Окислительно восстановительные электроды и уравнение их потенциала

Окислительно-восстановительные электроды

На электродах всех видов протекают реакции окисления или восстановления. Однако если реакция протекает на поверхности инертного материала и при этом не выделяется металл или газообразное вещество, то такие электроды принято называть окислительно-восстановительными, или редокс-электродами. Различают два вида окислительно-восстановительных электродов.

Простые окислительно-восстановительные электроды отличаются тем, что не сопровождающееся образованием металла или газообразных веществ изменение степени окисления элемента на поверхности инертного материала происходит без участия ионов или молекул других веществ.

Простые редокс-электроды характеризуются электродной реакцией, которую можно представить в общей форме:

M z + + ye = M ( z − y )+ ,

M z + , M ( z − y )+ ÷ Pt

и выражением для электродного потенциала

(2 — 5)

В качестве примера простого редокс-электрода можно привести электрод, на котором происходит восстановление ионов Fe 3+ до Fe 2+ :

Кроме приведенного электрода к числу простых редокс-электродов относятся цериевый электрод Ce 4+ ,Ce 3+ /Pt, на котором протекает реакция:

таллиевый Tl 3+ ,Tl + /Pt, ванадиевый V 3+ , V 2+ /Pt электроды и др.

Соотношение между активностями ионов с разной степенью окисления в простом редокс-электроде и, следовательно, электродный потенциал его зависят от окислительных свойств среды. С этой целью они могут использоваться в аналитической химии и биохимических исследованиях.

Еще одно применение простых редокс-электродов связано с расчетом потенциала некоторых гипотетических электродов.

Как правило, электрод, содержащий ионы в высшей степени окисления в контакте с металлом, например, Fe 3+ /Fe, неустойчив. Для расчета потенциала такого гипотетического электрода можно воспользоваться следующим приемом.

Найдем стандартный потенциал устойчивого электрода 1-го рода, в котором ионы с низшей степенью окисления металла находятся в контакте с металлом:

M ( z − y )+ + (z-y)e = M,

и стандартный электродный потенциал устойчивого простого редокс-электрода

M z + + ye = M ( z — y )+ , .

Ионы с высшей степенью окисления можно восстановить до металла, проведя последовательно процессы в гальванических элементах, первый из которых состоит из стандартного электрода сравнения и простого редокс-электрода и работа в котором равна

W’1= ×yF,

а второй состоит из стандартного электрода и электрода 1-го рода и в котором совершается работа, равная

W’2 = ×(z-y)F.

Вся работа по восстановлению ионов с высшей степенью окисления до металла равна

Если бы была возможна реакция прямого восстановления ионов в высшей степени окисления

M z + + ze = M, ,

то работа по восстановлению ионов оказалась бы равной

W’x = ×zF.

Так как при постоянном давлении и постоянной температуре полезная работа квазистатического процесса не зависит от пути (она определяется приращением энергии Гиббса), то из равенства работ

×yF + ×(z−y)F = ×zF.

Таким образом, стандартный потенциал гипотетического электрода можно вычислить по формуле:

, (2 — 6)

которая называется формулой Лютера.

Сложные окислительно-восстановительные электроды. Отличительной особенностью этих электродов является то, что в реакции окисления или восстановления принимают участие другие ионы и молекулы.

Приведем в качестве примера сложного редокс-электрода кислотный перманганатный электрод:

MnO4 — + 8H + + 5e = Mn 2+ + 4H2O,

MnO4 — , Mn 2+ , H + ÷ Pt,

Еще одним примером сложного редокс-электрода может служить гипойодиттно-йодидный электрод:

IO — + H2O + 2e = I — + 2OH − ,

Существуют разнообразные варианты сложных редокс-электродов, которые невозможно выразить единой формой записи. Характерно, что электродный потенциал сложных окислительно-восстановительных электродов зависит от водородного показателя среды. Эта особенность использована для измерения рН в специальном электроде — хингидронном электроде.

Хингидронный электрод представляет собой платиновую проволоку, погружаемую в исследуемую среду, в которую добавлено небольшое количество кристаллов хингидрона— эквимолекулярной смеси хинона С6Н4О2 и гидрохинона С6Н4(ОН)2.Хингидрон трудно растворяется в воде. Поэтому активность кристаллов хингидрона можно считать равной 1. На этом электроде происходит восстановление хинона до гидрохинона:

Условно электрод можно записать следующим образом:

Электродный потенциал хингидронного электрода зависит от рН среды:

Хингидронный электрод работает только в кислых и нейтральных средах, так как в щелочных средах происходит образование солей гидрохинона, которые хорошо растворимы в воде.

Дата добавления: 2015-07-22 ; просмотров: 3838 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Окислительно — восстановительный потенциал

Электродные потенциалы. ЭДС реакции

Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.

В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.

Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.

Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.

Элемент Даниэля-Якоби

Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.

Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.

Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.

При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.

Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.

При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn 2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).

Zn — 2e — = Zn 2+

В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):

Cu 2+ + 2e — = Cu

Таким образом, в элементе Даниэля-Якоби происходит такая реакция:

Zn + Cu 2+ = Zn 2+ + Cu

Zn + CuSO4 = ZnSO4 + Cu

Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).

Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.

Окислительно-восстановительный потенциал

Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.

2Fe 3+ + 2I — = 2Fe 2+ + I2

таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.

В сосуды, содержащие растворы Fe 3+ и I — , поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.

Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe 3+ :

2I — — 2e — = I2

2Fe 3+ + 2e — = 2Fe 2+

Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.

Факторы, влияющие на значение окислительно-восстановительного потенциала

Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:

1) Природа вещества (окислителя и восстановителя)

2) Концентрация окисленной и восстановленной форм.

При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:

E – окислительно-восстановительный потенциал данной пары;

E°- стандартный потенциал (измеренный при Cок = Cвос);

R – газовая постоянная (R = 8,314 Дж);

T – абсолютная температура, К

n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;

F – постоянная Фарадея (F = 96484,56 Кл/моль);

Cок – концентрация (активность) окисленной формы;

Cвос– концентрация (активность) восстановленной формы.

Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:

При Cок > Cвос, E > и наоборот, если Cок 2- , CrO4 2- , MnO4 — ) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H + . И наоборот, окислительно-восстановительный потенциал падает с уменьшением H + .

4) Температура

При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.

Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.

Такие таблицы дают возможность сделать некоторые выводы:

Что можно определить по значению окислительно-восстановительного потенциала

  • Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например

(F2/2F — ) = +2,87 В – сильнейший окислитель

(K + /K) = — 2,924 В – сильнейший восстановитель

Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.

  • Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
  • Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция

Sn 2+ + 2Fe 3+ = Sn 4+ + 2Fe 2+

практически протекает в прямом направлении, т.к.

(Sn 4+ /Sn 2+ ) = +0,15 В,

(Fe 3+ /Fe 2+ ) = +0,77 В,

т.е. (Sn 4+ /Sn 2+ ) 3+ /Fe 2+ ).

Cu + Fe 2+ = Cu 2+ + Fe

невозможна в прямом направлении и протекает только справа налево, т.к.

В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.

  • Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
  • Пользуясь справочными данными, можно определить ЭДС реакции.

Как определить электродвижущую силу (ЭДС) реакции?

Рассмотрим несколько примеров реакций и определим их ЭДС:

  1. Mg + Fe 2+ = Mg 2+ + Fe
  2. Mg + 2H + = Mg 2+ + H2
  3. Mg + Cu 2+ = Mg 2+ + Cu

(Mg 2+ /Mg) = — 2,36 В

(Fe 2+ /Fe) = — 0,44 В

Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя

ЭДС = Е 0 ок — Е 0 восст

  1. ЭДС = — 0,44 — (- 2,36) = 1,92 В
  2. ЭДС = 0,00 — (- 2,36) = 2,36 В
  3. ЭДС = + 0,34 — (- 2,36) = 2,70 В

Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.

Связь константы равновесия и окислительно — восстановительного потенциала

Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.

Например, для реакции

Zn + Cu 2+ = Zn 2+ + Cu

Применяя закон действующих масс, можно записать

Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.

Значение константы равновесия можно вычислить, применив уравнение Нернста

Подставим в уравнение значения стандартных потенциалов пар Zn/Zn 2+ и Cu/Cu 2+ , находим

В состоянии равновесия E 0 Zn/Zn2+ = E 0 Cu/Cu2+, т.е.

-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем

Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 10 37,7 раз меньше, чем концентрация ионов цинка.

Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:

lgK = (E1 0 -E2 0 )n/0,059, где

K — константа равновесия

E1 0 и E2 0 – стандартные потенциалы окислителя и восстановителя соответственно

n – число электронов, отдаваемых восстановителем или принимаемых окислителем.

Если E1 0 > E2 0 , то lgK > 0 и K > 1.

Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E1 0 — E2 0 ) достаточно велика, то она идет практически до конца.

Напротив, если E1 0 0 , то K будет очень мала.

Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E1 0 — E2 0 ) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.

Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.

По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.

Как составить схему гальванического элемента?

Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:

  1. ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
  2. Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.

Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).

  1. Граница раздела фаз обозначается одной чертой — |
  2. Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
  3. Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.

Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:

Fe 0 + Cd 2+ = Fe 2+ + Cd 0

В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.

Анод Fe 0 |Fe 2+ || Cd 2+ |Cd 0 Катод

Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.

Окислительно восстановительные электроды и уравнение их потенциала

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

3.5 ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ

3.5.4 Классификация электродов

По типу электродной реакции все электроды можно разделить на две группы (в отдельную группу выделяются окислительно-восстановительные электроды, которые будут рассмотрены особо в разделе 3.5.5).

Электроды первого рода

К электродам первого рода относятся электроды, состоящие из металлической пластинки, погруженной в раствор соли того же металла. При обратимой работе элемента, в который включен электрод, на металлической пластинке идет процесс перехода катионов из металла в раствор либо из раствора в металл. Т.о., электроды первого рода обратимы по катиону и их потенциал связан уравнением Нернста (III.40) с концентрацией катиона (к электродам первого рода относят также и водородный электрод).

(III.40)

Электроды второго рода

Электродами второго рода являются электроды, в которых металл покрыт малорастворимой солью этого металла и находится в растворе, содержащем другую растворимую соль с тем же анионом. Электроды этого типа обратимы относительно аниона и зависимость их электродного потенциала от температуры и концентрации аниона может быть записана в следующем виде:

(III.48)

Для определения электродного потенциала элемента необходимо измерить ЭДС гальванического элемента, составленного из испытуемого электрода и электрода с точно известным потенциалом – электрода сравнения . В качестве примеров рассмотрим водородный, каломельный и хлорсеребряный электроды.

Водородный электрод представляет собой платиновую пластинку, омываемую газообразным водородом, погруженную в раствор, содержащий ионы водорода. Адсорбируемый платиной водород находится в равновесии с газообразным водородом; схематически электрод изображают следующим образом:

Электрохимическое равновесие на электроде можно рассматривать в следующем виде:

Потенциал водородного электрода зависит от активности ионов Н + в растворе и давления водорода; потенциал стандартного водородного электрода (с активностью ионов Н + 1 моль/л и давлением водорода 101.3 кПа) принят равным нулю. Поэтому для электродного потенциала нестандартного водородного электрода можно записать:

(III.49)

Каломельный электрод . Работа с водородным электродом довольно неудобна, поэтому в качестве электрода сравнения часто используется более простой в обращении каломельный электрод, величина электродного потенциала которого относительно стандартного водородного электрода точно известна и зависит только от температуры. Каломельный электрод состоит из ртутного электрода, помещенного в раствор КСl определенной концентрации и насыщенный каломелью Hg2Сl2:

Каломельный электрод обратим относительно анионов хлора и уравнение Нернста для него имеет вид:

(III.50)

Хлорсеребряный электрод . В качестве электрода сравнения используют также другой электрод второго рода – хлорсеребряный, представляющий собой серебряную проволоку, покрытую хлоридом серебра и помещённую в раствор хлорида калия. Хлорсеребряный электрод также обратим относительно анионов хлора:

Величина потенциала хлорсеребряного электрода зависит от активности ионов хлора; данная зависимость имеет следующий вид:

(III.51)

Чаще всего в качестве электрода сравнения используется насыщенный хлорсеребряный электрод, потенциал которого зависит только от температуры. В отличие от каломельного, он устойчив при повышенных температурах и применим как в водных, так и во многих неводных средах.

Электроды, обратимые относительно иона водорода, используются на практике для определения активности этих ионов в растворе (и, следовательно, рН раствора) потенциометрическим методом, основанном на определении потенциала электрода в растворе с неизвестным рН и последующим расчетом рН по уравнению Нернста. В качестве индикаторного электрода может использоваться и водородный электрод, однако работа с ним неудобна и на практике чаще применяются хингидронный и стеклянный электроды.

Хингидронный электрод , относящийся к классу окислительно-восстановительных электродов (см. ниже), представляет собой платиновую проволоку, опущенную в сосуд с исследуемым раствором, в который предварительно помещают избыточное количество хингидрона С6Н4О2·С6Н4(ОН)2 – соединения хинона С6Н4О2 и гидрохинона С6Н4(ОН)2, способных к взаимопревращению в равновесном окислительно-восстановительном процессе, в котором участвуют ионы водорода:

Хингидронный электрод является т.н. окислительно-восстановительным электродом (см. разд. 3.5.5); зависимость его потенциала от активности ионов водорода имеет следующий вид:

(III.52)

Стеклянный электрод , являющийся наиболее распространенным индикаторным электродом, относится к т.н. ионоселективным или мембранным электродам. В основе работы таких электродов лежат ионообменные реакции, протекающие на границах мембран с растворами электролитов; ионоселективные электроды могут быть обратимы как по катиону, так и по аниону.

Принцип действия мембранного электрода заключается в следующем. Мембрана, селективная по отношению к некоторому иону (т.е. способная обмениваться этим ионом с раствором), разделяет два раствора с различной активностью этого иона. Разность потенциалов, устанавливающаяся между двумя сторонами мембраны, измеряется с помощью двух электродов. При соответствующем составе и строении мембраны её потенциал зависит только от активности иона, по отношению к которому мембрана селективна, по обе стороны мембраны.

Наиболее часто употребляется стеклянный электрод в виде трубки, оканчивающейся тонкостенным стеклянным шариком. Шарик заполняется раствором НСl с определенной активностью ионов водорода; в раствор погружен вспомогательный электрод (обычно хлорсеребряный). Потенциал стеклянного электрода с водородной функцией (т.е. обратимого по отношению к иону Н + ) выражается уравнением

(III.53)

Необходимо отметить, что стандартный потенциал ε °ст для каждого электрода имеет свою величину, которая со временем изменяется; поэтому стеклянный электрод перед каждым измерением рН калибруется по стандартным буферным растворам с точно известным рН.

3.5.5 Окислительно-восстановительные электроды

В отличие от описанных электродных процессов в случае окислительно-восстановительных электродов процессы получения и отдачи электронов атомами или ионами происходят не на поверхности электрода, а только в растворе электролита. Если опустить платиновый (или другой инертный) электрод в раствор, содержащий двух- и трехзарядные ионы железа и соединить этот электрод проводником с другим электродом, то возможно либо восстановление ионов Fe 3+ до Fe 2+ за счет электронов, полученных от платины, либо окисление ионов Fe 2+ до Fe 3+ с передачей электронов платине. Сама платина в электродном процессе не участвуют, являясь лишь переносчиком электронов. Такой электрод, состоящий из инертного проводника первого рода, помещенного в раствор электролита, содержащего один элемент в различных степенях окисления, называется окислительно-восстановительным или редокс-электродом . Потенциал окислительно-восстановительного электрода также определяют относительно стандартного водородного электрода:

Pt, H2 / 2H + // Fe 3+ , Fe 2+ / Pt

Зависимость потенциала редокс-электрода ε RO от концентрации (активности) окисленной [Ox] и восстановленной форм [Red] для окислительно-восстановительной реакции, в которой не участвуют никакие другие частицы, кроме окислителя и восстановителя, имеет следующий вид (здесь n – число электронов, участвующих в элементарном акте окислительно-восстановительной реакции):

(III.54)

Из данного выражения следует уравнение для потенциала металлического электрода (III.40), т.к. активность атомов металла (восстановленной формы) в материале электрода равна единице.

В случае более сложных систем в выражении для окислительно-восстановительного потенциала фигурируют концентрации всех участвующих в реакции соединений, т.е. под окисленной формой следует понимать все соединения в левой части уравнения реакции

а под восстановленной – все соединения в правой части уравнения. Так, для окислительно-восстановительных реакций, протекающих с участием ионов водорода

уравнение Нернста будет записываться следующим образом:

(III.55)

При составлении гальванических элементов с участием редокс-электрода электродная реакции на последнем в зависимости от природы второго электрода может быть либо окислительной, либо восстановительной. Например, если составить гальванический элемент из электрода Pt / Fe 3+ , Fe 2+ и второго электрода, имеющего более положительный электродный потенциал, то при работе элемента редокс-электрод будет являться анодом, т.е. на нем будет протекать процесс окисления:

Если потенциал второго электрода будет меньше, чем потенциал электрода Pt / Fe 3+ , Fe 2+ , то на последнем будет протекать реакция восстановления и он будет являться катодом:

Знание величин электродных потенциалов позволяет определить возможность и направление самопроизвольного протекания любой окислительно-восстановительной реакции при одновременном наличии в растворе двух или более окислительно-восстановительных пар. Восстановленная форма любого элемента или иона будет восстанавливать окисленную форму другого элемента или иона, имеющего более положительный электродный потенциал.

Copyright © С. И. Левченков, 1996 — 2005.


источники:

http://zadachi-po-khimii.ru/obshaya-himiya/okislitelno-vosstanovitelnyj-potencial.html

http://physchem.chimfak.sfedu.ru/Source/PCC/Solutions_6.htm