Однородные и неоднородные системы уравнений это

Фундаментальная система решений СЛАУ

Вы будете перенаправлены на Автор24

Системой линейных уравнений называется система вида: $\begin a_ <11>\cdot x_1 +. + a_ <1n>\cdot x_n = b_1 \\ . \\ a_ \cdot x_1 + a_ \cdot x_n = b_m \end$

Здесь каждая буква относится к своей группе обозначений, $x_1. x_n$ — это неизвестные числа или переменные, подлежащие поиску, $a_11. a_$ — множители, содержащиеся при неизвестных, $b_1. b_m$ — свободные члены таблицы из чисел, получаемой на основе приведённой СЛАУ.

В компактной форме СЛАУ принято записывать в виде формулы вида $A \cdot X = B$. В этой формуле под большой буквой $A$ подразумевается матрица множителей при неизвестных системы, а буквами $X$ и $B$ обозначены вектор-столбец неизвестных системы и свободных членов.

Матрица $A$ называется основной матрицей системы, вот как она будет выглядеть:

$A = \begin a_ <11>& … & a_ <1n>\\ \vdots & … & \vdots \\ a_ & … & a_ \end$, $b=\begin b_1 \\ \vdots \\ b_m \end$

Если через длинную черту после матрицы множителей при неизвестных записан столбец свободных членов, то матрицу называют расширенной матрицей системы.

Необходимая терминология

Решением системы называют такие $n$ значений неизвестных $x_1=c_1, x_2=c_2…x_n-c_n$, что при их использовании все её уравнения становятся верными соблюдающимися равенствами. Найденное решение системы можно записать в виде таблицы неизвестных одним столбцом:

$C= \begin c_1 \\ c_2 \\ \vdots \\ c_n \end$.

В зависимости от количеств групп переменных, подходящих для соблюдения всей системы, различают совместные и несовместные СЛАУ. Объединённая в систему группа равенств называется совместной, если она имеет хотя бы одно решение и несовместной, если она не имеет решений.

Готовые работы на аналогичную тему

Среди первого типа существуют определённые СЛАУ, имеющие только одно решение и неопределённые, под такие подпадают все, которые можно решить с получением больше одного ответа.

Однородные и неоднородные системы линейных уравнений

Система линейных уравнений называется однородной, если все её свободные члены равны нулю. Если в системе хотя бы один из свободных членов ненулевой, то она называется неоднородной, другие же СЛАУ с нулевым $B$ наоборот однородны.

Однородные системы совместны, так как $x_1=x_2=. x_n=0$ будет решением для систем, имеющих особенность в виде нулевого столбца $B$. Иначе такая группа ответов называется нулевым или тривиальным способом решения.

Нетривиальными же называются ответы на СЛАУ, детерминант матрицы которой не $0$. В группе ответов таких систем хотя бы одно из неизвестных подходит под $x_i$ ≠ $0$. Для поиска детерминанта можно воспользоваться $LU$ разложениями, гаусовым методом или его модификацией в виде способа Жордана-Гаусса.

Общее, частное и фундаментальное решения

Частным решением системы называется индивидуальное записанное в одну строчку, тогда как общее $X_o$ записывается через свободные переменные в одну строчку, оно представляет собой некое множество чисел, подходящих под данные условия. Общее $X_o$ включает в себя все индивидуальные.

Фундаментальной же системой решений (ФСР) называется совокупность $(n-r)$ векторов, являющихся линейно независимыми векторами системы. Здесь $r$ — это ранг исследуемой матрицы, согласно теореме Капелли, он равен количеству её основных неизвестных. Найти его можно путём разрешённых преобразований над изучаемым объектом, в частности, можно использовать метод Гаусса или другие.

Фундаментальная система решений частенько представлена как сумма всех возможных решений:

Здесь $С_1, C_2. C_$ — некоторые постоянные.

Приведена пример, в котором все свободные члены ненулевые:

$\begin x_1 – x_2 + x_3-x_4=4 \\ x_1+x_2+2x_3+3x_4=8 \\ 2x_1+4x_2+5x_3+10x_4=20 \\ 2x_1-4x_2+x_3-6x_4=4\\ \end$.

Ранг всех матриц соответсвует двойке, рассчитаем базисный минор:

Избавимся от двух нижних равенств из примера и получим:

$\begin x_1 – x_2=4-c_3+c_4 \\ x_1+x_2=8-2c_3-3c_4 \\ \end$

Общим решением системы будет строчка $(6-\frac<3><2>c_3-c_4; 2-\frac<1><2>c_3-2c_4;c_3; c_4)$.

Теперь посмотрим, что буде в случае с нулевым столбцом за чертой:

$\begin x_1 – x_2 + x_3-x_4=0 \\ x_1+x_2+2x_3+3x_4=0 \\ 2x_1+4x_2+5x_3+10x_4=0 \\ 2x_1-4x_2+x_3-6x_4=0 \end$.

Ранг также соответствует двойке, а её решениями будут

$c_1=-\frac<3> <2>c_3-c_4; c_2=-\frac<1><2>c_3-2c_4$. Константы же $c_3$ и $c_4$ выберем любые, например, возьмём их равными $c_3=0;c_4=1$.

Итак, используя приведённые выше значения $c_3=0;c_4=1$:

Фундаментальное решение системы можно записать так:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 17 04 2021

Структура общего решения системы уравнений

Однородная система линейных уравнений

всегда совместна, так как имеет тривиальное решение . Если ранг матрицы системы равен количеству неизвестных , то тривиальное решение единственное. Предположим, что . Тогда однородная система имеет бесконечно много решений. Заметим, что расширенная матрица однородной системы при элементарных преобразованиях строк приводится к упрощенному виду , т.е. . Поэтому из (5.11) получаем общее решение однородной системы уравнений :

Получим другую форму записи решений однородной системы, которая раскрывает структуру множества решений. Для этого подчеркнем следующие свойства.

Свойства решений однородной системы уравнений

1. Если столбцы — решения однородной системы уравнений, то любая их линейная комбинация также является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеет линейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений , придавая свободным переменным следующие стандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные — равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последних строках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен . Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решений однородной системы называется фундаментальной системой (совокупностью) решений .

Заметим, что фундаментальная система решений определяется неоднозначно. Однородная система может иметь разные фундаментальные системы решений, состоящие из одного и того же количества линейно независимых решений.

Теорема 5.3 об общем решении однородной системы. Если — фундаментальная система решений однородной системы уравнений (5.4), то столбец

при любых значениях произвольных постоянных также является решением системы (5.4), и, наоборот, для каждого решения х этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.14).

Прямое утверждение теоремы следует из свойства 1 решений однородной системы. Докажем обратное утверждение о том, что любое решение можно представить в виде (5.14). Для этого составим матрицу , приписав к столбцам фундаментальной системы решений столбец

Найдем ранг этой матрицы. Так как первые столбцов линейно независимы, то . Так как каждый из столбцов матрицы является решением системы , то по первой формуле из (5.13) получаем

Следовательно, первая строка матрицы является линейной комбинацией последних строк этой матрицы.

По второй формуле из (5.13) получим, что вторая строка матрицы является линейной комбинацией последних строк этой матрицы, и т.д. По r-й формуле из (5.13) получим, что r-я строка матрицы является линейной комбинацией последних строк этой матрицы. Значит, первые строк матрицы можно вычеркнуть и при этом ранг матрицы не изменится. Следовательно, , так как после вычеркивания в матрице будет всего строк. Таким образом, . Значит, есть базисный минор матрицы , который расположен в первых ее столбцах, а столбец не входит в этот базисный минор. Тогда по теореме о базисном миноре найдутся такие числа , что

Итак, обратное утверждение доказано.

Алгоритм решения однородной системы уравнений

1-5. Выполнить первые 5 пунктов алгоритма Гаусса. При этом не требуется выяснять совместность системы, так как любая однородная система имеет решение (пункт 3 метода Гаусса следует пропустить). Получить формулы (5.11) общего решения, которые для однородной системы будут иметь вид (5.13).

Если ранг матрицы системы равен числу неизвестных , то система имеет единственное тривиальное решение и процесс решения заканчивается.

Если ранг матрицы системы меньше числа неизвестных , то система имеет бесконечно много решений. Структуру множества решений находим в следующих пунктах алгоритма.

6. Найти фундаментальную систему решений однородной системы. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все свободные переменные равны нулю, кроме одной, равной единице (см. свойство 2 решений однородной системы).

7. Записать общее решение однородной системы по формуле (5.14).

1. В пункте 6 алгоритма вместо стандартного набора значений свободных переменных можно использовать и другие наборы значений, лишь бы они обеспечивали линейную независимость получаемых частных решений однородной системы.

2. Матрица столбцы которой образуют фундаментальную систему решений однородной системы, называется фундаментальной. Используя фундаментальную матрицу, общее решение (5.14) однородной системы можно записать в виде

3. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) однородной системы можно представить в виде блочной матрицы

Тогда блочная матрица размеров является фундаментальной. В этом можно убедиться, используя стандартные наборы значений свободных переменных. Применение блочных матриц может служить вторым способом нахождения фундаментальной системы решений.

Пример 5.4. Найти фундаментальную систему решений и общее решение однородной системы

Решение. 1. Составляем расширенную матрицу системы

2-4. Используя элементарные преобразования над строками матрицы , приводим ее к ступенчатому, а затем и к упрощенному виду (см. решение примера 5.3):

Пункт 3 метода Гаусса пропускаем.

5. Переменные — базисные, а — свободные. Записываем формулу (5.13) общего решения однородной системы

6. Находим фундаментальную систему решений. Так как и , надо подобрать линейно независимых решения. Подставляем в систему стандартные наборы значений свободных переменных:

В результате получили фундаментальную систему решений

7. Записываем общее решение однородной системы по формуле (5.14):

Заметим, что фундаментальную систему решений можно получить, взяв иные наборы значений свободных переменных. Например, и . Тогда получим другую фундаментальную систему решений

Несмотря на различия, обе формулы задают одно и то же множество решений.

Структура общего решения неоднородной системы уравнений

Ранее была выведена формула (5.11) общего решения системы линейных уравнений. Получим другую форму записи, отражающую структуру множества решений.

Рассмотрим неоднородную систему и соответствующую ей однородную систему . Между решениями этих систем имеются связи, выражающиеся следующими свойствами.

Свойства решений неоднородной системы уравнений

1. Разность двух решений и неоднородной системы есть решение однородной системы.

Действительно, из равенств и следует, что .

2. Пусть — решение неоднородной системы. Тогда любое решение неоднородной системы можно представить в виде

В самом деле, для любого решения неоднородной системы разность по свойству 1 является решением однородной системы, т.е. — решение однородной системы.

Теорема 5.4 о структуре общего решения неоднородной системы.

Пусть — решение неоднородной системы, а — фундаментальная система решений соответствующей однородной системы уравнений. Тогда столбец

при любых значениях [i]произвольных постоянных является решением неоднородной системы, и, наоборот, для каждого решения этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.15).[/i]

Говорят, что общее решение неоднородной системы есть сумма частного решения неоднородной системы и общего решения соответствующей однородной системы.

Доказательство теоремы вытекает из свойств 1, 2 и теоремы 5.3.

Алгоритм решения неоднородной системы уравнений

1-5. Выполнить первые 5 пунктов метода Гаусса решения системы уравнений и получить формулу общего решения неоднородной системы вида (5.11).

6. Найти частное решение неоднородной системы, положив в (5.11) все свободные переменные равными нулю.

7. Записав формулы (5.13) общего решения соответствующей однородной системы, составить фундаментальную систему ее решений. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все переменные равны нулю, за исключением одной, равной единице.

8. Записать общее решение неоднородной системы по формуле (5.15).

1. Используя фундаментальную матрицу однородной системы , решение неоднородной системы можно представить в виде

2. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) неоднородной системы можно представить в виде блочной матрицы

Тогда блочная матрица оказывается фундаментальной (см. п.3 замечаний 5.3), а столбец является частным решением неоднородной системы (в этом можно убедиться, подставляя в (5.11) нулевой набор свободных переменных). Используя блочные матрицы, общее решение (5 15) неоднородной системы можно представить в виде

где — столбец произвольных постоянных. Полученную формулу можно считать вторым способом решения неоднородной системы.

Пример 5.5. Найти структуру (5.15) общего решения неоднородной системы

Решение. 1-5. Первые 5 пунктов метода Гаусса выполнены при решении примера 5.3, где получены формулы общего решения неоднородной системы:

Переменные — базисные, а — свободные.

6. Полагая , получаем частное решение неоднородной системы .

7. Находим фундаментальную систему решений однородной системы (см. пример 5.4):

8. Записываем по формуле (5.15) общее решение неоднородной системы

Искомая структура множества решений найдена.

Получим формулу общего решения вторым способом , используя п.2 замечаний 5.4. При решении примера 5.3 расширенная матрица системы была приведена к упрощенному виду. Разбиваем ее на блоки:

Записываем частное решение неоднородной системы

и составляем фундаментальную матрицу:

По формуле (5.16) получаем общее решение неоднородной системы, которое преобразуем к виду (5.15):

Курсовая работа: Однородные и неоднородные системы линейных дифференциальных уравнений

Федеральное Агентство по образованию

государственное Образовательное Учреждение высшего профессионального образования

« Тюменский Государственный Нефтегазовый Университет»

Институт Нефти и Газа

Кафедра « математические методы в экономике»

по математическому анализу

Однородные и неоднородные системы линейных дифференциальных уравнений

Проверил: старший преподаватель

1 Системы линейных дифференциальных уравнений.

1.1 Общие сведения о линейных системах.

1.2 Метод сведения линейной системы к одному уравнению более высокого порядка.

1.3 Методы решения однородных линейных систем дифференциальных уравнений.

1.4 Методы решения неоднородных линейных систем дифференциальных уравнений.

2. Решение линейных систем дифференциальных уравнений.

2.1.Решение методом сведения линейной системы к одному уравнению более высокого порядка.

2.2. Решение однородных линейных систем дифференциальных уравнений.

2.2.1. Решение видоизмененным методом Эйлера

2.3.2. Решение методом неопределенных коэффициентов

1. Системы линейных дифференциальных уравнений.

1.1 Общие сведения о линейных системах.

Линейные системы – это системы дифференциальных уравнений вида

(1)

Где коэффициенты aij и fi – некоторые функции независимой переменной x . Будем считать их непрерывными; тогда для данной системы заведомо выполняются условия теоремы о существование и единственности решения задачи Коши. Если все fi =0, то система называется однородной , в противном случае она называется неоднородной. Система

(2)

Называется однородной системой , соответствующей неоднородной системе (1).

При изучении линейных систем удобно использовать матричные обозначения

Позволяющие записать систему (1) в виде одного матричного уравнения

(3)

Так же, как и в случае линейных уравнений, общее решение неоднородной системы представляет собой сумму частного решения этой системы и общего решения соответствующей ей однородной системы. В свою очередь, общее решение однородной системы имеет вид

(4)

Где С1 ,…,Сn — произвольные постоянные, а

-произвольные линейно независимые решения, называемые фундаментальным набором решений этой системы. Критерием линейной независимости этих решений является неравенство нулю определителя Вронского

(5)

1.2 Метод сведения линейной системы к одному уравнению более высокого порядка.

(Этот метод применим как для однородной, так и для неоднородной системы линейных дифференциальных уравнений.)

Один из методов интегрирования линейной системы заключается в сведении системы к одному уравнению n-ого порядка с одной неизвестной функцией. Продемонстрируем это на примере системы двух уравнений.

(6)

Дифференцируя (по x) обе части первого уравнения системы (6), находим

откуда, заменяя производные y1 ‘, y2 ‘ их выражениями из самой системы, имеем

.

Группируя в правой части, получим уравнение вида

(7)

Где коэффициенты b1 , b2 и d1 определенным образом выражаются через коэффициенты aij и q 1 и их производные. Комбинируя уравнение (7) с первым уравнением системы (6), получим

(8)

Предположим, что в рассматриваемой области изменения x определитель

отличен от нуля. Тогда систему (8) можно решить относительно y1 и y2 , т.е. выразить y1 и y2 через y’1 и y”2 .

В результате приходим к уравнениям вида

(9)

. (10)

Первое из них представляет собой линейное дифференциальное уравнение второго порядка с одной неизвестной функцией y1 (t). Заметим, что если в исходной системе (6) все коэффициенты aij постоянны, то уравнение (9) также является уравнением с постоянными коэффициентами. [ 3 стр 509-510]

1.3 Методы решения однородных линейных систем дифференциальных уравнений.

1) Сведение к одному уравнению n-ого порядка. (Этот метод мы разбирали выше)

2) Решение ЛОСДУ с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера).

Пусть дана система n линейных дифференциальных уравнений с n неизвестными функциями, коэффициенты которой постоянные:

(11)

Эту систему можно записать в виде одного матричного дифференциального уравнения

.

Ищем решение системы в виде:

Требуется определить постоянные α1, α2 ,…, αn и k так, чтобы функции α1 e kt , α2 e kt ,…,αn e kt удовлетворяли системе уравнений (11). Подставим их в систему(1), получим:

Сократим на e kt . Перенося все члены в одну сторону и собирая коэффициенты при α1, α2 ,…., αn , получим систему уравнений

Выберем α1, α2 ,…., αn и k такими, чтобы удовлетворялась система (13).Эта система есть система линейных однородных алгебраических уравнений относительно α1, α2 ,…., αn . Составим определитель системы (13):

(14)

Если k таково, что определитель ∆ отличен от нуля, то система (13) имеет только нулевые решения α12 =…=αn =0,а следовательно, формулы (12) дают только тривиальные решения:

Таким образом, нетривиальные решения (12) мы получим только при таких k,при которых определитель (14) обращается в нуль. Мы приходим к уравнению n-ого порядка для определения k:

(15)

Это уравнение называется характеристическим уравнением для системы (1),его корни называются корнями характеристического уравнения.

Рассмотрим несколько случаев.

Случай 1. Корни характеристического уравнения действительны и различны. Обозначим через k1 , k2 ,….kn корни характеристического уравнения. Для каждого корня kj напишем систему (13) и определим коэффициенты

Можно показать, что один из них произвольный, его можно считать равным единице. Таким образом, получаем:

для корня k1 решение системы (11)

Для корня k2 решение системы (1)

для корней kn решение системы (1)

Путем непосредственной подстановки в уравнения можно убедиться, что система функций

(16)

где С1 , С2 ,….,Сn -произвольные постоянные, тоже является решением системы дифференциальных уравнений (11). Это есть общее решение системы (11). Легко показать, что можно найти такие значения постоянных, при которых решение будет удовлетворять заданным начальным условиям.

Случай 2. Корни характеристического уравнения различные, но среди них есть комплексные. Пусть среди корней характеристического уравнения имеется два комплексных сопряженных корня:

Этим корням будут соответствовать решения

(j = 1, 2, …,n), (17)

(j = 1, 2, …,n), (18)

Коэффициенты α j ( 1 ) и α j (2) определяются из системы уравнений (13).

Можно показать, что действительные и мнимые части комплексного решения тоже являются решениями. Таким образом, мы получаем два частных решения:

(19)

Где — действительные числа, определяемые через и . Соответствующие комбинации функций (18) войдут в общее решение системы. [2 стр 112-115]

Случай 3. Характеристическое уравнение имеет единственный корень k (кратности 2), которому соответствуют два линейно независимых собственных вектора P1 и P2 (т.е. кратность корня совпадает с числом линейно независимых собственных векторов). Векторы P1 и P2 порождают два линейно независимых решения

И общее решение, так же как и в случае 1, находится по формуле (4) .

Случай 4. Характеристическое уравнение имеет единственный корень k (кратности 2), которому с точностью до постоянного множителя соответствует один собственный вектор P1 (т.е. кратность корня больше числа линейно независимых собственных векторов). В этом случае для отыскания решения целесообразно применить метод неопределенных коэффициентов . Согласно этому методу общее решение необходимо искать в форме

Где постоянные Сij требуют определения путем подстановки этих выражений в исходную однородную систему.

Замечание. Для решения однородных систем в случае, когда корень характеристического уравнения λ кратный и ему соответствует единственный собственный вектор P1 , может быть применен метод присоединения векторов .

Суть его такова. Пусть P2 – вектор-столбец, являющийся решением уравнения

(20)

тогда однородная система

(21)

имеет два линейно независимых решения

.

Покажем, что Y2 является решением. Имеем

.

Учитывая, что P1 и — собственный вектор, а P2 удовлетворяет условию (20), получаем

.

Нетрудно также убедиться, что Y1 и Y2 линейно независимы. Следовательно, они образуют фундаментальный набор решений, и общее решение может быть найдено по формуле (4).

В общем случае корню характеристического уравнения λ кратности k>1, имеющему один собственный вектор P1 ,соответствует k линейно независимых решений

, (22)

Где присоединенные векторы P2 ,P3 ,…,Pk являются последовательными решениями следующих алгебраических систем

(23) [3 стр 519-522]

1.4 Методы решения неоднородных линейных систем дифференциальных уравнений.

1) Для решения неоднородных линейных систем применяются методы, аналогичные методам, используемым для решения неоднородных линейных уравнений. Одним из таких методов является метод вариации постоянных. Продемонстрируем его суть на следующем примере.

Пример:

Решение. Решая характеристическое уравнение

Находим корни λ1 =-1, λ2 =4. Собственными векторами, отвечающими найденным собственным значениям, будут соответственно

Следовательно, общее решение соответствующей однородной системы имеет вид

.

Решение неоднородного уравнения в соответствии с методом вариации постоянной будем искать в форме

Для нахождения С1 (x) и C2 (x) подставив выражение для Y в исходную систему, получим

где — производные постоянные. Таким образом, решение исходной системы будет

2) В случае, когда столбец свободных членов системы имеет специальный вид

(24)

Где Pm (x) и Qk (x) – вектор-столбцы, элементами которых являются многочлены от х степени, не превышающей соответственно n и k, для отыскания частного решения уравнения целесообразно воспользоваться методом неопределенных коэффициентов . Для систем он имеет определенную специфику. Суть метода такова.

Если число γ = a + bi не является корнем характеристического уравнения, то частное решение ищется в виде

где и — вектор-столбцы, элементами которых являются многочлены от x степени m=max.

Если же γ является корнем характеристического уравнения кратности l (резонансный случай), то частное решение ищется в форме

[ 3 стр 529-531]

2. Решение линейных систем дифференциальных уравнений.

2.1.Решение методом сведения линейной системы к одному уравнению более высокого порядка.

2.2. решение однородных линейных систем дифференциальных уравнений.

2.2.1. Решение видоизмененным методом Эйлера

Пример1.

Решение. Составляем характеристическое уравнение

Или . Находим корни:

Решение системы ищем в виде

.

Составим систему (3) для корня и определяем и :

Откуда . Полагая , получаем . Таким образом, мы получили решение системы:

Составим далее систему (3) для корня и определяем и :

Откуда и =1, =1. Получаем второе решение системы:

Общее решение системы будет (см (6))

Пример2.

Решение. Составим характеристическое уравнение матрицы системы

или

Находим его корни:

Составим систему (3) для корня и определяем и :

или =>

Откуда . Полагая , получаем .

Таким образом, мы получили решение системы:

Составим далее систему (3) для корня и определяем и :

Откуда и =1, =1.

Получаем второе решение системы:

Общее решение системы будет

Пример3.

Решение. Составим характеристическое уравнение матрицы системы

Раскрывая определитель, находим

Составим систему (3) для корня

одно из которых — следствие двух других. Возьмем, например, первые два уравнения:

Приняв k=1/4,получаем собственный вектор (2;1;-2).

При λ=2 имеет систему

Используя первые два уравнения (третье – их следствие), находим

Полагая k=1, находим собственный вектор (7;3;-8).

При λ=3 имеет систему

Из последнего уравнения находим Подставляем это значение p1 в первое уравнение и находим Приняв получаем т.е. собственный вектор (3; 1; -3).

Фундаментальная система решении:

Общее решение записываем в виде

Пример 1.

Решение. Составляем характеристическое уравнение

или

и находим его корни:

Подставляем в систему (3) и определяем и :

или

Откуда . Полагая , получаем .

Пишем решение (7):

Подставляя в систему (3), находим:

.

Получим вторую систему решений (8):

За системы частных решений можно взять отдельно действительные части и отдельно мнимые части

Общим решением системы будет

Пример 2.

Решение. Составляем характеристическое уравнение

или

Характеристические числа: λ1 =1, λ2 =i, λ3 = — i.

При λ1 =1 для определения собственного вектора получаем систему уравнений

Эта система определяет собственный вектор (1; 1; 0).

При λ2 =i получаем систему уравнений

Эта система определяет собственный вектор (1; i; 1-i).

При λ3 = — i получаем систему уравнений

Эта система определяет собственный вектор (1; -i; 1+i).

Значению λ1 =1 соответствуют решения

Значению λ2 =i соответствуют решения

Значению λ3 = — i соответствуют решения

Отделяя действительные части, получим решения

до решать

Пример 1.

Решение. Характеристическое уравнение

Имеет единственный корень λ=2 (кратности 2). Ему соответствует единственный собственный вектор

Поэтому решение в этом случае будем искать в виде

Подставляя выражения для y1 и y2 в исходную систему, находим

Отсюда получаем систему

Решая её, находим

Где P1 , P2 – произвольные постоянные. Таким образом, общее решение системы имеет вид

Пример 2.

Решение. Составим характеристическое уравнение системы

Раскрывая определитель, получаем

Данное уравнение после несложных преобразовании принимает вид

Отсюда находим: (простой корень), ему соответствует собственный вектор

и (корень кратности 2), которому соответствуют два линейно независимых собственных вектора

Следовательно, общее решение системы имеет вид

2.3. решение неоднородных линейных систем дифференциальных уравнений.

2.3.1. Решение методом вариации постоянных.

Пример 1.

Решение. Решая характеристическое уравнение

Находим корни . Собственными векторами, отвечающими найденным собственным значениям, будут соответственно

,

Следовательно, общее решение соответствующей однородной системы имеет вид

Решение неоднородного уравнения в соответствии с методом вариации постоянной будем искать в форме

Для нахождения С1 (x) и С2 (x) подставив выражение для Y в исходную систему, получим

Где — произвольные постоянные. Таким образом, решение исходной системы будет

2.3.2. Решение методом неопределенных коэффициентов

Пример 1.

Решение. Решая характеристическое уравнение системы

Находим корни . Собственными векторами, отвечающими найденным собственным значениям, будут соответственно

,

Следовательно, общее решение соответствующей однородной системы имеет вид

Теперь найдем частное решение. В рассматриваемом случае элементы столбца свободных членов представляют собой многочлены степени, не превышающей 1, и так как число γ=0 не совпадает с корнями характеристического уравнения, то частное решение неоднородной системы будем искать в виде

Где p, q, c и d – некоторые постоянные. Для их определения подставим выражение для в исходную систему. Получим

Решив эту систему, находим p=1, q= — 1, c= — 2 и d=1. Следовательно,

Так как общее решение неоднородной системы уравнения Y представляет собой сумму частного решения и общего решения соответствующей однородной системы, то окончательно получаем

Пример 2.

Решение. Решая характеристическое уравнение системы

Его корни будут . Им соответствуют собственные векторы

,

Следовательно, общее решение соответствующей однородной системы имеет вид

Теперь найдем частное решение. В рассматриваемом случае число γ= 1 совпадает с корнем λ1 характеристического уравнения (резонансный случай). Так как элементы столбца свободных членов представляют собой многочлены нулевой степени, частное решение неоднородной системы будем искать в виде

где p, q, c и d – некоторые постоянные. Подставим выражение для в исходную систему. Получим

Решив эту систему, находим

Полагая с =1, получаем d = 5. Следовательно,

Таким образом, общее решение системы имеет вид

Список используемой литературы

1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Выцсшая математика в упражнениях и задачах. –М.: “Высшая школа”, 1986.

2. Пискунов Н.С. Дифференциальное и интегральное исчисления.- М.:”Наука”, 1978.

3. Солодовников А.С., Бабайцев В.А., Браилов А.В., Шандра И.Г. Математика в экономике.- М.:”Финансы и статистика”, 2003.


источники:

http://mathhelpplanet.com/static.php?p=struktura-obshchego-resheniya-sistemy-uravnenii

http://www.bestreferat.ru/referat-242226.html

Название: Однородные и неоднородные системы линейных дифференциальных уравнений
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 20:31:36 25 июня 2011 Похожие работы
Просмотров: 1135 Комментариев: 14 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать