Однородные функции и однородные уравнения

Однородные дифференциальные уравнения
и приводящиеся к ним

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.

Однородные дифференциальные уравнения

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными заменой y = xu, или, что тоже самое, , где u новая искомая функция. Действительно, тогда y’ = u + u’x и исходное уравнение может быть переписано в виде u + u’x = f(u), или u’x = f(u)u. Из последнего при f(u)u можем записать .

Пример. Решить уравнение (y 2 — 2xy)dx + x 2 dy = 0. Это однородное уравнение, так как y 2 — 2xy и x 2 однородные функции второй степени. Делаем замену y = xu, dy = udx + xdu. Подставляя в уравнение, имеем

(x 2 u 2 — 2x 2 u)dx + x 2 (udx + xdu) = 0.

Раскрывая скобки, приводя подобные и сокращая на x 2 , получаем уравнение с разделяющимися переменными

(u 2 — u)dx + xdu = 0

Разделяя переменные, получаем или, что то же самое, Интегрируя последнее соотношение, имеем lnu — ln(u-1) = lnx + lnC. Потенцируя (переходя от логарифмической функции к e x ), можем записать или, делая обратную замену , получаем общий интеграл уравнения

Уравнения вида приводятся к однородным переносом начала координат в точку пересечения прямых a1x + b1y +c1 = 0, a2x + b2y +c2 = 0, если определитель отличен от нуля, и заменой a1x + b1y = z, если этот определитель равен нулю.

Решить однородные уравнения онлайн можно с помощью специального сервиса Дифференциальные уравнения онлайн.

Однородные уравнения первого порядка

Вы будете перенаправлены на Автор24

Понятие однородного уравнения

Дифференциальное уравнение первого порядка, представленное в стандартном виде $y’=f\left(x,y\right)$, является однородным, если его правая часть зависит не просто от переменных $x$ и $y$, а от отношения функции $y$ к независимой переменной $x$, то есть $ f (x,y) = f (x/y)$.

Зависимость функции от отношения $\frac $ следует понимать так, что функция не изменяется при замене в ней данного отношення на любое другое, имеющее вид $\frac$. Например, именно такое свойство имеет функция $f\left(x,y\right)=\frac \cdot \cos \frac $. Действительно, $f\left(x,y\right)=\frac \cdot \cos \frac =\frac\cdot \cos \frac$. После замены переменных $x$ и $y$ на $t\cdot x$ и $t\cdot y$ соответственно и последующего сокращения на $t$ данная функция приобретает свой исходный вид. В этом и состоит основное свойство однородного дифференциального уравнения.

Общий метод решения

Однородное дифференциальное уравнение $y’=f (x/y)$ решают посредством применения замены $\frac =u$, где $u=u\left(x\right)$ — новая неизвестная функция. Идея состоит в том, что найдя функцию $u$ и умножив её на $x$, можно будет найти и нужную функцию $y$.

Представим замену в виде $y=u\cdot x$ и продифференцируем её: $\frac =\frac \cdot x+u\cdot \frac =\frac \cdot x+u$. Подставим $y$ и $\frac $ в данное дифференциальное уравнение: $\frac \cdot x+u=f\left(u\right)$.

Полученное дифференциальное уравнение представляет собой уравнение с разделяющимися переменными. Действительно, после элементарных преобразований его можно представить в виде $\frac =\frac $, где $f_ <1>\left(x\right)=\frac<1> $ — функция, зависящая только от $x$, и $f_ <2>\left(u\right)=f\left(u\right)-u$ — функция, зависящая только от $u$. Применим к этому дифференциальному уравнению метод решения дифференциальных уравнений с разделяющимися переменными.

Готовые работы на аналогичную тему

Сначала вычисляем интеграл $I_ <1>=\int f_ <1>\left(x\right)\cdot dx $. Получаем: $I_ <1>=\int \frac<1> \cdot dx=\ln \left|x\right| $. Теперь записываем интеграл $I_ <2>=\int \frac \left(u\right)> $. Получаем: $I_ <2>=\int \frac $. Общее решение записываем в форме $I_ <2>=I_ <1>+C$, то есть $\int \frac =\ln \left|x\right|+C$. Правую часть полученного решения можно упростить, если представить произвольную постоянну в более удобной форме $\ln \left|C\right|$. При этом получим: $\ln \left|x\right|+\ln \left|C\right|=\ln \left|x\cdot C\right|$.

Окончательно получаем: $\int \frac =\ln \left|x\cdot C\right|$. После вычисления интеграла $\int \frac $ и замены $u$ на $\frac $ общее решение данного однородного дифференциального уравнения будет найдено.

Общий метод решения можно представить в виде следующего алгоритма:

  1. В первую очередь убеждаемся, что решаемое дифференциальное уравнение является однородным. Для этого нужно представить его в стандартном виде $y’=f\left(x,y\right)$, после чего в функции $f\left(x,y\right)$ переменные $x$ и $y$ заменить на $t\cdot x$ и $t\cdot y$ соответственно. Если после элементарных тождественных преобразований удается вернуться к той же функции $f\left(x,y\right)$, то данное дифференциальное уравнение является однородным и $ f (x,y) = f (x/y)$. Если добиться этого оказалось невозможным, то данное дифференциальное уравнение должно решаться иным методом.
  2. Находим $f\left(u\right)$, выполнив для функции $f (x/y)$ замену $y=u\cdot x$, после чего записываем функцию $f\left(u\right)-u$.
  3. Находим интеграл $I=\int \frac$ и записываем общее решение в виде $I=\ln \left|x\cdot C\right|$.
  4. Выполняем обратную замену $u=\frac$ и проводим упрощающие тождественные преобразования.
  5. Находим особые решения, которые могли быть утрачены при разделении переменных.

Решение типичных задач

Найти общее решение дифференциального уравнения $y’=2+\frac $.

По внешнему виду данного дифференциального уравнения его можно сразу отнести к однородному.

Для функции $f (x/y)=2+\frac $ выполняем замену $y=u\cdot x$ и находим $f\left(u\right)=2+\frac =2+u$. Записываем функцию $f\left(u\right)-u=2+u-u=2$.

Записываем общее решение в виде $\frac <2>=\ln \left|x\cdot C\right|$.

Выполняем обратную замену $u=\frac $ и получаем $\frac <2\cdot x>=\ln \left|x\cdot C\right|$ или $y=2\cdot x\cdot \ln \left|x\cdot C\right|$.

Так как $f\left(u\right)-u=2$, то особых решений данное дифференциальное уравнение не имеет.

Найти общее решение дифференциального уравнения $x\cdot y’=5\cdot y+x$.

Приводим данное дифференциальное уравнение к стандартному виду $y’=5\cdot \frac +1$, после чего можно сделать вывод, что оно является однородным.

Для функции $f (x/y)=5\cdot \frac +1$ выполняем замену $y=u\cdot x$ и находим $f\left(u\right)=5\cdot \frac +1=5\cdot u+1$.

Записываем функцию $f\left(u\right)-u=5\cdot u+1-u=4\cdot u+1$.

Находим интеграл $I=\int \frac =\int \frac <4\cdot u+1>=\frac<1> <4>\cdot \ln \left|4\cdot u+1\right|$.

Записываем общее решение в виде $\frac<1> <4>\cdot \ln \left|4\cdot u+1\right|=\ln \left|x\cdot C\right|$, откуда $\ln \left|4\cdot u+1\right|=\ln \left|x\cdot C\right|^ <4>$; $4\cdot u+1=x^ <4>\cdot C^ <4>$ или просто $4\cdot u+1=C\cdot x^ <4>$.

Выполняем обратную замену $u=\frac $ и получаем $4\cdot \frac +1=C\cdot x^ <4>$.

Таким образом, общее решение имеет вид: $4\cdot y+x=C\cdot x^ <5>$.

Решая уравнение $f\left(u\right)-u=4\cdot u+1=0$ или $4\cdot \frac +1=0$, находим особое решение $y=-\frac <4>$. Проверка подстановкой в данное дифференциальное уравнение $x\cdot \left(-\frac<1> <4>\right)=5\cdot \left(-\frac <4>\right)+x$ показывает, что особое решение $y=-\frac <4>$ удовлетворяет данному дифференциальному уравнению.

Однако это же решение можно получить из общего решения $4\cdot y+x=C\cdot x^ <5>$, положив в нём $C=0$.

Таким образом, окончательный результат: $4\cdot y+x=C\cdot x^ <5>$.

Уравнения, приводящиеся к однородным

При определенных условиях дифференциальное уравнение вида $y’=\frac \cdot x+b_ <1>\cdot y+c_ <1>> \cdot x+b_ <2>\cdot y+c_ <2>> $, в котором $a_ <1>$, $b_ <1>$, $c_ <1>$, $a_ <2>$, $b_ <2>$, $c_ <2>$ — постоянные коэффициенты, может быть приведено к однородному.

Если $\Delta \equiv \left|\begin > & > \\ > & > \end\right|\ne 0$, то приведение его к однородному достигается с помощью замен $x=m+\alpha $ и $y=n+\beta $, где постоянные $\alpha $ и $\beta $ следует выбрать как результат решения системы $\left\<\begin \cdot \alpha +b_ <1>\cdot \beta =-c_ <1>> \\ \cdot \alpha +b_ <2>\cdot \beta =-c_ <2>> \end\right. $.

Так как $\Delta \ne 0$, то эта система имеет единственное решение, которое проще всего найти по формулам Крамера.

Используя найденные выражения для $x=m+\alpha $ и $y=n+\beta $, получим дифференциальное уравнение $\frac =\frac \cdot m+b_ <1>\cdot n> \cdot m+b_ <2>\cdot n> $, которое является однородным.


источники:

http://math.semestr.ru/math/lec_diffur_3.php

http://spravochnick.ru/matematika/differencialnye_uravneniya/odnorodnye_uravneniya_pervogo_poryadka/