Окисление бутена 2 уравнение реакции

Химические свойства алкенов

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов.

Химические свойства алкенов

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Энергия связи, кДж/мольДлина связи, нм
С-С3480,154
С=С6200,133

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.
Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

1.4. Гидратация

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида)

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида

2.2. Мягкое окисление

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

2.2. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Поэтому можно составить таблицу соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
>C=>C=O>C=O
-CH=-COOH-COOK
CH2=CO2K2CO3

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, при окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

Например, уравнение сгорания пропилена:

3. Замещение в боковой цепи

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

При взаимодействии алкенов с хлором или бромом при нагревании до 500 о С или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H +Li +K +Na +NH4 +Ba 2+Ca 2+Mg 2+Sr 2+Al 3+Cr 3+Fe 2+Fe 3+Ni 2+Co 2+Mn 2+Zn 2+Ag +Hg 2+Pb 2+Sn 2+Cu 2+
OH —РРРРРМНМННННННННННН
F —РМРРРМННММНННРРРРРНРР
Cl —РРРРРРРРРРРРРРРРРНРМРР
Br —РРРРРРРРРРРРРРРРРНММРР
I —РРРРРРРРРР?Р?РРРРНННМ?
S 2-МРРРРННННННННННН
HS —РРРРРРРРР?????Н???????
SO3 2-РРРРРННМН?Н?НН?ММН??
HSO3Р?РРРРРРР?????????????
SO4 2-РРРРРНМРНРРРРРРРРМНРР
HSO4РРРРРРРР??????????Н??
NO3РРРРРРРРРРРРРРРРРРРРР
NO2РРРРРРРРР????РМ??М????
PO4 3-РНРРННННННННННННННННН
CO3 2-РРРРРНННН??Н?ННННН?Н?Н
CH3COO —РРРРРРРРРРРРРРРРРРР
SiO3 2-ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Мягкое окисление алкенов. Пошаговый алгоритм составления уравнений.

Под мягким окислением алкенов подразумевают действие на них нейтрального холодного водного раствора перманганата калия. В результате такого окисления образуются, так называемые вицинальные диолы – двухатомные спирты с двумя ОН-группами при соседних атомах углерода в молекуле.

Поскольку среда нейтральная, в качестве продуктов восстановления перманганата калия образуются диоксид марганца — MnO2 и щелочь.

Вывод о том, что вода также является реагентом (будет входить в левую часть уравнения реакции), можно легко сделать хотя бы по тому, что в молекуле органического вещества появляются дополнительные атомы водорода, которых в перманганате нет.

Таким образом, схема реакции будет выглядеть так:

Расставим коэффициенты в этой схеме методом электронного баланса. Для этого сначала нужно определить степени окисления у тех атомов углерода, при которых изменилось окружение (в нашем случае у тех атомов углерода, к которым прикрепятся ОН группы). Отметим, что при окислении органических веществ степень окисления водорода не меняется и равна +1.

Для расстановки степеней окисления атомов углерода в органических веществах можно использовать так называемый метод блоков. В данном методе мы должны мысленно «изолировать» друг от друга фрагменты молекулы органического вещества по углерод-углеродным связям и рассматривать такие фрагменты условно как нейтральные молекулы. В частности, формулу пропена можно разбить на условно нейтральные блоки таким образом:

Далее, приняв заряд каждого блока за 0 и помня, что водород в органических веществах всегда имеет степень окисления, равную +1, несложно посчитать степени окисления всех атомов углерода.
Обозначим степени окисления первого, второго и третьего атомов С как х, у, и z соответственно. Тогда, подписав степени окисления для каждого элемента в формуле, мы получим:

Таким образом, составив уравнения и решив их, получаем:

Проведем аналогичную манипуляцию с формулой органического продукта окисления. Разбиваем мысленно его молекулу на нейтральные блоки по углерод-углеродным связям. Пусть степени окисления первого, второго и третьего атома С также будут равны x, y и z соответственно. Атомы водорода в органике всегда имеют степень окисления +1, а кислорода практически всегда -2 (за исключением редких случаев — органических пероксидов, которые в ЕГЭ не рассматриваются). Поэтому, подписав степени окисления для каждого элемента, получим:


Далее, составим уравнения, помня, что условно заряд каждого блока равен нулю, и решим их:

y + 1 −2 +1 = 0 => y = 0

z + 2·1 − 2 +1 = 0 => z = −1

Таким образом, мы видим, что степень окисления первого атома углерода не изменилась, что и логично, ведь не изменилось его окружение.

Степень окисления второго атома С была равна -1, стала равна 0.

Степень окисления третьего атома С была равна -2, стала равна -1.

Также в этой окислительно-восстановительной реакции изменяется степень окисления марганца. Изначально она была равна +7 (в перманганате калия), после реакции стала равна +4 (в диоксиде марганца).

Запишем еще раз схему реакции и составим для нее электронный баланс, используя в балансе только те атомы С, степень окисления которых изменилась:

3·| С −1 С −2 − 2е − → С 0 С −1

2·| Mn +7 + 3e − → Mn +4

(вывод о том, что от двух атомов С слева нужно отнять 2 электрона делаем на основании того, что суммарный заряд двух «атомов» С слева равен -3, а справа -1)

Перенесем коэффициенты из электронного баланса в схему:

Далее, мы видим, что в левой части схемы уже точно известно количество атомов калия, поскольку перед единственным калийсодержащим веществом левой части известен коэффициент. Таким образом, очевидно, что перед KOH в правой части схемы нужно поставить коэффициент 2. Получаем:

Далее, мы видим, что в левой части уравнения уже известно точное количество атомов кислорода, поскольку перед всеми кислородсодержащими веществами правой части коэффициенты известны. Всего в правой части уравнения 12 атомов кислорода. В левой части (не считая воды) – 8 атомов кислорода. Таким образом, чтобы в левой части тоже было 12 атомов кислорода, перед водой нужно поставить коэффициент 4. Таким образом, конечное уравнение окисления пропилена нейтральным холодным раствором перманганата будет иметь вид:

Следует отметить, что абсолютно такие же коэффициенты в уравнении реакции будут при мягком окислении любого другого органического вещества с одной двойной связью (при условии, что в молекуле будут отсутствовать другие фрагменты, способные к окислению).

Для демонстрации того, что коэффициенты будут идентичными, давайте рассмотрим мягкое окисление 2-фенилпропена

Схема окисления 2-фенилпропена будет выглядеть следующим образом:

Учитывая опыт примера с мягким окислением пропена, мы будем определять степени окисления не всех атомов углерода, а только тех, у которых изменилось окружение. Поэтому в молекуле 2-фенилпропена мы выделим только два условно нейтральных блока. Обозначив степени окисления атомов углерода как x и y, а также не забывая, что степень окисления водорода в органических веществах равна +1, подпишем степени окисления для каждого элемента в выделенных блоках:

Таким образом, составив и решив уравнения получаем:
x = 0

Аналогично поступим с продуктом окисления:

x −2 + 1 = 0 => x = 1

y +2·1 −2 + 1 = 0 => y = −1

Запишем повторно схему окисления 2-фенилпропена нейтральным раствором перманганата и составим электронный баланс:

3|С 0 С −2 − 2е − → С +1 С −1

2|Mn +7 + 3e − → Mn +4

Перенесем коэффициенты из электронного баланса в схему реакции:

Далее мы видим, что калия в левой части схемы 2, значит коэффициент 2 нужно поставить перед KOH. Получаем:

В правой части мы видим 12 атомов кислорода, в связи с чем для получения такого же количества атомов кислорода в левой части перед водой необходимо поставить коэффициент 4. Таким образом, конечное уравнение мягкого окисления 2-фенилпропена холодным нейтральным раствором перманганата калия будет иметь вид:

Как можно видеть, коэффициенты в этом уравнении полностью совпали с коэффициентами уравнения реакции мягкого окисления пропилена.


источники:

http://acetyl.ru/o/a42b3b.php

http://scienceforyou.ru/poleznye-spravochnye-materialy-k-egje/myagkoe-okislenie-alkenov-poshagovyy-algoritm-sostavleniya-uravneniy