

После применения теоремы о сумме логарифмов и потенцирования получаем

2. Однородные дифференциальные уравнения первого порядка

Общий вид уравнений

где M ( x ; y ) и N ( x ; y )– однородные функции аргументов x и y одного и того же измерения m , то есть имеют место равенства

Метод решения уравнения (8.12) – деление на переменную x в степени измерения m : . Далее уравнение преобразуются с помощью следующей замены:

Однородное уравнение (8.12) принимает вид: – уравнение с разделяющимися переменными. Следовательно, дальнейшее решение – по пункту 1.

Пример 8.3. Проинтегрировать уравнение .

Решение. Поделим уравнение на x 2 , получим . После замены (8.14) заданное по условию уравнение принимает вид , . В результате интегрирования получим . После обратной замены – искомый общий интеграл

Пример 8.4. Найти общее решение (общий интеграл) дифференциального уравнения .

Решение . Правая часть уравнения обладает свойством . Поэтому заданное уравнение является однородным дифференциальным уравнением первого порядка. Совершим замену , где u – некоторая функция от аргумента x . Отсюда . Исходное уравнение приобретает вид

или . Разделим переменные: .

После интегрирования обеих частей уравнения получаем

Потенцируя, находим .

Итак, общий интеграл исходного уравнения приобретает вид cy = x 2 + y 2 , где c – произвольная постоянная

3. Дифференциальные уравнения первого порядка, приводящиеся к однородным или к уравнениям с разделяющимися переменными

Общий вид уравнений

где – числа.

При c 1 = c 2 = 0 уравнение является однородным. Рассмотрим два случая при c 1 и c 2 не равных нулю одновременно.

1) Определитель . Вводят новые переменные u и v , положив x = u + x 0 , y = v + y 0 , где ( x 0 ; y 0 ) – решение системы уравнений .

В результате данной подстановки уравнение (8.15) становится однородным.

Пример 8.5. Найти общее решение (общий интеграл) дифференциального уравнения .

Решение . Определитель , следовательно, решаем систему уравнений . Получаем значения x 0 = – 1; y 0 =2, с использованием которых осуществляем замену x = u – 1; y = v + 2, при этом . Заданное по условию ДУ принимает вид:

, (*) – однородное ДУ относительно функции v и переменной u .

С помощью формул интегрирования (4.8) и (4.17) получаем:

Осуществим обратную подстановку :

– общий интеграл исходного уравнения

2) Определитель . Это означает пропорциональность коэффициентов или

Пример 8.6. Найти общее решение (общий интеграл) дифференциального уравнения

Решение . Определитель , следовательно, осуществляем замену

Исходное уравнение принимает вид:

Далее . Разделим переменные: или . Проинтегрируем уравнение:

После обратной замены получим: – общий интеграл исходного уравнения

4. Линейные дифференциальные уравнения первого порядка

Общий вид уравнений

где P ( x ) и Q ( x ) – заданные функции (могут быть постоянными).

Уравнение (8.16) может быть решено двумя способами.

1) Метод Бернулли-Фурье состоит в том, что решение ищется в виде произведения двух неизвестных функций y ( x )= u ( x ) v ( x ) или коротко y = u v , при этом . Одна из функций будет представлять общую часть решения и содержать константу интегрирования c , другая функция может быть взята в частном виде при конкретном значении константы (общее решение ДУ первого порядка должно содержать одну константу интегрирования). Подставим выражения y и в (8.16), после чего оно принимает вид:

Функцию v ( x ) подберем в частном виде так, чтобы выражение в скобках обратилось в ноль. Для этого решим уравнение с разделяющимися переменными или . Отсюда в результате интегрирования получим: . Так функция v ( x ) выбиралась произвольно, то можно положить c = 1, тогда . Подставив найденную v ( x ) в (8.17), приходим к еще одному уравнению с разделяющимися переменными . Интегрируя его, получим функцию . Общее решение исходного ДУ (8.16) принимает вид

Пример 8.7. Проинтегрировать уравнен ие с помощью метода Бернулли.

Решение . Данное уравнение является линейным ДУ первого порядка с функциями . Применим подстановку y = u v , где u и v – некоторые функции аргумента x . Так как y = u v , то , и заданное уравнение принимает вид:

Выберем функцию u так, чтобы выражение, стоящее в скобках, обращалось в ноль, то есть и л и

Полагая c = 1, получим u = cos x . При таком выборе функции u уравнение (**) примет вид:

. Отсюда v=tg x+c . Тогда – общее решение заданного уравнения.

Общее решение заданного ДУ можно также получить, пользуясь непосредственно формулой (8.18):

По условию задачи имеем: P ( x )= tg x , . Следовательно, . Так как , то с использованием основного логарифмического тождества получаем:

Таким образом, – общее решение исходного дифференциального уравнения

2) Метод Лагранжа иначе называют методом вариации произвольной постоянной. Рассмотрим сначала соответствующее линейное однородное ДУ первого порядка, то есть исходное уравнение без правой части . Разделив переменные и проинтегрировав, в найденном решении полагают постоянную c функцией c ( x ). После этого функцию y дифференцируют и вместе с подставляют в исходное уравнение. При этом получают уравнение относительно неизвестной функции c ( x ), отыскав которую, подставляют ее в y – общее решение заданного линейного неоднородного уравнения (с правой частью).

Пример 8.8. Проинтегрировать уравнение с помощью метода Лагранжа (сравни с пример ом 8.7).

Решение . Решим сначала соответствующее линейное однородное ДУ первого порядка или . Разделим переменные: . В результате интегрирования получаем: – общее решение соответствующего однородного уравнения. Применим метод варьирования константы, то есть предположим c = c ( x ). Тогда общее решение исходного линейного неоднородного уравнения будет иметь вид: . Подставим y и в исходное уравнение:

Подставляя найденное c ( x ) в y , имеем общее решение линейного неоднородного уравнения:

5. Уравнения Бернулли

Общий вид уравнений

При n = 1 (8.1 9) – уравнение с разделяющимися переменными. При n = 0 (8.1 9) – линейное ДУ.

Рассмотрим . Метод решения – деление уравнения на , после чего (8.1 9) принимает вид . С помощью замены z = yn +1 исходное уравнение становится линейным относительно функции z ( x ):

то есть его решение находится аналогично пункту 4. На практике искать решение уравнения (8.17) удобнее методом Бернулли в виде произведения неизвестных функций y = u v . Заметим, что y = 0 – всегда является решением исходного уравнения (8.17).

Пример 8.9. Проинтегрировать уравнение .

Решение. Заданное уравнение является уравнением Бернулли. Положим y = u v , тогда и уравнение примет вид:

Выберем функцию u так, чтобы выполнялось равенство: . Разделим переменные и проинтегрируем:

Тогда заданное уравнение после сокращения на u примет вид: или – уравнение с разделяющимися переменными. Находим его общее решение: . Интегрируя последнее уравнение, получим: . Следовательно, общее решение заданного уравнения имеет вид:

6. Уравнения в полных дифференциалах

6.1. Общий вид уравнений

где левая часть есть полный дифференциал некоторой функции F ( x ; y ), то есть . В этом случае ДУ (8.21) можно записать в виде , а его общий интеграл будет F ( x ; y )= c .

Условие, по которому можно судить, что выражение является полным дифференциалом, можно сформулировать в виде следующей теоремы.

Теорема 8.2. Для того чтобы выражение , где функции M ( x ; y ) и N ( x ; y ), их частные производные и непрерывны в некоторой области D плоскости x 0 y , было полным дифференциалом, необходимо и достаточно выполнение условия

(8.22)

Таким образом, согласно определению полного дифференциала (6.6) должны выполняться равенства:

Формула (8.22) представляет собой теорему Шварца, согласно которой смешанные производные второго порядка функции F ( x ; y ) равны.

Зафиксируем переменную y и проинтегрируем первое уравнение из (8.23) по x , получим:

Здесь мы применили метод вариации произвольной постоянной, так как предположили, что константа c зависит от y (либо является числом). Продифференцировав (8.24) по переменной y и приравняв производную к функции N ( x ; y ), мы получим уравнение для нахождения неизвестной c ( y ). Подставив c ( y ) в (8.24), находим функцию F ( x ; y ) такую, что .

Пример 8.10. Решить уравнение .

Решение. Здесь функция .

Проверим условие (8.22): . Следовательно, левая часть заданного уравнения представляет собой полный дифференциал некоторой функции F ( x ; y ). Для ее отыскания проинтегрируем функцию M ( x ; y ) по переменной x , считая y = const :

Пусть c = c ( y ), тогда . Продифференцируем данную функцию по y , получим . Отсюда .

Найденное c ( y ) подставляем в функцию F ( x ; y ), получаем решение заданного ДУ:

Если условие (8.22) не выполняется, то ДУ (8.21) не является уравнением в полных дифференциалах.

Однако это уравнение иногда можно привести к уравнению в полных дифференциалах умножением его на некоторую функцию μ ( x ; y ), называемую интегрирующим множителем .

Чтобы уравнение было уравнение в полных дифференциалах, должно выполняться условие

Выполнив дифференцирование и приведя подобные слагаемые, получим: . Для нахождения μ ( x ; y ) надо проинтегрировать полученное ДУ в частных производных. Решение этой задачи не простое. Нахождение интегрирующего множителя может быть упрощено, если допустить существование μ как функции только одного аргумента x либо только y .

6.2. Пусть μ = μ ( x ). Тогда уравнение (8.25) принимает вид:

При этом подынтегральное выражение должно зависеть только от x.

6.3. Пусть μ = μ ( y ). Тогда аналогично можно получить

где подынтегральное выражение должно зависеть только от y .

Пример 8.11. Решить уравнение .

Решение . Здесь , то есть . Проверим существование интегрирующего множителя. По формуле (8.26) составляем подынтегральное выражение:

7. Дифференциальные уравнения, не разрешенные относительно производной

К уравнениям данного вида относятся уравнения Лагранжа и Клеро, которые образуют достаточно большой класс ДУ, решаемых методом введения параметра .

7.1. Уравнение Лагранжа

Общий вид уравнений

где φ и ψ– известные функции от . После введения параметра уравнение (8.28) принимает вид

Продифференцируем его по x :

Полученное уравнение (8.30) является линейным уравнением относительно неизвестной функции x = x ( p ). Решив его, найдем:

Исключая параметр p из уравнений (8.29) и (8.31), получаем общий интеграл уравнения (8.28) в виде y = γ ( x ; c ).

Примечание. При переходе к уравнению (8.30) мы делили на . При этом могли быть потеряны решения, для которых или p = p 0 = const . Это означает, что p 0 является корнем уравнения p = φ ( p )=0 (смотри уравнение (8.30)). Тогда решение для уравнения (8.28) является особым

7.2. Уравнение Клеро представляет собой частный случай уравнения Лагранжа при , следовательно, его общий вид

. (8.32)

Вводим параметр , после чего уравнение (8.30) записывается так:

Продифференцируем уравнение (8.33) по переменной x:

При получаем частное решение уравнения в параметрической форме:

Это – особое решение уравнения Клеро, так как оно не содержится в формуле общего решения уравнения.

Пример 8.12. Решить уравнение Клеро .

Решение. Согласно формуле (8.32) общее решение имеет вид y = cx + c 2 . Особое решение уравнения получим по (8.33) в виде . Отсюда следует: , то есть


источники:

http://1cov-edu.ru/differentsialnye-uravneniya/pervogo-poryadka/odnorodnye/

http://www.sites.google.com/site/vyssaamatem/glava-viii-elementy-teorii-obyknovennyh-differencialnyh-uravnenij/viii-2-nekotorye-vidy-differencialnyh-uravnenij-pervogo-poradka