Однородные уравнения максвелла в дифференциальной форме

Уравнения Максвелла

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

  1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
  2. В дальнейшем он вызывает появление магнитного поля.

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

  1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
  2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
  3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

Уравнение 3: Закон Гаусса для магнетизма

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

  1. Магнитных монополей не существует.
  2. Расхождение полей B или H всегда равно нулю в любом объёме.
  3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

Уравнение 4: Закон Ампера

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Это же уравнение в интегральной форме:

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

И это же уравнение в интегральной форме:

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Уравнения Максвелла в дифференциальной, интегральной и комплексной формах

Классификации сред по отношению к электромагнитному полю

Свойства среды по отношению к электромагнитному полю определяются параметрам

проводимость среды

Если эти параметры зависят от величины поля то линейная среда, а если хотя бы 1 параметр зависит от величины поля то среда является нелинейной.

Линейные среды делятся на 4 группы

1. Однородные, где эти параметры не зависят от координат.

2. Неоднородные, где эти параметры зависят от координат.

3. Изотропные, свойства одинаковы по всем направлениям.

4. Анизотропные, свойства различны по всем направлениям.

Уравнения Максвелла в дифференциальной, интегральной и комплексной формах

1 уравнение максвелла в дифференциальной форме: Электрический заряд является источником электрической индукции.

2 уравнение максвелла. Не существует магнитных зарядов

3 уравнение максвелла . Изменение магнитной индукции порождает вихревое электрическое поле

4 уравнение максвелла . Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

В том же порядке интегральная форма записи

Поток электрической индукции через замкнутую поверхность s пропорционален величине свободного заряда, находящегося в объёме v, который окружает поверхность s.

Поток магнитной индукции через замкнутую поверхность равен нулю (магнитные заряды не существуют).

Изменение потока магнитной индукции, проходящего через незамкнутую поверхность s, взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре l, который является границей поверхности s.

Полный электрический ток свободных зарядов и изменение потока электрической индукции через незамкнутую поверхность s, пропорциональны циркуляции магнитного поля на замкнутом контуре l, который является границей поверхности s.

Уравнения максвелла для комплексных амплитуд

3.Уравнение баланса мгновенных значений мощности

Как уже отмечалось в 1.1, электромагнитное поле является одной из форм материи. Как и любая другая форма материи, оно обладает энергией. Эта энергия может распространяться в про­странстве и преобразовываться в другие формы энергии.

Сформулируем уравнение баланса для мгновенных значений мощности применительно к некоторому объему V, ограниченному поверхностью S (рис.1.23). Пусть в объеме V, заполненном од­нородной изотропной средой, находятся сторонние источники. Из общих физических представлений очевидно, что мощность, выделяемая сторонними источниками, может расходоваться на джоулевы потери и на изменение энергии электромагнитного поля внутри V, а также может частично рассеиваться, уходя в ок­ружающее пространство через поверхность S. При этом должно выполняться равенство

где Р ст -мощность сторонних источников; РПмощность джоулевых потерь внутри объема V; РΣ -мощность, проходящая через поверхность S; W-энергия электромагнитного поля, сосредоточен­ного в объеме V, a dW/dt- мощность, расходуе­мая на изменение энергии в объеме V.

В данном разделе будут использованы уравнения состояния (1.53). Эти уравнения не позволяют учесть потери энергии при поляризации и намагничивании среды. Поэтому слагаемое Рп в равенстве (1.120) фактически определяет мощность джоулевых потерь в объеме V, обусловленных током проводимости.

Уравнение (1.120) дает только качественное представление об энергетических соотношениях. Чтобы получить количественные соотношения, нужно воспользоваться уравнениями Максвелла. Рассмотрим первое уравнение Максвелла с учетом сторонних то­ков (1.111). Все члены этого уравнения — векторные величины, имеющие размерность А/м 2 .

Чтобы получить уравнение, аналогичное (1.120), нужно видо­изменить первое уравнение Максвелла (1.111) так, чтобы его члены стали скалярными величинами, измеряющимися в ваттах. Для этого достаточно все члены указанного равенства скалярно умножить на вектор Е, а затем проинтегрировать полученное выражение по объему V. После скалярного умножения на вектор Еполучаем

Используя известную из векторного анализа формулу div[E,H]= = Н rot Е — Е rot H, преобразуем левую часть соотношения (1.121) и заменим rot E его значением из второго уравнения Максвелла (1.39):

Подставляя это выражение в (1.121), получаем

В последнем слагаемом в правой части (1.122) изменен порядок сомножителей в скалярном произведении векторов dB/dt и Н. Это допустимо, так как Н dB/dt = дВ/дt· H. Данное изменение не яв­ляется принципиальным и не дает никаких преимуществ при выводе рассматриваемого здесь уравнения баланса для мгно­венных значений мощности. Однако при такой записи во всех членах уравнения (1.122) второй сомножитель (векторы j ст , j, BDIdt и Н) является вектором, входившим ранее в первое уравнение Максвелла. Это обстоятельство позволит в дальнейшем (см. 1.8.4) несколько упростить вывод уравнения баланса в случае моно­хроматического поля (уравнения баланса комплексной мощности). Интегрируя почленно уравнение (1.122) по объему V, получаем

где направление элемента dS совпадает с направлением внешней нормали к поверхности S. При переходе от.(1.122) к (1.123) ис­пользована теорема Остроградского-Гаусса для перевода объем­ного интеграла от div[E, H] в поверхностный интеграл от вектор­ного произведения [Е, Н]. Введем обозначение

и преобразуем подынтегральное выражение в последнем слагаемом в правой части (1.123):

Подставляя (1.124) и (1.125) в (1.123) и меняя порядок интег­рирования и дифференцирования, получаем

Выясним физический смысл выражений, входящих в уравнение (1.126).

Рассмотрим первое слагаемое в правой части (1.126). Пред­ставим объем V в виде суммы бесконечно малых цилиндров длиной dl, торцы которых (dS) перпендикулярны направлению тока (вектору j). Тогда EjdV = EjdV=(Edl)(jdS) = dUdl = dPn, где dl =jdS — ток, протекающий по рассматриваемому бесконечно мало­му цилиндру; dU = Edl — изменение потенциала на длине dl, a dPn-мощность джоулевых потерь в объеме dV. Следовательно, рас­сматриваемое слагаемое представляет собой мощность джоу­левых потерь Рп в объеме V. Используя соотношение j = σЕ, для Рпможно получить и другие представления:

Формулы (1.127) можно рассматривать как обобщенный закон Джоуля-Ленца, справедливый для проводящего объема V произ­вольной формы.

Интеграл в левой части (1.126) отличается от первого сла­гаемого в правой части только тем, что в подынтегральное выражение вместо j входит j c т . Поэтому он должен определять мощность сторонних источников. Будем считать положительной мощность, отдаваемую сторонними токами электромагнитному по­лю. Электрический ток представляет собой упорядоченное дви­жение заряженных частиц. Положительным направлением тока считается направление движения положительных зарядов. Ток отдает энергию электромагнитному полю при торможении обра­зующих его заряженных частиц. Для этого необходимо, чтобы вектор напряженности электрического поля Е имел составляющую, ориентированную противоположно направлению тока, т.е. чтобы скалярное произведение векторов Е и j ст было отрицательным (E j ст Э +W М , где

Предположим, что электрическое и магнитное поля являются постоянными (не зависят от времени). В этом случае, как известно из курса физики (см. также гл.З и 4), выражения (1.131) и (1.132) определяют энергию соответственно электрического и магнитного полей в объеме V. Но это означает, что g = 0 и указанные вы­ражения определяют мгновенные значения энергии электричес­кого и магнитного полей в объеме V при любой зависимости от временила их сумма, определяемая формулой (1.130), дейст­вительно равна мгновенному значению энергии электромагнитного поля в объеме V.

Осталось выяснить физическую сущность поверхностного ин­теграла в уравнении (1.126). Предположим, что в объеме V от­сутствуют потери и, кроме того, величина электромагнитной энер­гии остается постоянной (W= const). При этом уравнение (1.126) принимает вид

В то же время из физических представлений очевидно, что в данном частном случае вся мощность сторонних источников должна уходить в окружающее пространство ст = РΣ). Следо­вательно, правая часть уравнения (1.133) равна потоку энергии через поверхность S (пределу отношения количества энергии, проходящей через S за время Δt при Δt→0), т.е.

Естественно предположить, что вектор Ппредставляет собой плотность потока энергии (предел отношения потока энергии через площадку ΔS, расположенную перпендикулярно направлению ра­спространения энергии, к ΔS при ΔS →0). Формально матема­тически это предположение не очевидно, так как замена вектора П на П1 = П + rot а, где а — произвольный вектор, не изменяет ве­личину РΣ. Однако оно является верным и в частности, непо­средственно вытекает из релятивистской теории электромаг­нитного поля [11].

Таким образом, равенство (1.126) аналогично (1.120) и пред­ставляет собой уравнение баланса мгновенных значений мощ­ности электромагнитного поля. Оно было получено Пойнтингом в 1884 г. и называется теоремой Пойнтинга. Соответственно век­тор П называют вектором Пойнтинга. Часто используют также названия «теорема Умова-Пойнтинга» и «вектор Умова-Пойн-тинга» с целью подчеркнуть тот факт, что формулировка закона сохранения энергии в общей форме с введением понятия потока энергии и вектора, характеризующего его плотность, впервые была дана Н.А. Умовым в 1874 г.

Отметим, что энергия может поступать в объем V не только от сторонних источников. Например, поток энергии через поверхность S может быть направлен из окружающего пространства в объем V. При этом мощность PΣ будет отрицательной, так как положи­тельным считается поток энергии, выходящий из объема V в окружающее пространство (направление элемента dS совпадает с направлением внешней нормали к поверхности S).

Сторонние источники могут не только отдавать энергию, но и получать ее от электромагнитного поля. При этом мощность сто­ронних источников будет отрицательной. Действительно, элект­ромагнитное поле отдает энергию току проводимости, если оно ускоряет движение заряженных частиц, образующих ток. Для этого вектор напряженности электрического поля Е должен иметь сос­тавляющую, ориентированную вдоль линий тока, т.е. чтобы ска­лярное произведение векторов Е и j ст было больше нуля.

Рассмотрим более подробно формулы, определяющие энер­гию электромагнитного поля. Подынтегральные выражения в

можно интерпретировать как мгновенные значения объемных плотностей энергии элект­рического и магнитного полей соответственно, а их сумму

— как объемную плотность полной энергии электромагнитного поля.

Подчеркнем, что принцип суперпозиции, которому удовле­творяют векторы напряженностей электрического и магнитного полей, не распространяется на энергию. Действительно, пусть энергии полей E1, H1 и Е2, Н2, существующих по отдельности в области V, равны соответственно W1 и W2. Тогда энергия сум­марного поля Е = Е1 + Е2, Н = Н1 + Н2 определится выражением

— взаимная энергия полей. Взаимная энергия W12 может быть как положительной, так и отрицательной. Если векторы Е1и Е2, а также H1 и Н2 взаимно перпендикулярны, то W12 = 0.

В случае переменных процессов распределение электро­магнитной энергии непрерывно изменяется. Это изменение в каждой данной точке можно определить на основе уравнения (1.122), которое удобно представить в виде

где p ст =-E j ст и pn = Ej-мгновенные значения плотностей мощности сторонних источников и мощности джоулевых потерь соответственно. При переходе от соотношения (1.122) к уравнению (1.136) учтены формулы (1.125) и (1.135). Уравнение (1.136) является дифференциальной формой теоремы Пойнтинга.

4 ВОЛНОВЫЕ УРАВНЕНИЯ

Общий случай

При решении прямых задач электродинамики требуется найти векторы Е и Н по известным (заданным) сторонним источникам. Предположим, что сторонние источники расположены в безграничной однородной изотропной среде. Для упрощения преоб­разований будем считать, что σ= 0. Записывая уравнения Макс­велла для данного частного случая, получаем

Определение векторов Е и Н непосредственно из системы уравнений (2.25) затруднительно. Поэтому целесообразно преоб­разовать ее, исключив либо вектор Е, либо вектор Н, т.е. получить из нее такое дифференциальное уравнение, в которое входил бы только один из векторов Е или Н. Для этого возьмем ротор от обеих частей второго уравнения системы (2.25) и изменим порядок дифференцирования по времени и по пространственным коор­динатам. Учитывая известное из векторного анализа равенство

где Δ 2 ≡Δ-оператор Лапласа, и третье равенство рассматри­ваемой системы, приходим к уравнению

Аналогично выводится и уравнение для вектора Н:

Каждое из векторных уравнений (2.27) и (2.28) эквивалентно трем скалярным уравнениям, получающимся при проецировании векторного уравнения на оси X, Y и Z декартовой системы коор­динат. Эти скалярные уравнения относятся к уравнениям вида

где w и f(x, у, z, f)-искомая и заданная (известная) функции соответственно. Как известно, уравнения вида (2.29) описывают волновые процессы, причем параметр v равен скорости этого процесса. Такие уравнения принято называть неоднородными уравнениями Даламбера или неоднородными волновыми урав­нениями. Уравнения (2.27) и (2.28) отличаются от (2.29) только тем, что входящие в них функции являются векторными. Уравнения такого типа называют неоднородными векторными уравнениями Даламбера или неоднородными векторными волновыми уравнениями. Аналогичные уравнения, правые части кото­рых равны нулю, называют однородными векторными уравне­ниями Даламбера (однородными векторными волновыми урав­нениями).В дальнейшем будет показано, что входящий в уравнения (2.27) и (2.28) параметр являющийся аналогом параметра v в (2.29), в случае среды без потерь также представляет собой скорость распространения электромагнитного поля и равен ско­рости света ев рассматриваемой среде. Этот результат не яв­ляется неожиданным, так как свет — это электромагнитные волны определенного диапазона частот.

Без затруднений записываются аналогичные уравнения для векторов Е и Н и в том случае, когда σ≠0 (см., напр., [1]).

Монохроматическое поле

В случае монохроматического поля полная система уравнений Максвелла в комплексной форме, учитывающая сторонние эле­ктрические источники, имеет вид

Предположим, что среда, заполняющая рассматриваемую часть пространства, является однородной и изотропной. Возьмем ротор от обеих частей второго уравнения системы (2.30) и исключим вектор Н, используя первое уравнение. Учитывая фор­мулу (2.26) и равенство справедливое для одно­родной изотропной среды, придем к уравнению

где Для вектора Н получаем аналогично

Очевидно, что такие же уравнения связывают между собой комплексные амплитуды

Если в рассматриваемой области отсутствуют сторонние источники, уравнения (2.31) и (2.32) упрощаются:

Для перехода к случаю среды без потерь в уравнениях (2.30)-(2.34) нужно положить . Каждое

из векторных уравнений (2.33) и (2.34) эквивалентно трем однотип­ным скалярным уравнениям для декартовых составляющих соот­ветствующего вектора: ∆ 2 w+k 2 w = 0, где w-любая из состав­ляющих

Уравнения Максвелла для электромагнитного поля — основные законы электродинамики

Система уравнений Максвелла обязана своим названием и появлением Джеймсу Клерку Максвеллу, сформулировавшему и записавшему данные уравнения в конце 19 века.

Максвелл Джемс Кларк (1831 — 1879) был известным британским физиком и математиком, профессором Кембриджского университета в Англии.

Он практически объединил в своих уравнениях все накопленные к тому времени экспериментально полученные результаты касательно электричества и магнетизма и придал законам электромагнетизма четкую математическую форму. Основные законы электродинамики (уравнения Максвелла) были сформулированы в 1873 году.

Максвелл развил учение Фарадея об электромагнитном поле в стройную математическую теорию, из которой вытекала возможность волнового распространения электромагнитных процессов. При этом оказалось, что скорость распространения электромагнитных процессов равна скорости света (величина которой была уже известна из опытов).

Это совпадение послужило для Максвелла основанием к тому, чтобы высказать идею об общей природе электромагнитных и световых явлений, т.е. об электромагнитной природе света.

Созданная Джеймсом Максвеллом теория электромагнитных явлений нашла первое подтверждение в опытах Герца, впервые получившего электромагнитные волны.

В итоге эти уравнения сыграли главную роль в формировании точных представлений классической электродинамики. Уравнения Максвелла могут быть записаны в дифференциальной или интегральной форме. Практически они описывают сухим языком математики электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и в сплошных средах. К данным уравнениям можно добавить выражение для силы Лоренца, в этом случае мы получим полную систему уравнений классической электродинамики.

Чтобы понимать некоторые математические символы, использующиеся в дифференциальных формах уравнений Максвелла, для начала определим такую занятную вещь, как оператор набла.

Оператор набла (или оператор Гамильтона) — это векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Для нашего реального пространства, которое является трехмерным, адекватна прямоугольная система координат, для которой оператор набла определяется следующим образом:

где i, j и k – единичные координатные векторы

Оператор набла, будучи применен к полю тем или иным математическим образом, дает три возможные комбинации. Данные комбинации именуются:

Градиент — вектор, своим направлением указывающий направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный скорости роста этой величины в этом направлении.

Дивергенция (расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть, в результате применения к векторному полю операции дифференцирования получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.

Ротор (вихрь, ротация) — векторный дифференциальный оператор над векторным полем.

Теперь рассмотрим непосредственно уравнения Максвелла в интегральной (слева) и дифференциальной (справа) формах, содержащие в себе основные законы электрического и магнитного полей, включая электромагнитную индукцию.

Интегральная форма: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Дифференциальная форма: при всяком изменении магнитного поля возникает вихревое электрическое поле, пропорциональное скорости изменения индукции магнитного поля.

Физический смысл: всякое изменение магнитного поля во времени вызывает появление вихревого электрического поля.

Интегральная форма: поток индукции магнитного поля через произвольную замкнутую поверхность равен нулю. Это означает, что в природе нет магнитных зарядов.

Дифференциальная форма: поток силовых линий индукции магнитного поля из бесконечного элементарного объёма равен нулю, так как поле вихревое.

Физический смысл: источники магнитного поля в виде магнитных зарядов в природе отсутствуют.

Интегральная форма: циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру прямо пропорциональна суммарному току, пересекающему поверхность, охватываемую этим контуром.

Дифференциальная форма: вокруг любого проводника с током и вокруг любого переменного электрического поля существует вихревое магнитное поле.

Физический смысл: протекание тока проводимости по проводникам и изменения электрического поля во времени приводят к появлению вихревого магнитного поля.

Интегральная форма: поток вектора электростатической индукции через произвольную замкнутую поверхность, охватывающую заряды, прямо пропорционален суммарному заряду, расположенному внутри этой поверхности.

Дифференциальная форма: поток вектора индукции электростатического поля из бесконечного элементарного объема прямо пропорционален суммарному заряду, находящемуся в этом объёме.

Физический смысл: источником электрического поля является электрический заряд.

Система данных уравнений может быть дополнена системой так называемых материальных уравнений, которые характеризуют свойства заполняющей пространство материальной среды:


источники:

http://allrefrs.ru/4-30474.html

http://electricalschool.info/spravochnik/electroteh/2145-uravneniya-maksvella.html