Однородные уравнения второй степени алгоритм

Однородные уравнения второй степени алгоритм

Однородное тригонометрическое уравнение – это уравнение двух видов:

a sin x + b cos x = 0 (однородное уравнение первой степени)

a sin 2 x + b sin x cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Алгоритм решения однородного уравнения первой степени a sin x + b cos x = 0:

1) разделить обе части уравнения на cos x

2) решить получившееся выражение

Пример : Решим уравнение 2 sin x – 3 cos x = 0.

Разделим обе части уравнения на cos x:

Алгоритм решения однородного уравнения второй степени a sin 2 x + b sin x cos x + c cos 2 x = 0.

Условие: в уравнении должно быть выражение вида a sin 2 x.
Если его нет, то уравнение решается методом разложения на множители.

1) Разделить обе части уравнения на cos 2 x

2) Ввести новую переменную z, заменяющую tg x (z = tg x)

3) Решить получившееся уравнение

Пример : Решить уравнение sin 2 x – 3 sin x cos x + 2 cos 2 x = 0.

Разделим обе части уравнения на cos 2 x:

tg 2 x – 3 tg x + 2 = 0.

Вместо tg x введем новую переменную z и получим квадратное уравнение:

Значит:
либо tg x = 1,
либо tg x = 2.

Сначала найдем x при tg x = 1:
x = arctg 1 + πn.
x = π/4 + πn.

Теперь найдем x при tg x = 2:
x = arctg 2 + πn.

Ответ : x = π/4 + πn; x = arctg 2 + πn.

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Урок алгебры и начала анализа. 10 класс. Однородные тригонометрические уравнения второй степени.
план-конспект урока по алгебре (10 класс) на тему

Скачать:

ВложениеРазмер
Однородные тригонометрические уравнения второй степени.123.5 КБ

Предварительный просмотр:

Урок алгебры и начала анализа. 10 класс.

(УМК А.Г. Мордковича и др. «Алгебра и начала анализа» 10-11 класс

М. «Мнемозина»,2013 года)

Тема урока : Однородные тригонометрические уравнения второй степени.

Учитель : Александра Вячеславовна Евдокимова, I квалификационной категории, МОУ СОШ №43 им. А.С.Пушкина, города Ярославля.

  • ввести определение однородного тригонометрического уравнения второй степени; вывести алгоритм решения однородного тригонометрического уравнения второй степени.
  • повторить и закрепить навык решения простейших тригонометрических уравнений; тренировать вычислительные навыки.
  • развивать мыслительные операции: сравнение, анализ, обобщение, аналогия.

Демонстрационный материал :

1. Мотивация к учебной деятельности

1) Организовать актуализацию требований к ученику со стороны учебной деятельности(«надо»).

2) Организовать деятельность учащихся по установке тематических рамок («могу»)

3) Создать условия для возникновения у ученика внутренней потребности включения в учебную деятельность(«хочу»)

— Чем занимались на прошлом уроке? (Решали простейшие тригонометрические уравнения; уравнения методом замены, разложением на множители, однородные уравнения первой степени.)

— Всё получалось? (Нет, но мы повторяли алгоритм решения таких уравнений, исправляли ошибки.)

— Какое предположение вы сделали в конце прошлого урока? (Что существуют более сложные виды тригонометрических уравнений и мы их сможем решить.)

— С чего начнём? (Повторим алгоритмы решения известных нам уравнений.)

2. Актуализация знаний и фиксация затруднений в деятельности.

1) Организовать актуализацию изученных способов действий, достаточных для построения нового знания.

2) Зафиксировать актуализированные способы действий в речи.

3) Зафиксировать актуализированные способы действий в знаках (эталоны).

4) Организовать обобщение актуализированных способов действий.

5) Организовать актуализацию мыслительных операций, достаточных для построения нового знания.

6) Мотивировать к пробному действию («надо» — «могу» — «хочу»).

7) Организовать самостоятельное выполнение пробного учебного действия.

8) Организовать фиксацию индивидуальных затруднений в выполнении учащимися пробного учебного действия или в его обосновании.

Sin x =0 sin x = 1

Cos x =0 cos x = 1

tg x = 0 tg x = 1

ctg x = 0 sin x = — 1

Среди предложенных уравнений укажите:

1. 2 tg 2 t – 5tg t +2 = 0

2. 2sin x – 3 cos x = 0 1) уравнения, которые решаются

3. (sin x — ) (sin x + 1) = 0 методом замены; (1)

4. sin 2x + cos 2x = 0 2) уравнения, которые решаются

5. sin 2 x – 3 sinхcos x + 2 cos 2 x = 0 методом разложения на

6. sin x + cos x = 2 3) однородные тригонометрические

уравнения 1 степени (2,4)

— Сформулируйте алгоритм решения однородных тригонометрических уравнений первой степени.

Учащиеся формулируют алгоритм. Алгоритм пошагово появляется на доске.

— Найдите среди предложенных уравнений, то которое будет пробным.

— Рассмотрим его, чем оно отличается от остальных ? (Все одночлены в левой части – второй степени.)

— Уравнения вида а sin 2 x + b sin х cos x + c cos 2 x = 0

Называются однородными второй степени. Способ таких уравнений вам известен? (Нет.)

— Попробуйте решить уравнение № 5.

Учащиеся выполняют пробное действие.

-Удалось найти верный ответ? В чём затруднение?

(Нет, не удалось; решил, но не могу обосновать решение.)

3.Выявление места и причин затруднения.

1) Организовать восстановление выполненных операций.

2) Организовать фиксацию места (шага, операции), где возникло затруднение.

3) Организовать соотнесение своих действий с используемыми эталонами(алгоритмом, понятием и т.д.)

4) На этой основе организовать выявление и фиксацию во внешней речи причины затруднения- тех конкретных знаний, умений или способностей, которых недостаёт для решения исходной задачи и задач такого класса или типа вообще.

– В чём причина затруднения? (Мы не знаем алгоритма решения таких уравнений.)

Были ли уравнения

4. Построение проекта выхода из затруднения.

Организовать построение проекта выхода из затруднения:

1) Учащиеся ставят цель проекта (целью всегда является устранение причины возникшего затруднения).

2) Учащиеся уточняют и согласовывают причины возникшего затруднения.

3) Учащиеся определяют средства (алгоритмы, модели, справочники и т.д.)

4) Учащиеся формулируют шаги, которые необходимо сделать для реализации поставленной цели.

-Какова цель урока? (Составить алгоритм решения однородных уравнений второй степени.)

-Какова тема урока? (Однородные уравнения второй степени.)

— Запишите тему в тетрадь.

-Какие приёмы вы предлагаете использовать для конструирования алгоритма? (Деление обеих частей уравнения на cos 2 x.)

— Как решить уравнение вида: а sin 2 mx + b sin cos mx + c cos 2 mx = 0

— Для выполнения построенного плана предлагаю объединиться в группы и решить задания:

Ответ: , .

Учащиеся работают в группах. Записывают решение на заготовках для кодоскопа. Проверка через кодоскоп..

6. Первичное закрепление во внешней речи.

Организовать усвоение детьми нового способа действий при решении данного класса задач с их проговариванием во внешней речи.

-Решим № 364 (в) проговаривая все этапы алгоритма.

sin 2 x + sin х cos x — 2 cos 2 x = 0 a≠0 c≠0

( Разделить обе части уравнения на cos 2 x)

tg 2 x + tg x — 2=0

Z 2 + Z – 2 = 0 (Решим полученное квадратное уравнение)

(В ернёмся к замене)

tg x = 1 или tg x = -2 ( Решим простейшие тригонометрические

х = , х = — (Запишем ответ уравнения).

7. Самостоятельная работа с самопроверкой по эталону.

1) Организовать выполнение учащимися типовых заданий на новый способ действия;

2) Организовать соотнесение работы с подробным образцом;

3) Организовать вербальное сопоставление работы с подробным образцом;

4) По результатам выполнения самостоятельной работы организовать рефлексию деятельности по применению нового способа действия.

-Время на выполнение задания вышло. Проверьте свою работу по подробному образцу.

— С какого шага начнём проверку ( Проверим, чему равны коэффициенты.)

-Следующий шаг проверки ? ( Разделить обе части уравнения на cos 2 .)

— Дальше ?(Вввести замену Z = tg x и решить полученное квадратное уравнение.)

-Следующий шаг проверки ? (Вернёмся к замене и решим простейшие тригонометрические уравнения.)

-Последний шаг проверки? (Проверка правильности записи ответа уравнения.)

— Кто ошибся при определении коэффициентов?

— Кто допустил ошибки при делении обеих частей уравнения на cos 2 ?

— Кто неверно решил кв. уравнение?

— Кто неверно решил простейшее тригонометрическое уравнение?

8.Включение в систему знаний и повторение.

1) Организовать выявление типов заданий, где используется новый способ действия.

2) Организовать повторение учебного содержания, необходимого для обеспечения содержательной непрерывности.

-Рассмотрите уравнение. Это однородное тригонометрическое уравнение второй степени? (Нет.)

-А можно его привести к такому виду? (Да.)

— Что для этого нужно сделать? ( По основному тригонометрическому тождеству заменить 1 на sin 2 x + cos 2 x привести подобные слагаемые.)

— Решите это уравнение. (Ответ: х = — )

— Как вы думаете, а существуют другие виды тригонометрических уравнений? (Конечно.)

— Что может нам помочь в решении новых видов уравнений? (Тригонометрические формулы, которые мы знаем.)

-А много ли тригонометрических формул вы знаете ? (Пока нет.)

-Сделайте предположение, что вы узнаете на следующих уроках? (Новые тригонометрические формулы.)

9. Рефлексия учебной деятельности.

1) Организовать фиксацию нового содержания, изученного на уроке.

2) Организовать рефлексивный анализ учебной деятельности с точки зрения.

3) Выполнения требований, известных учащимся.

4) Организовать оценивание учащимися собственной деятельности на уроке.

5) Организовать обсуждение и запись домашнего задания.

— Что нового узнали на уроке? (Новый вид тригонометрического уравнения, способ его решения.)

— Достигли цель, поставленную в начале урока? (Да.)

— Почему? (Мы составили алгоритм решения однородных уравнений второй степени.)

-Где может пригодиться новое знание ? (При решении более сложных тригонометрических уравнений.)

— Как вы оцените свою работу на уроке?

-Для чего нам необходимо выполнять домашнее задание? (Чтобы закрепить умение решать данный вид уравнений.)

— Предлагаю записать домашнее задание : № 363(г), № 362 (бв), дополнительно: №378.


источники:

http://www.resolventa.ru/spr/algebra/system1.htm

http://nsportal.ru/shkola/algebra/library/2017/08/20/urok-algebry-i-nachala-analiza-10-klass-odnorodnye