Окисление железа 2 в железо 3 уравнение

Свойства элементов подгруппы железа

Задание 424
Какую степень окисления проявляет железо в соединениях? Как можно обнаружить ноны Ее 2+ и Fe 3+ в растворе? Составьте молекулярные и ионно-молекулярные уравнения реакций.
Решение:
а) Электронная конфигурация атома железа имеет вид: …3d 6 4s 2 . Поэтому железо может проявлять следующие степени окисления: +2 и +3. Атом железа может отдавать два электрона с 4s-подуровня (при этом будет иметь электронную конфигурацию…3d 6 ) и дополнительно к двум 4s-электронам атом железа может отдать один d-электрон (при этом будет иметь электронную конфигурацию…3d 5 ). В растворах более устойчивы соединения железа со степенью окисления железа +3. Известны соединения железа со степенью окисления + 6, например, BaFeO4.
б) Ионы Fe 2+ можно обнаружить действием комплексной солью K3[Fe(CN)6] – красная кровяная соль [или гексацианоферрат(III) калия]; при взаимодействии её с солями железа (II) образуется тёмно-синий осадок (турнбулева синь). Молекулярное уравнение реакции имеет вид:

в) Ионы Fe 3+ можно открыть с помощью тиоцианата калия или жёлтой кровяной соли:

1). Открытие ионов Fe 3+ с помощью тиоцианата калия или аммония:

FeCl3 + 3KNCS = Fe(NCS)3 + 3KCl;
кроваво-красная
окраска

Ионно-молекулярное уравнение реакции можно не писать, так как осадка не образуется.

2). Открытие ионов Fe 3+ с помощью жёлтой кровяной соли:

В результате реакции образуется тёмно-синий осадок (берлинская лазурь) Fe4[Fe(CN)6].

Задание 425
Чем отличается взаимодействие гидроксидов кобальта (III) и никеля (III) с кислотами от взаимодействия гидроксида железа (III) с кислотами? Почему? Составьте электронные и молекулярные уравнения соответствующих реакций.
Решение:
Гидроксида железа (III) Fe(OH)3 – амфотерный гидроксид, который взаимодействует с кислотами с образованием аквакомплекса [Fe(H2O)6] 3+ :

При взаимодействии Со(ОН)3 и Ni(OH)3 с кислотами происходить не образование солей кобальта (III) и никеля (III), а восстановление Со и Ni до двухвалентного состояния, сопровождающееся выделением свободного кислорода:

Задание 426
Могут ли в растворе существовать совместно следующие вещества: а) FeCl3 и SnCl2; б) FeSO4 и NаОН; в) FeCl3 и К3[Fe(CN)6]? Для взаимодействующих веществ составьте уравнения реакций.
Решение:
а) FeCl3 и SnCl2 как сильные электролиты диссоциируют на ионы полностью
(FeCl3 → Fe 3+ + 3Cl — ; SnCl2 → Sn 2+ + 2Cl — ), поэтому в растворе находятся ионы Fe 3+ , Sn 2+ , Cl — , которые между собой не связываются. Значит, FeCl3 и SnCl2 могут в растворе совместно существовать.

б) FeSO4 и NаОН как сильные электролиты диссоциируют на ионы полностью
(FeSO4 → Fe 2+ + SO4 2- ; NaOH → Na + + OH — ), поэтому в растворе находятся ионы Fe 2+ , Na + , SO4 2- и OH — . Ионы Fe 2+ и ОН — связываются друг с другом с образованием малорастворимого Fe(OH)2, при этом выпадает осадок. Значит, FeSO4 и NаОН не могут в растворе совместно существовать, потому что происходит реакция:

в) FeCl3 и К3[Fe(CN)6] в водных растворах диссоциируют с образованием ионов Fe 3+ , K + , Cl — и [Fe(CN)6] 3- . Эти ионы в водных растворах друг с другом не связываются с образованием осадка, газа или слабого электролита, поэтому FeCl3 и К3[Fe(CN)6] в водных растворах могут совместно существовать.

Задание 430
Феррат калия К2FeO4 образуется при сплавлении Fe2O3 с калийной селитрой КNO3 в присутствии КОН. Составьте электронные и молекулярное уравнения реакции.
Решение:
Уравнение реакции сплавления Fe2O3 с калийной селитрой КNO3 в присутствии КОН:

«Соединения Fe+2 и Fe+3». 9-й класс

Разделы: Химия

Класс: 9

— образовательная: познакомить учащихся с природными соединениями железа, рассмотреть важнейшие соединения железа (+2) и (+3), их свойства, ознакомить с качественными реакциями на ионы железа (+2) и (+3), показать народнохозяйственное значение соединений железа;

— развивающая: развитие речи, памяти, логического мышления, умений совместной деятельности; развитие и закрепление умений и навыков работать с лабораторным оборудованием;

— воспитательная: формирование мировоззрения, навыков сотрудничества, преемственности знаний, осуществление межпредметных связей, воспитание экологической грамотности, разумного отношения к природе (слайд 2).

Оборудование и реактивы:

образцы природных соединений железа (магнитный железняк, красный железняк, бурый железняк, железный колчедан); растворы хлорида железа (II) и (III), растворы красной кровяной соли и жёлтой кровяной соли, раствор роданида калия, раствор щёлочи; соли: железный купорос, хлорид железа (III), сульфат железа (III), необходимая химическая посуда.

Тип урока: комбинированный.

I. Организационный момент.

II. Актуализация знаний.

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

Закончите уравнения реакций. Уравнение №2 рассмотрите с точки зрения ОВР.

III. Изучение нового материала.

Нахождение железа в природе

Железо (5%) – второй по распространённости металл в земной коре, а в природе занимает 4 место. В природе встречается в виде оксидов и сульфидов:

Fe3O4 – магнитный железняк (магнетит);

Fe2O3 – красный железняк (гематит);

(Врач и алхимик Теофаст Парацельс много путешествовал и в 1530г из России привёз в свою лабораторию в г. Базеле кусок вишнёво – красного минерала – “кровавика”. Минерал действительно оставлял “кровавый” след – красную черту на пергаменте или белом камне. Помощник Парацельса, невежественный монах, решил, что минерал из России – застывшая кровь дьявола. Готовя составные части лекарств прокаливанием солей, полученных из “русского минерала”, монах всякий раз получал порошок красного цвета. Сиреневые кристаллы сульфата и нитрата железа (III), жёлтый хлорид железа (III) или почти белый карбонат железа (II) – все они при нагревании в токе воздуха превращались в “кровавик”. Бросив работу, монах стал повсюду рассказывать, что Парацельс связан с дьяволом. В адрес знаменитого врача посыпались угрозы, и ночью ему пришлось тайно покинуть Базель. Утром толпа горожан разгромила и сожгла его дом).

“Кровавик” — это минерал гематит Fe2O3. Соли железа при прокаливании разлагаются с выделением этого оксида красного цвета.)

FeS2 – железный колчедан (пирит).

Помимо железа в состав этих минералов входят другие элементы. Природное химически чистое железо бывает только метеоритного происхождения (самый большой метеорит найден в 1920 г. в Юго – Западной Африке, вес 60 т., “Гоба”) (демонстрация коллекции минералов) (Cлайд 3).

Железо образует несколько рядов соединений, чтобы узнать какие мы должны с вами вспомнить, какова особенность строения атома железа и какие степени окисления характерны для железа?

Fe +26 2е, 8е, 14е, 2е

(Fe – элемент 7 группы побочной подгруппы, 4 периода (большой). Заполняется не последний, а предпоследний, 3-й от ядра энергетический уровень, где максимальное число электронов 18, у железа здесь 14 электронов. Железо восстановитель, как и другие металлы, однако в отличие от ранее изученных металлов, атомы железа при окислении отдают не только электроны последнего уровня, приобретая степень окисления +2, но способны к отдаче 1 электрона с предпоследнего энергетического уровня, принимая при этом степень окисления +3. Для железа характерны две основные степени окисления +2 и +3).

Проявляя степени окисления +2 и +3 железо образует 2 ряда соединений.

Соединения железа (+2).

Соединения железа (+2): FeO (оксид железа(II) и Fe(OH)2 (гидроксид железа(II). Имеют ярко выраженный основный характер. Получают их косвенно. Рассмотрим генетический ряд Fe +2:

Соединения железа (+3).

Соединения железа (+3): Fe2О3 (оксид железа(III)) и Fe(OH)3 (гидроксид железа(III)). Имеют слабо выраженные амфотерные свойства. Получают их косвенно. Рассмотрим генетический ряд Fe +3:

Катионы железа (+2) легко окисляются кислородом воздуха или другими окислителями до катионов железа (+3). Поэтому белый осадок Fe(OH)2 (гидроксид железа(II) на воздухе сначала приобретает зелёную окраску, а затем становится бурым, превращаясь в Fe(OH)3 (гидроксид железа(III) (демонстрационный опыт

)

Соли железа (+2) и (+3).

Железо образует 2 ряда солей Fe +2 и Fe +3 . Для распознавания соединений железа (+2) и (+3) проводят качественные реакции на данные ионы (качественные реакции – это реакции с помощью которых распознают различные вещества, они сопровождаются ярким внешним эффектом).

Качественные реакции на Fe +2 .

Реактивом служит красная кровяная соль.

Качественные реакции на Fe +3.

Реактивом служит жёлтая кровяная соль.

Также для обнаружения ионов железа(III) используют взаимодействие солей железа(III) с роданидом калия или аммония, в результате чего раствор приобретает интенсивно-красное окрашивание.

Техника безопасности: необходимо брать вещества в количествах указанных учителем; при попадании данных химических реактивов на кожу или одежду необходимо смыть реактивы избытком воды; если что-нибудь попало в глаза – промыть водой в течение 10-15 минут.

(просмотр диска; демонстрация образцов солей; опыты учащихся) (Cлайд 4, 5).

Применение соединений железа

Железо выполняет функции кроветворных органов, входит в состав гемоглобина, других сложных белковых животных организмов. В виде чугуна и стали железо находит широкое применение в народном хозяйстве. Из солей железа наибольшее техническое значение имеют сульфаты и хлориды.

FeSO4*7H2O – железный купорос используется для борьбы с вредителями растений, для приготовления минеральных красок и т.д.;

FeCl3 – используется как протрава при крашении тканей и в качестве катализатора в органическом синтезе;

Fe2(SO4)3*9H2O – применяют для очистки воды, в виде квасцов в медицине.

(просмотр диска; демонстрация образцов солей)

На уроке мы с вами рассмотрели соединения железа (+2) и (+3). Познакомились с нахождением железа в природе: минералы магнетит, гематит, лимонит, пирит. Изучили соединения железа (+2) ( FeO (оксид железа(II) и Fe(OH)2 (гидроксид железа(II) и их свойства; соединения железа (+3) (Fe2О3 (оксид железа(III) и Fe(OH)3 (гидроксид железа(III), их свойства. Рассмотрели лёгкость окисления Fe +2 в Fe +3 кислородом воздуха. Узнали, что железо образует 2 ряда соединений:

Fe +2 : реактивом служит красная кровяная соль, образуется тёмно-синий осадок (турнбулева синь);

Fe +3 : реактивом служит

1) жёлтая кровяная соль, образуется тёмно-синее окрашивание (берлинская лазурь);

2) роданид калия или аммония, образуется интенсивно-красное окрашивание.

Рассмотрели применение соединений железа: в металлургии, медицине, при очистке воды, при окраске тканей, для борьбы с вредителями и в других отраслях народного хозяйства.

Задача. Какая масса железа может быть получена при действии на 96 г оксида железа(III) избытка оксида углерода(II), если выход реакции составляет 80% от теоретически возможного? (Cлайд 6)

Закончите предложения или дайте ответ на поставленный вопрос.

Мне больше всего понравилось…

Сегодня я узнал…

Домашнее задание: учебник Габриелян О. С. п.14 (стр. 65-67); упр. 5,6 письменно (Cлайд 7).

Железо. Свойства железа и его соединений

Железо Fe: химические свойства, способы получения железа, взаимодействие с простыми веществами (кислород, сера) и со сложными веществами (кислоты, вода, сильные окислители). Оксид железа (II) FeO, оксид железа (III) Fe2O3, железная окалина (Fe3O4) — способы получения и химические свойства. Гидроксид железа (II) Fe(OH)2, гидроксид железа (III) Fe(OH)3 — способы получения и химические свойства.

Железо

Положение в периодической системе химических элементов

Элемент железо расположен в побочной подгруппе VIII группы (или в 8 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома железа

Электронная конфигурация железа в основном состоянии :

+26Fe 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6

Железо проявляет ярко выраженные магнитные свойства.

Физические свойства

Железо – металл серебристо-белого цвета, с высокой химической активностью и высокой ковкостью. Обладает высокой тепло- и электропроводностью.

(изображение с портала vchemraznica.ru)

Температура плавления 1538 о С, температура кипения 2861 о С.

Нахождение в природе

Железо довольно распространено в земной коре (порядка 4% массы земной коры). По распространенности на Земле железо занимает 4-ое место среди всех элементов и 2-ое место среди металлов. Содержание в земной коре — около 8%.

В природе железо в основном встречается в виде соединений:

(изображение с портала karatto.ru)

Магнитный железняк Fe3O4 или FeO·Fe2O3 (магнетит).

(изображение с портала emchi-med.ru)

В природе также широко распространены сульфиды железа, например, пирит FeS2.

(изображение с портала livemaster.ru)

Встречаются и другие минералы, содержащие железо.

Способы получения

Железо в промышленности получают из железной руды, гематита Fe2O3 или магнетита (Fe3O4или FeO·Fe2O3).

1. Один из основных способов производства железа – доменный процесс . Доменный процесс основан на восстановлении железа из оксида углеродом в доменной печи.

В печь загружают руду, кокс и флюсы.

Шихта смесь исходных материалов, а в некоторых случаях и топлива в определённой пропорции, которую обрабатывают в печи.

Каменноугольный кокс это твёрдый пористый продукт серого цвета, получаемый путем коксования каменного угля при температурах 950—1100 °С без доступа воздуха. Содержит 96—98 % углерода.

Флюсы это неорганические вещества, которые добавляют к руде при выплавке металлов, чтобы снизить температуру плавления и легче отделить металл от пустой породы.

Шлак расплав (а после затвердевания стекловидная масса), покрывающий поверхность жидкого металла. Шлак состоит из всплывших продуктов пустой породы с флюсами и предохраняет металл от вредного воздействия газовой среды печи, удаляет примеси.

В печи кокс окисляется до оксида углерода (II):

2C + O2 → 2CO

Затем нагретый угарный газ восстанавливает оксид железа (III):

Процесс получения железа – многоэтапный и зависит от температуры.

Наверху, где температура обычно находится в диапазоне между 200 °C и 700 °C, протекает следующая реакция:

Ниже в печи, при температурах приблизительно 850 °C, протекает восстановление смешанного оксида железа (II, III) до оксида железа (II):

Встречные потоки газов разогревают шихту, и происходит разложение известняка:

Оксид железа (II) опускается в область с более высоких температур (до 1200 o C), где протекает следующая реакция:

FeO + CO → Fe + CO2

Углекислый газ поднимается вверх и реагирует с коксом, образуя угарный газ:

CO2 + C → 2CO

(изображение с портала 900igr.net)

2. Также железо получают прямым восстановлением из оксида водородом:

При этом получается более чистое железо, т.к. получаемое железо не загрязнено серой и фосфором, которые являются примесями в каменном угле.

3. Еще один способ получения железа в промышленности – электролиз растворов солей железа.

Качественные реакции

Качественные реакции на ионы железа +2.

– взаимодействие солей железа (II) с щелочами . При этом образуется серо-зеленый студенистый осадок гидроксида железа (II).

Например , хлорид железа (II) реагирует с гидроксидом натрия:

2NaOH + FeCl2 → Fe(OH)2 + 2NaCl

Видеоопыт взаимодействия раствора сульфата железа (II) с раствором гидроксида натрия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Гидроксид железа (II) на воздухе буреет, так как окисляется до гидроксида железа (III):

– ионы железа +2 окрашивают раствор в светлый желто-зеленый цвет.

– взаимодействие с красной кровяной солью K3[Fe(CN)6] – также качественная реакция на ионы железа +2. При этом образуется синий осадок «турнбулева синь».

Видеоопыт взаимодействия раствора хлорида железа (II) с раствором гексацианоферрата (III) калия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Качественные реакции на ионы железа +3

– взаимодействие солей железа (III) с щелочами . При этом образуется бурый осадок гидроксида железа (III).

Например , хлорид железа (III) реагирует с гидроксидом натрия:

3NaOH + FeCl3 → Fe(OH)3 + 3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гидроксида натрия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

– ионы железа +3 окрашивают раствор в светлый желто-оранжевый цвет.

– взаимодействие с желтой кровяной солью K4[Fe(CN)6] ионы железа +3. При этом образуется синий осадок «берлинская лазурь».

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гексацианоферрата (II) калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

В последнее время получены данные, которые свидетельствуют, что молекулы берлинской лазури идентичны по строению молекулам турнбулевой сини. Состав молекул обоих этих веществ можно выразить формулой Fe4[Fe2(CN)6]3.

– при взаимодействии солей железа (III) с роданидами раствор окрашивается в кроваво-красный цвет.

Например , хлорид железа (III) взаимодействует с роданидом натрия:

FeCl3 + 3NaCNS → Fe(CNS)3 + 3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором роданида калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

Химические свойства

1. При обычных условиях железо малоактивно , но при нагревании, в особенности в мелкораздробленном состоянии, оно становится активным и реагирует почти со всеми неметаллами .

1.1. Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe + 3Cl2 → 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

1.2. Железо реагирует с серой с образованием сульфида железа (II):

Fe + S → FeS

1.3. Железо реагирует с фосфором . При этом образуется бинарное соединения – фосфид железа:

Fe + P → FeP

1.4. С азотом железо реагирует в специфических условиях.

1.5. Железо реагирует с углеродом и кремнием с образованием карбида и силицида.

1.6. При взаимодействии с кислородом железо образует окалину – двойной оксид железа (II, III):

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe + O2 → 2FeO

2. Железо взаимодействует со сложными веществами.

2.1. При обычных условиях железо с водой практически не реагирует. Раскаленное железо может вступать в реакцию при температуре 700-900 о С с водяным паром:

3 Fe 0 + 4 H2 + O → Fe +3 3O4 + 4 H2 0

В воде в присутствии кислорода или во влажном воздухе железо медленно окисляется (корродирует):

2.2. Железо взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль железа со степенью окисления +2 и водород.

Например , железо бурно реагирует с соляной кислотой :

Fe + 2HCl → FeCl2 + H2

2.3. При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат железа (III) и вода:

2.4. Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Железо может реагировать с щелочными растворами или расплавами сильных окислителей . При этом железо окисляет до степени окисления +6, образуя соль (феррат).

Например , при взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

2.6. Железо восстанавливает менее активные металлы из оксидов и солей .

Например , железо вытесняет медь из сульфата меди (II). Реакция экзотермическая:

Fe + CuSO4 → FeSO4 + Cu

Еще пример : простое вещество железо восстанавливает железо до степени окисления +2 при взаимодействии с соединениями железа +3:

2FeCl3 + Fe → 3FeCl2

Оксид железа (II)

Оксид железа (II) – это твердое, нерастворимое в воде вещество черного цвета.

Способы получения

Оксид железа (II) можно получить различными методами :

1. Частичным в осстановлением оксида железа (III).

Например , частичным восстановлением оксида железа (III) водородом:

Или частичным восстановлением оксида железа (III) угарным газом:

Еще один пример : восстановление оксида железа (III) железом:

2. Разложение гидроксида железа (II) при нагревании :

Химические свойства

Оксид железа (II) — типичный основный оксид .

1. При взаимодействии оксида железа (II) с кислотными оксидами образуются соли.

Например , оксид железа (II) взаимодействует с оксидом серы (VI):

FeO + SO3 → FeSO4

2. Оксид железа (II) взаимодействует с растворимыми кислотами. При этом также образуются соответствующие соли .

Например , оксид железа (II) взаимодействует с соляной кислотой:

FeO + 2HCl → FeCl2 + H2O

3. Оксид железа (II) не взаимодействует с водой.

4. Оксид железа (II) малоустойчив, и легко окисляется до соединений железа (III).

Например , при взаимодействии с концентрированной азотной кислотой образуются нитрат железа (III), оксид азота (IV) и вода:

При взаимодействии с разбавленной азотной кислотой образуется оксид азота (II). Реакция идет при нагревании:

5. Оксид железа (II) проявляет слабые окислительные свойства .

Например , оксид железа (II) реагирует с угарным газом при нагревании:

FeO + CO → Fe + CO2

Оксид железа (III)

Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

Способы получения

Оксид железа (III) можно получить различными методами :

1. Окисление оксида железа (II) кислородом.

2. Разложение гидроксида железа (III) при нагревании :

Химические свойства

Оксид железа (III) – амфотерный .

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например , оксид железа (III) взаимодействует с азотной кислотой:

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит) .

Например , оксид железа (III) взаимодействует с гидроксидом натрия:

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Например , хлорат калия в щелочной среде окисляет оксид железа (III) до феррата:

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

5. Оксид железа (III) проявляет окислительные свойства .

Например , оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II) или железной окалины:

Также оксид железа (III) восстанавливается водородом:

Железом можно восстановить оксид железа только до оксида железа (II):

Оксид железа (III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например , с гидридом натрия:

Fe2O3 + 3NaH → 3NaOH + 2Fe

6. Оксид железа (III) – твердый, нелетучий и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната натрия:

Оксид железа (II, III)

Оксид железа (II, III) (железная окалина, магнетит) – это твердое, нерастворимое в воде вещество черного цвета.

Фото с сайта wikipedia.ru

Способы получения

Оксид железа (II, III) можно получить различными методами :

1. Горение железа на воздухе:

2. Частичное восстановление оксида железа (III) водородом или угарным газом :

3. При высокой температуре раскаленное железо реагирует с водой, образуя двойной оксид железа (II, III):

Химические свойства

Свойства оксида железа (II, III) определяются свойствами двух оксидов, из которых он состоит: основного оксида железа (II) и амфотерного оксида железа (III).

1. При взаимодействии оксида железа (II, III) с кислотными оксидами и кислотами образуются соли железа (II) и железа (III).

Например , оксид железа (II, III) взаимодействует с соляной кислотой. При это образуются две соли – хлорид железа (II) и хлорид железа (III):

Еще пример : оксид железа (II, III) взаимодействует с разбавленной серной кислотой.

2. Оксид железа (II, III) взаимодействует с сильными кислотами-окислителями (серной-концентрированной и азотной).

Например , железная окалина окисляется концентрированной азотной кислотой:

Разбавленной азотной кислотой окалина окисляется при нагревании:

Также оксид железа (II, III) окисляется концентрированной серной кислотой:

Также окалина окисляется кислородом воздуха :

3. Оксид железа (II, III) не взаимодействует с водой.

4. Оксид железа (II, III) окисляется сильными окислителями до соединений железа (VI), как и прочие оксиды железа (см. выше).

5. Железная окалина проявляет окислительные свойства .

Например , оксид железа (II, III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II):

Также железная окалина восстанавливается водородом:

Оксид железа (II, III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (II, III) реагирует также с некоторыми другими сильными восстановителями (йодидами и сульфидами).

Например , с йодоводородом:

Гидроксид железа (II)

Способы получения

1. Гидроксид железа (II) можно получить действием раствора аммиака на соли железа (II).

Например , хлорид железа (II) реагирует с водным раствором аммиака с образованием гидроксида железа (II) и хлорида аммония:

2. Гидроксид железа (II) можно получить действием щелочи на соли железа (II).

Например , хлорид железа (II) реагирует с гидроксидом калия с образованием гидроксида железа (II) и хлорида калия:

FeCl2 + 2KOH → Fe(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид железа (II) проявляется основные свойства , а именно реагирует с кислотами . При этом образуются соответствующие соли.

Например , гидроксид железа (II) взаимодействует с соляной кислотой с образованием хлорида железа (II):

2. Гидроксид железа (II) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид железа (II) взаимодействует с оксидом серы (VI) с образованием сульфата железа (II):

3. Гидроксид железа (II) проявляет сильные восстановительные свойства , и реагирует с окислителями. При этом образуются соединения железа (III) .

Например , гидроксид железа (II) взаимодействует с кислородом в присутствии воды:

Гидроксид железа (II) взаимодействует с пероксидом водорода:

При растворении Fe(OH)2 в азотной или концентрированной серной кислотах образуются соли железа (III):

4. Г идроксид железа (II) разлагается при нагревании :

Гидроксид железа (III)

Способы получения

1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).

Например , хлорид железа (III) реагирует с водным раствором аммиака с образованием гидроксида железа (III) и хлорида аммония:

2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:

3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).

Например , хлорид железа (III) реагирует с раствором гидроксида калия с образованием гидроксида железа (III) и хлорида калия:

FeCl3 + 3KOH → Fe(OH)3↓ + 3KCl

Видеоопыт получения гидроксида железа (III) взаимодействием хлорида железа (III) и гидроксида калия можно посмотреть здесь.

4. Также гидроксид железа (III) образуется при взаимодействии растворимых солей железа (III) с растворами карбонатов и сульфитов . Карбонаты и сульфиты железа (III) необратимо гидролизуются в водном растворе.

Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:

Но есть исключение ! Взаимодействие солей железа (III) с сульфитами в ЕГЭ по химии — окислительно-восстановительная реакция. Соединения железа (III) окисляют сульфиты, а также сульфиды и иодиды.

Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:

Также допустима такая запись:

Химические свойства

1. Гидроксид железа (III) проявляет слабовыраженные амфотерные свойства, с преобладанием основных. Как основание, гидроксид железа (III) реагирует с растворимыми кислотами .

Например , гидроксид железа (III) взаимодействует с азотной кислотой с образованием нитрата железа (III):

2. Гидроксид железа (III) взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид железа (III) взаимодействует с оксидом серы (VI) с образованием сульфата железа (III):

3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.

Например , гидроксид железа (III) взаимодействует с гидроксидом калия в расплаве с образованием феррита калия и воды:

4. Г идроксид железа (III) разлагается при нагревании :

Видеоопыт взаимодействия гидроксида железа (III) с соляной кислотой можно посмотреть здесь.

Соли железа

Нитраты железа

Нитрат железа (II) при нагревании разлагается на оксид железа (III), оксид азота (IV) и кислород:

Нитрат железа (III) при нагревании разлагается также на оксид железа (III), оксид азота (IV) и кислород:

Гидролиз солей железа

Растворимые соли железа, образованные кислотными остатками сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. частично:

I ступень: Fe 3+ + H2O ↔ FeOH 2+ + H +

II ступень: FeOH 2+ + H2O ↔ Fe(OH )2 + + H +

Однако сульфиты и карбонаты железа (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

При взаимодействии соединений железа (III) с сульфидами протекает ОВР:

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Окислительные свойства железа (III)

Соли железа (III) под проявляют довольно сильные окислительные свойств. Так, при взаимодействии соединений железа (III) с сульфидами протекает окислительно-восстановительная реакция.

Например : хлорид железа (III) взаимодействует с сульфидом натрия. При этом образуется сера, хлорид натрия и либо черный осадок сульфида железа (II) (в избытке сульфида натрия), либо хлорид железа (II) (в избытке хлорида железа (III)):

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

2FeCl3 + Na2S → 2FeCl2 + S + 2NaCl

По такому же принципу соли железа (III) реагируют с сероводородом:

2FeCl3 + H2S → 2FeCl2 + S + 2HCl

Соли железа (III) также вступают в окислительно-восстановительные реакции с йодидами .

Например , хлорид железа (III) взаимодействует с йодидом калия. При этом образуются хлорид железа (II), молекулярный йод и хлорид калия:

2FeCl3 + 2KI → 2FeCl2 + I2 + 2KCl

Интерес представляют также реакции солей железа (III) с металлами. Мы знаем, что более активные металлы вытесняют из солей менее активные металлы . Иначе говоря, металлы, которые стоят в электрохимическом ряду левее, могут взаимодействовать с солями металлов, которые расположены в этом ряду правее . Исходя из этого правила, соли железа могут взаимодействовать только с металлами, которые расположены до железа. И они взаимодействуют.

Однако, соли железа со степенью окисления +3 в этом ряду являются небольшим исключением. Ведь для железа характерны две степени окисления: +2 и +3. И железо со степенью окисления +3 является более сильным окислителем. Таким образом, условно говоря, железо со степенью окисления +3 расположено в ряду активности после меди. И соли железа (III) могут реагировать еще и с металлами, которые расположены правее железа! Но до меди, включительно. Вот такой парадокс.

И еще один момент. Соединения железа (III) с этими металлами реагировать будут, а вот соединения железа (II) с ними реагировать не будут. Таким образом, металлы, расположенные в ряду активности между железом и медью (включая медь) при взаимодействии с солями железа (III) восстанавливают железо до степени окисления +2. А вот металлы, расположенные до железа в ряду активности, могут восстановить железо и до простого вещества.

Например , хлорид железа (III) взаимодействует с медью. При этом образуются хлорид железа (II) и хлорид меди (II):

А вот реакция нитрата железа (III) с цинком протекает уже по привычному механизму. И железо восстанавливается до простого вещества:


источники:

http://urok.1sept.ru/articles/653120

http://chemege.ru/iron/