Однородные уравнения это уравнения вида

Однородные уравнения и неравенства

Однородные уравнения – это уравнения, в которых все слагаемые имеют одинаковую суммарную степень.

Однородные неравенства – это неравенства, в которых все слагаемые имеют одинаковую суммарную степень.

Пример. Решить уравнение \(\sin⁡x=\sqrt<3>\cos⁡x\).

Перед нами типичное однородно-тригонометрическое уравнение. Надо разделить уравнение на cos⁡x, но делить на число равное нулю нельзя, поэтому проверим, является ли \(\cos⁡x=0\) решением уравнения. Если \(\cos⁡x=0\), то \(\sin⁡x=±1\). Очевидно, что \(±1≠0\).

Теперь с чистой совестью поделим уравнение на \(\cos⁡x\)

Заметьте, что в этом примере перед тем, как делить на \(\cos⁡x\), была сделана проверка — является ли \(\cos⁡x=0\) решением уравнения. Нужно каждый раз проверять, является ли выражение, на которое вы хотите поделить, решением. Иначе вы рискуете потерять корни уравнения .

Пример. Решить уравнение \(7\cdot 9^+5\cdot 6^-48\cdot 4^=0\).

Показатели степеней в уравнении похожи – в каждом есть \(x^2-3x\). Давайте сделаем их одинаковыми.
Представим \(48\cdot 4^\) как \(12\cdot 4^1\cdot 4^\).

Получился классический вид однородного уравнения.
Поделим уравнение на \(4^\) .
Положительное число в степени никогда не будет равно нулю, поэтому проверку можно не делать.

Обратите внимание: \((\frac<3><2>)^2\) \(=\) \(\frac<9><4>\) . С учетом этого сделаем замену.

Положительное число в любой степени всегда больше нуля, поэтому \(t>0\). Отметим это в решении, чтобы не забыть.

Однородные уравнения

Разделы: Математика

Цели занятия:

  • образовательные: – научиться распознавать однородные уравнения, отработать метод решения однородных уравнений.
  • развивающие: – развивать логическое мышление, навыки самостоятельной работы и самоконтроля.
  • воспитательные: – развивать познавательный интерес к предмету, творческие способности обучающихся.

Материал для лекции.

Определение: Многочлен называется однородным, если

Многочлен от двух переменных называют однородным многочленом степени k, если все его одночлены имеют степень k.

Например: = – однородный многочлен второй степени, а – однородный многочлен третьей степени.

Определение: Уравнение вида называется однородным уравнением степени k относительно , если – однородный многочлен степени k.

Понятие однородности распространяется и на уравнения с большим числом неизвестных.

Например: – однородное уравнение третьей степени относительно неизвестных

Однородное уравнение относительно и делением на (если не является корнем уравнения) превращается в уравнение относительно неизвестного . Это свойство однородности облегчает процесс решения.

Однородные дифференциальные уравнения
и приводящиеся к ним

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.


источники:

http://urok.1sept.ru/articles/599533

http://mathhelpplanet.com/static.php?p=odnorodnye-differentsialnye-uravneniya