Окисление спирта в альдегид уравнение

Окисление спирта в альдегид уравнение

1. Окисление спиртов

В лаборатории карбонильные соединения получают окислением спиртов в жестких условиях в присутствии сильных окислителей (дихромата калия К2Cr2O7 или перманганата калия КМnО4) в серной кислоте Н2SO4. В качестве окислителя можно использовать оксид меди (II) при нагревании.

При окислении первичных спиртов образуются альдегиды:

Видеоопыт «Окисление этилового спирта оксидом меди (II)»

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот:

Чтобы предотвратить превращение альдегида в кислоту, его отгоняют в ходе реакции (tкип альдегида, не образующего межмолекулярные водородные связи, ниже tкип спирта и кислоты).

При окислении вторичных спиртов образуются кетоны:

Присоединение воды к ацетилену происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта (енола), который изомеризуется в уксусный альдегид (в случае ацетилена):

Кетоны получают при гидратации других гомологов ряда алкинов:

Раньше это был промышленный способ получения карбонильных соединений. В настоящее время этот способ находит ограниченное применение из-за загрязнения получаемых продуктов токсичными солями ртути и относительной дороговизны.

3. Каталитическое окисление алкенов кислородом воздуха

Этим способом в промышленности получают уксусный альдегид — окислением этилена кислородом воздуха (Вакер-процесс).

Эта реакция протекает в присутствии катализатора – смеси PdCl2 и CuCl2 и температуре 100 0 С:

Этим экономичным способом получают низшие альдегиды и кетоны.

Этот промышленный способ более перспективен, чем гидратация алкинов, при которой используются токсичные ртутные катализаторы.

4. Каталитическое дегидрирование спиртов

В промышленности альдегиды и кетоны получают дегидрированием спиртов, пропуская пары спирта над нагретым катализатором (Cu, соединения Ag, Cr или Zn).

Первичные спирты окисляются до альдегидов, а вторичные – до кетонов.

Этот способ получения объясняет суть названия «альдегид» (от лат. alconol dehydrogenatum – спирт, от которого «отняли» водород).

Этот способ позволяет получать карбонильные соединения, в особенности альдегиды, без побочных продуктов окисления.

В 1835 г. немецкий химик Ю. Либих выделил индивидуальное вещество, молекула которого содержала на два атома водорода меньше, чем этанол. Ученый установил состав этого соединения – С2Н4О и назвал его альдегидом (от лат. al conol dehyd rogenatum — т.е. дегидрированный спирт, «спирт, лишенный водорода»).

В 1867 г. немецкий химик-органик А. Гофман, пропуская пары метилового спирта над раскаленной платиновой спиралью, получил газообразное вещество состава СН2О, молекула которого отличается от открытого Либихом альдегида на группу -СН2— . Именно это соединение (муравьиный альдегид) открывает гомологический ряд альдегидов.

5. Щелочной гидролиз дигалогеналканов

Реакция протекает при действии водных растворов щелочей на дигалогензамещенные углеводороды, содержащие два атома галогена у одного и того же атома углерода.

При щелочном гидролизе дигалогеналканов образуются двухатомные спирты, в которых две группы ОН соединены с одним атомом углерода. Эти вещества неустойчивы и при отщеплении воды, превращаются в карбонильные соединения.

Если два атома галогена связаны с первичным атомом углерода, то образуются альдегиды:

При гидролизе дигалогеналканов, содержащих атомы галогена у вторичного атома углерода, образуются кетоны:

Это лабораторный способ получения карбонильных соединений.

6. Пиролиз солей карбоновых кислот

При пиролизе (термическое разложение) кальциевых, бариевых солей карбоновых кислот образуются соответствующие карбонильные соединения. Из смешанной соли муравьиной и другой карбоновой кислоты получают альдегиды, а в остальных случаях образуются кетоны.

Это лабораторный способ получения карбонильных соединений.

7. Кумольный способ получения ацетона (наряду с фенолом)

Простейший кетон – ацетон – получают кумольным методом вместе с фенолом:

Это промышленный способ получения ацетона.

Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

Получение формальдегида

1. Окисление метана

Формальдегид в промышленности можно получить окислением метана кислородом воздуха при высоких температурах с использованием катализатора:

2. Окисление метанола

Основной промышленный способ получения формальдегида – окисление метанола с использованием серебряного катализатора при температуре 650 0 С и атмосферном давлении:

Реакция происходит на раскаленной серебряной сетке, через которую проходят пары ментола, смешанные с воздухом. Реакция настолько экзотермична, что выделяющейся в ходе ее теплоты достаточно для того, чтобы поддерживать сетку в раскаленном состоянии.

В настоящее время разработан перспективный способ высокотемпературного окисления метанола с использованием железомолибденовых катализаторов:

Лабораторный опыт 6. Окисление спирта в альдегид. ГДЗ Химия 10-11 класс Цветков.

Какие тут подсказки?
1. На конце медной проволоки сделайте 5-6 витков спирали.
2. Налейте в пробирку не более 1 мл этилового спирта, накалите мед­ную спираль в пламени горелки, чтобы медь покрылась черным нале­том оксида, и быстро опустите спираль в пробирку со спиртом. Повтори­те эту операцию несколько раз. Обратите внимание на запах образующе­гося альдегида и на изменения, происходящие со спиралью.
3. Составьте уравнения реакций окисления меди при накаливании и окисления спирта в альдегид оксидом меди (II).

Окисление спирта в альдегид уравнение

Чтобы предотвратить превращение альдегида в кислоту, его отгоняют в ходе реакции (т. кипения альдегида, не образующего межмолекулярные водородные связи, ниже т.кип. спирта и кислоты)

При окислении вторичных спиртов образуются кетоны

2 . В промышленности альдегиды и кетоны получают дегидрированием спиртов, пропуская пары спирта над нагретым катализатором (Cu, соединения Ag, Cr или Zn).
Этот способ позволяет получать карбонильные соединения, в особенности альдегиды, без побочных продуктов окисления.

3. Гидротация алкинов (реакция Кучерова)
присоединения воды к ацетилену в присутствии солей ртути приводит к образованию ацетальдегида:

Кетоны получают при гидротации других гомологов ряда алкинов:

К альдегидам относятся важнейшие моно- и олигосахариды — глюкоза, лактоза и др. Содержатся А. в эфирных маслах, напр. цитраль — в лемонграссовом (до 80%) и кориандровом маслах, цитронеллаль — в цитронелловом (

30%) и эвкалиптовом, бензальдегид — в масле горького миндаля; плоды ванили содержат 1,5-3% ванилина.

Ацетальдегид производят гл. обр. окислением этилена, а также каталитической гидратацией ацетилена (р-ция Кучерова), акролеин — окислением пропилена, пропионовый и масляный альдегиды — гидроформилированием соотв. этилена и пропилена. А. синтезируют в пром-сти также каталитич. восстановлением карбоновых к-т (гл. обр. высших) муравьиной к-той, гидролизом дигалогенозамещенных углеводородов.

Методы получения альдегидов:

методы окисления или дегидрирования:

дегидрирование спиртов над катализаторами (Ag, Cu) — используется в основном в промышленности;

окисление спиртов хроматами, комплексами триоксида хрома (VI), диметилсульфоксидом, церийаммонийнитратом, иодозобензолом;

  • окисление спиртов кетонами в присутствии алкоголятов алюминия (р-ция Оппенауэра);
  • окисление олефинов в присутствии четырехокиси осмия;

  • озонолиз олефинов;
  • окисление бензиловых спиртов или бензилгалогенидов нитросоединениями;
  • окисление 1,2-гликолей йодной к-той или (СН3СОО)4Рb;
  • окисление альдоз гипохлоритом натрия до более короткоцепочной альдозы;
  • реакция бензилгалогенидов с уротропином с последующим распадом продукта присоединения (реакция Соммле);
  • окисление бензилгалогенидов диметилсульфоксидом;
  • окисление метиларенов или метилгетероциклов двуокисью марганца, трехокисью хрома (VI), хлористым хромилом, диоксидом селена;
  • нитрозирование метиларенов или метилкетонов нитрозилхлоридом;
  • реакция простых эфиров с трет-бутилпербензоатом с образованием ацеталя, который затем гидролизуется в альдегид;
  • распад солей нитроалканов под действием разбавленных кислот до альдегида и оксида азота (I) (реакция Нефа);
  • реакция фенилуксусных кислот с окисью пиридина с образованием ароматических альдегидов;

    восстановление хлорангидридов кислот через соединения Рейсерта;

  • восстановление хлорангидридов кислот через тиоэфиры;
  • восстановление хлорангидридов водородом в присутствии палладия (р-ция Розенмунда);
  • восстановление хлорангидридов кислот гидридами металлов;
  • восстановление нитрилов гидридами металлов с последующим гидролизом образующихся альдиминов;
  • восстановление нитрилов хлоридом олова (II) (реакция Стефена);
  • восстановление нитрилов, семикарбазидов кислот, гидразидов кислот водородом над никелем Ренея;
  • восстановление анилидов карбоновых кислот, через образованием имидохлорида и анила (реакция Зонна-Мюллера);
  • восстановление сложных эфиров алюмогидридами;
  • разложение арилсульфонилгидразидов кислот (реакция Мак-Фадена и Стивенса);

  • восстановление карбоновых кислот амальгамой натрия;
  • совместное разложение карбоновой кислоты с муравьиной кислотой;

    введение карбонильной группы (формилирование):

  • реакция аренов с цианидом цинка и хлороводородом (реакция Гаттермана);
  • реакция аренов с угарным газом и хлороводородом (реакция Гаттермана-Коха);
  • реакция аренов с фторангидридом муравьиной кислоты;
  • реакция аренов с дихлорметилалкиловыми эфирами;
  • реакция фенолов с триэтилортоформиатом;
  • реакция аренов с формамидами (реакция Вильсмейера);
  • реакция фенолов с уротропином (реакция Даффа);
  • гидроформилирование алкенов действием угарного газа и водорода над катализатором;
  • реакция солей диазония с формальдоксимом;
  • взаимодействие реактивов Гриньяра с ортомуравьиным эфиром, N-метил-N-формиланилином, этоксиметиленанилином;
  • взаимодействие реактивов Гриньяра с сероуглеродом и семикарбазидом;
  • реакция алкиллитиевых соединений с диметилформамидом;
  • формилирование кетонов этилформиатом (реакция Кляйзена);
  • конденсация триэтилортоформиата с простыми виниловыми эфирами с образованием альдолей и их последующим гидролизом;
  • реакция фенолов с хлороформом в щелочной среде (реакция Реймера-Тимана);

    гидролиз и расщепление:

  • гидролиз ацеталей и циклических ацеталей;
  • расщепление фуранового или пиррольного кольца;
  • гидролиз 1,3-дитианов, дигидро-1,3-оксазинов;
  • гидролиз гем-дигалогеналканов;
  • распад альфа-кетокислот при нагревании в анилине и гидролиз образующегося основания Шиффа (альфа-кетокислоты можно получить из альфа-аминокислот окислением);
  • нагревание альфа-гидроксикислот с разложением их до угарного газа, альдегида и воды;

    присоединение и конденсации:

  • гидратация ацетилена над ртутными катализаторами с образованием ацетальдегида;
  • присоединение спиртов к ацетиленам и перегруппировка аллилвиниловых эфиров (перегруппировка Клайзена);
  • альдольная конденсация альдегидов;
  • конденсация Манниха к альдегидам;
  • реакция Михаэля с альдегидами;
  • перегруппировки пинаконов;
  • перегруппировка аллиловых спиртов;
  • перегруппировка эпоксидов;
  • распад альфа-гидроксиацетофенонов в кислой среде;

  • реакция ацетофенонов с алкилазидами;
  • реакция дигидразидов малоновых кислот с нитритом натрия;
  • реакция амидов альфа-гидрокси-, альфа-бром- и альфа-аминокислот с гипохлоритом натрия;


    источники:

    http://class.rambler.ru/temy-gdz/laboratornyy-opyt-6-okislenie-spirta-v-aldegid-gdz-himiya-10-11-klass-cvetkov-28575.htm

    http://www.sites.google.com/site/vikusakoval/home/polucenie