Окислительно восстановительные уравнения реакции 11 класс

Лекция для профильного 11-го класса «Окислительно-восстановительные реакции»

Презентация к уроку

Загрузить презентацию (933 кБ)

Цель лекции – ознакомление с основными закономерностями процессов окисления и восстановления, освоение методик составления уравнений окислительно-восстановительных реакций, изучение окислительно-восстановительных свойств соединений.

Слайд1. Протекание химических реакций в целом обусловлено обменом частицами между реагирующими веществами. Слайд 2. Часто обмен сопровождается переходом электронов от одной частицы к другой. Так, при вытеснении цинком меди в растворе сульфата меди (II)

электроны от атомов цинка переходят к ионам меди:

Процесс потери электронов частицей называют окислением Слайд 3, а процесс приобретения электронов – восстановлением слайд 4. Окисление и восстановление протекают одновременно, поэтому взаимодействия, сопровождающиеся переходом электронов от одних частиц к другим, называют окислительно-восстановительными реакциями.

Для удобства описания окислительно-восстановительных реакций используют понятие степени окисления – величины, численно равной формальному заряду, который можно приписать элементу, исходя из предположения, что все электроны каждой из его связи перешли к более электроотрицательному атому данного соединения. Протекание окислительно-восстановительных реакций сопровождается изменением степеней окисления элементов участвующих в реакции веществ. При восстановлении степень окисления элемента уменьшается, при окислении – увеличивается. Вещество, в состав которого входит элемент, понижающий степень окисления, называют окислителем, вещество, в состав которого входит элемент, повышающий степень окисления, называют восстановителем слайд 5–6.

Степень окисления элемента в соединении определяют в соответствии со следующими правилами: Слайд 7. 1) степень окисления элемента в простом веществе равна нулю; 2) алгебраическая сумма всех степеней окисления атомов в молекуле равна нулю; 3) алгебраическая сумма всех степеней окисления атомов в сложном ионе, а также степень окисления элемента в простом одноатомном ионе равна заряду иона; 4) отрицательную степень окисления проявляют в соединении атомы элемента, имеющего наибольшую электроотрицательность; 5) максимально возможная (положительная) степень окисления элемента соответствует номеру группы, в которой расположен элемент в Периодической таблице Д.И. Менделеева.

Ряд элементов в соединениях проявляют постоянную степень окисления, что используют при определении степеней окисления других элементов: 1) фтор, имеющий наивысшую среди элементов электроотрицательность, во всех соединениях имеет степень окисления –1; 2) водород в соединениях проявляет степень окисления +1, кроме гидридов металлов (–1); 3) металлы IA подгруппы во всех соединениях имеют степень окисления +1; 4) металлы IIA подгруппы, а также цинк и кадмий во всех соединениях имеют степень окисления +2; 5) степень окисления алюминия в соединениях +3; 6) степень окисления кислорода в соединениях равна –2, за исключением соединений, в которых кислород присутствует в виде молекулярных ионов: О2 + , О2 — , О2 2 — , О3 — , а также фторидов OxF2.

Степени окисления атомов элементов в соединении записывают над символом данного элемента, указывая вначале знак степени окисления, а затем ее численное значение, например, , в отличие от заряда иона, который записывают справа, вначале указывая зарядовое число, а затем знак: Fe 2+ , SO4 2– .

Окислительно-восстановительные свойства атомов различных элементов проявляются в зависимости от многих факторов, важнейшие из которых – электронное строение элемента, его степень окисления в веществе, характер свойств других участников реакции. Соединения, в состав которых входят атомы элементов в своей максимальной (положительной) степени окисления, например, могут только восстанавливаться, выступая в качестве окислителей. Соединения, содержащие элементы в их минимальной степени окисления, например, могут только окисляться и выступать в качестве восстановителей. Вещества, содержащие элементы в промежуточных степенях окисления, например обладают окислительно-восстановительной двойственностью. В зависимости от партнера по реакции такие вещества способны и принимать, и отдавать электроны. Состав продуктов восстановления и окисления также зависит от многих факторов, в том числе среды, в которой протекает химическая реакция, концентрации реагентов, активности партнера по окислительно-восстановительному процессу. Чтобы составить уравнение окислительно-восстановительной реакции, необходимо знать, как изменяются степени окисления элементов и в какие другие соединения переходят окислитель и восстановитель.

Важнейшие окислители. Слайд 8. Галогены, восстанавливаясь, приобретают степень окисления –1, причем от фтора к йоду их окислительные свойства ослабевают (F2 имеет ограниченное применение вследствие высокой агрессивности):

Кислород O2, восстанавливаясь, приобретает степень окисления –2:

Азотная кислота HNO3 проявляет окислительные свойства за счет азота в степени окисления +5:

3Сu + 8HNO3 (разб) = 3Cu(NO3)2 + 2NO + 4H2O

При этом возможно образование различных продуктов восстановления:

Глубина восстановления азота зависит от концентрации кислоты, а также от активности восстановителя:

Соли азотной кислоты (нитраты) могут восстанавливаться в кислотной, а при взаимодействии с активными металлами и в щелочной средах, а также в расплавах:

Zn + KNO3 + 2KOHK2ZnO2 + KNO2 + H2O

Царская водка – смесь концентрированных азотной и соляной кислот, смешанных в соотношении 1:3 по объему. Название этой смеси связано с тем, что она растворяет даже такие благородные металлы как золото и платина:

Au + HNO3(конц) + 4HCl(конц) = H[AuCl4] + NO + 2H2O

Серная кислота H2SO4 проявляет окислительные свойства в концентрированном растворе за счет серы в степени окисления +6:

C(графит) + 2H2SO4 (конц) СO2 + 2SO2 + 2H2O.

Состав продуктов восстановления определяется главным образом активностью восстановителя и концентрацией кислоты:

Кислородсодержащие кислоты галогенов и их соли часто используются как окислители, хотя многие из них проявляют двойственный характер. Как правило, продуктами восстановления этих соединений являются хлориды и бромиды, а также йод:

MnS + 4HСlO = MnSO4 + 4HCl;

Перманганат калия KMnO4 проявляет окислительные свойства за счет марганца в степени окисления +7. В зависимости от среды, в которой протекает реакция, он восстанавливается до разных продуктов: в кислотной среде – до солей марганца (II), в нейтральной – до оксида марганца (IV) в гидратной форме MnO(OH)2, в щелочной – до манганат-иона MnO4 2– :

нейтральная среда: 3Na2SO3 + 2KMnO4 + 3H2O = 3Na2SO4 + 2MnO(OH)2 + 2KOH

Дихромат калия K2Cr2O7, в состав молекулы которого входит хром в степени окисления +6, является сильным окислителем при спекании и в кислотном растворе:

проявляет окислительные свойства и в нейтральной среде:

3H2S + K2Cr2O7 + H2O = 3S + 2Cr(OH)3 + 2KOH.

Среди ионов окислительные свойства проявляют ион водорода Н + и ионы металлов в высшей степени окисления. Ион водорода Н + выступает как окислитель при взаимодействии активных металлов с разбавленными растворами кислот (за исключением HNO3):

Mg + H2SO4 (разб) = MgSO4 + H2

Ионы металлов в относительно высокой степени окисления, такие, как Fe 3+ , Cu 2+ , Hg 2+ , восстанавливаясь, превращаются в ионы более низкой степени окисления:

H2S + 2FeCl3 = S + 2FeCl2 + 2HCl

или выделяются из растворов их солей в виде металлов:

Важнейшие восстановители. Слайд 9. К типичным восстановителям среди простых веществ относятся активные металлы, такие как щелочные и щелочно-земельные металлы, цинк, алюминий, железо и др., а также некоторые неметаллы (водород, углерод, фосфор, кремний): Zn + 2HCl = ZnCl2 + H2

C + 4HNO3(конц, гор) = CO2 + 4NO2 + 2H2O

Восстановительными функциями обладают бескислородные анионы, такие как Cl — , Br — , I — , S 2 — , H — , и катионы металлов в низшей степени окисления:

2CaH2 + TiO2 2CaO + Ti +2H2 .

2FeSO4 + H2O2(конц)+ H2SO4(разб) Fe2(SO4)3 + 2H2O.

Окислительно-восстановительная двойственность. Слайд10. Среди простых веществ окислительно-восстановительная двойственность характерна для элементов VIIA, VIA и VA подгрупп, которые могут как повышать, так и понижать свою степень окисления.

Часто используемые как окислители, галогены под действием более сильных окислителей проявляют восстановительные свойства (за исключением фтора). Их окислительные способности уменьшаются, а восстановительные способности увеличиваются от Cl2 к I2. Эту особенность иллюстрирует реакция окисления йода хлором в водном растворе: I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl.

Кислородсодержащие кислоты галогенов и их соли, в состав молекул которых входит галоген в промежуточной степени окисления, могут выступать не только в роли окислителей: S + NaClO2 NaCl + SO2

но и восстановителей:

Пероксид водорода, содержащий кислород в степени окисления –1, в присутствии типичных восстановителей проявляет окислительные свойства, т.к. кислород может понижать свою степень окисления до –2:

а при взаимодействии с сильными окислителями проявляет свойства восстановителя (степень окисления кислорода возрастает до 0):

H2O2 +2Hg(NO3)2 = O2 + Hg2(NO3)2 + 2HNO3.

Азотистая кислота и нитриты, в состав которых входит азот в степени окисления +3, также могут выступать как в роли окислителей:

2HI + 2HNO2 = I2 + 2NO + 2H2O,

так и в роли восстановителей: 2NaNO2(разб, гор) + O2 = 2NaNO3.

Классификация. Различают четыре типа окислительно-восстановительных реакций.

1. Слайд11. Если окислитель и восстановитель – разные вещества, то такие реакции относят к межмолекулярным. Примерами таких процессов служат все рассмотренные ранее реакции.

2. При термическом разложении сложных соединений, в состав которых входят окислитель и восстановитель в виде атомов разных элементов, происходят окислительно-восстановительные реакции, называемые внутримолекулярными:

3. Слайд12. Реакции диспропорционирования могут происходить, если соединения, содержащие элементы в промежуточных степенях окисления, попадают в условия, где они оказываются неустойчивыми (например, при повышенной температуре). Степень окисления этого элемента и повышается и понижается:

4. Слайд13. Реакции сопропорционирования – это процессы взаимодействия окислителя и восстановителя, в состав которых входит один и тот же элемент в разных степенях окисления. В результате продуктом окисления и продуктом восстановления является вещество с промежуточной степенью окисления атомов данного элемента:

5. Слайд14. Реакции внутримолекулярного окисления и восстановления.

В этих реакциях окислитель и восстановитель — разные химические элементы, но входящие в состав одного вещества

Составление уравнений. Слайд15. Для составления уравнений окислительно-восстановительных реакций наиболее часто используют метод электронно-ионных полуреакций и метод электронного баланса. Метод электронно-ионных полуреакций применяют при составлении уравнений реакций, протекающих в водном растворе, а также реакций с участием веществ, в которых трудно определить степени окисления элементов (например, KNСS, CH3CH2OH). Согласно этому методу выделяют следующие главные этапы составления уравнения реакций:

1. Записывают общую молекулярную схему процесса с указанием восстановителя, окислителя и среды, в которой протекает реакция (кислотная, нейтральная или щелочная). Например:

2. Учитывая диссоциацию электролитов в водном растворе, данную схему представляют в виде молекулярно-ионного взаимодействия. Ионы, степени окисления атомов которых не изменяются, в схеме не указывают, за исключением ионов Н + и ОН — :

3. Определяют степени окисления восстановителя и окислителя, а также продуктов их взаимодействия:

Окисление восстановителяВосстановление окислителя

4. Записывают материальный баланс полуреакции окисления и восстановления:

Окисление восстановителяВосстановление окислителя

5. Суммируют полуреакции, учитывая принцип равенства отданных и принятых электронов:

и, сокращая одноименные частицы, получают общее ионно-молекулярное уравнение:

6. Добавляют ионы, не участвовавшие в процессе окисления-восстановления, уравнивают их количества слева и справа, и записывают молекулярное уравнение реакции:

При составлении материального баланса полуреакций окисления и восстановления, когда изменяется число атомов кислорода, входящих в состав частиц окислителя и восстановителя, следует учитывать, что в водных растворах связывание или присоединение кислорода происходит с участием молекул воды и ионов среды. Слайд 16.

В процессе окисления на один атом кислорода, присоединяющийся к частице восстановителя, в кислотной и нейтральной средах расходуется одна молекула воды и образуются два иона Н + ; в щелочной среде расходуются два гидроксид-иона ОН — и образуется одна молекула воды

Присоединение атомов кислорода к восстановителю в процессе окисления. Слайд 17.

В процессе восстановления для связывания одного атома кислорода частицы окислителя в кислотной среде расходуются два иона Н + и образуется одна молекула воды; в нейтральной и щелочной средах расходуется одна молекула Н2О и образуются два иона ОН — .

Связывание атомов кислорода окислителя в процессе восстановления. Слайд 18.

При составлении уравнений следует учитывать, что окислитель (или восстановитель) могут расходоваться не только в основной окислительно-восстановительной реакции, но и при связывании образующихся продуктов реакции, т.е. выступать в роли среды и солеобразователя. Слайд19–22. Примером, когда роль среды играет окислитель, служит реакция окисления металла в азотной кислоте, составленная методом электронно-ионных полуреакций:

Примером, когда восстановитель является средой, в которой протекает реакция, служит реакция окисления соляной кислоты дихроматом калия, составленная методом электронного баланса:

Метод полуреакций имеет ряд преимуществ перед методом электронного баланса. Слайд 23.

Окислительно-восстановительные реакции необходимо уметь решать в части С1 ЕГЭ. Рассмотрим некоторые из них. Слайд25–27.

Окислительно-восстановительные реакции имеют место и в органической химии.

Необходимо помнить, что степень окисления углерода не является постоянной в органических веществ. Слайд 29–30.

Приведем несколько примеров ОВР в органической химии.

Окисление алкенов. Слайд 31.

1) Окисление алкена в нейтральной среде при обычных условиях приводит к разрыву только π – связи, при этом образуется многоатомный спирт – качественная реакция на кратную связь.

MnO4 – + 2H2 O + 3ē → MnO 2 + 4OH – | х 2

2) Окисление алкенов в кислой среде при нагревании приводит к образованию карбоновых кислот и кетонов, при этом двойная связь разрушается (рвутся σ – и π – связь).

Окисление алкинов. Слайд 32.

3CH≡CH +8KMnO4 +H2O→ 3KOOC-COOK оксалат калия +8MnO2+ 2KOH + 2H2O

Окисление аренов (гомология бензола). Слайд 33.

MnO4 – + 8H + + 5ē → Mn +2 + 4H2O | x 18

Уметь решать такие уравнения необходимо в части С3. Слайд34–35.

Слайд 36. Закончить составление уравнений окислительно-восстановительных реакций методом электронно-ионных полуреакций:

Окислительно-восстановительные реакции (11 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

4. Окислительно-восстановительные реакции (ОВР)

Пример 4.1. Определить степень окисления хрома в молекуле К 2 Cr 2 O 7 и ионе (СrО 2 ) − .

Под степенью окисления (с.о.) понимают заряд элемента в соединении, вычисленный, исходя из предположения , что соединение состоит из ионов .

Степень окисления элемента в простом веществе, например, в Zn, Сa, H 2 , Br 2 , S, O 2 , равна нулю.

Определение степени окисления элемента в соединении проводят, используя следующие положения:

1. Cтепень окисления кислорода в соединениях обычно равна –2. Исключения составляют пероксиды H 2 +1 O 2 –1 , Na 2 +1 O 2 –1 и фторид кислорода О +2 F 2 .

2. Степень окисления водорода в большинстве соединений равна +1, за исключением солеобразных гидридов, например, Na +1 H -1 .

3. Постоянную степень окисления имеют металлы IА группы (щелочные металлы) (+1); IIА группы (бериллий, магний и щелочноземельные металлы) (+2); фтор (–1).

4. Алгебраическая сумма степеней окисления элементов в нейтральной молекуле равна нулю, в сложном ионе – заряду иона.

Решение. Чтобы рассчитать степень окисления элемента в молекуле, следует:

1) поставить степень окисления над теми элементами, для которых она известна, а искомую степень окисления обозначить через х. В нашем примере известна степень окисления калия (+1) и кислорода (-2):

К 2 +1 Сr 2 х O 7 –2 ;

2) умножить индексы при элементах на их степени окисления и составить алгебраическое уравнение, приравняв правую часть к нулю:

К 2 +1 Сr 2 х O 7 –2 ; 2(+1)+ 2 x + 7 (–2) = 0; x = + 6.

Степень окисления элемента в ионе определяют также, только правую часть уравнения приравнивают к заряду иона:

(Сr х О 2 −2 ) − ; x + 2 (–2) = –1; x = + 3.

Пример 4.2. Исходя из степени окисления азота в соединениях NH 3 , KNO 2 , KNO 3 , определить, какое из них может быть только восстановителем, только окислителем и какое из них может проявлять и окислительные, и восстановительные свойства.

Решение. Возможные степени окисления азота: –3, –2, –1, 0, +1, +2, +3, +4, +5. В указанных соединениях степени окисления азота равны: –3 (низшая), +3 (промежуточная), +5 (высшая). Следовательно, N -3 H 3 – только восстановитель, KN +3 O 2 – и окислитель и восстановитель, KN +5 O 3 – только окислитель.

Пример 4.3. Могут ли происходить окислительно-восстановительные реакции между веществами: а) HBr и H 2 S; б) MnO 2 и HCl; в) MnO 2 и NaBiO 3 ?

Решение. а) в HBr с.о. (Br) = –1 (низшая), в H 2 S с.о. (S) = –2 (низшая). Так как бром и сера находятся в низшей степени окисления, то могут проявлять только восстановительные свойства, и реакция между ними невозможна; б) в MnO 2 с.о. (Mn) = +4 (промежуточная), в HCl с.о. (Cl) = –1 (низшая). Следовательно, взаимодействие этих веществ возможно, причем MnO 2 является окислителем;

в) в MnO 2 с.о. (Mn) = +4 (промежуточная), в NaBiO 3 с.о. (Bi) = +5 (высшая). Взятые вещества могут взаимодействовать. MnO 2 в этом случае будет восстановителем.

Пример 4.4. Составить уравнение окислительно-восстановительной реакции, идущей по схеме

KMnO 4 + KNO 2 + H 2 SO 4 → MnSO 4 + KNO 3 + K 2 SO 4 + H 2 O.

Определить окислитель и восстановитель. На основании электронных уравнений расставить коэффициенты.

Решение. Определяем степени окисления тех элементов, которые ее изменяют: KMn +7 O 4 + KN +3 O 2 +H 2 SO 4 → Mn +2 SO 4 + KN +5 O 3 +K 2 SO 4 +H 2 O.

Составляем электронные уравнения процессов окисления и восстановления, определяем окислитель и восстановитель:

N +3 – 2ē → N +5 5 окисление 10

Mn +7 + 5ē → Mn +2 2 восстановление

Уравниваем реакцию методом электронного баланса, суть которого заключается в том, что общее число электронов, отданных восстановителем, равно числу электронов, принятых окислителем. Находим общее наименьшее кратное для отданных и принятых электронов. В приведенной реакции оно равно 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Коэффициенты перед веществами, атомы которых не меняют свои степени окисления, находим подбором.

Уравнение реакции будет иметь следующий вид:

Пример 4.5. Составить уравнения окислительно-восстановительных реакций, идущих по схемам: а) Mg + HNO 3 (разб.)  Mg(NO 3 ) 2 + NH 4 NO 3 + H 2 O;

б) KClO 3 → KCl + O 2 ; в) К 2 MnO 4 + H 2 О →КMnO 4 + MnO 2 + KOH.

В каждой реакции определить окислитель и восстановитель, расставить коэффициенты, указать тип каждой реакции.

Решение. Составляем уравнения реакций:

4Mg 0 + 10HN +5 O 3 = 4Mg +2 (NO 3 ) 2 +N −3 H 4 NO 3 +3H 2 O (1)

Mg 0 – 2ē → Mg +2 4 окисление

N +5 + 8ē → N –3 1 восстановление;

2KCl +5 O 3 -2 = 2KCl –1 + 3O 2 0 (2)

2O –2 – 4ē → O 2 0 3 окисление

Cl +5 + 6ē → Cl –1 2 восстановление;

3K 2 Mn +6 O 4 + 2H 2 O = 2KMn +7 O 4 + Mn +4 O 2 + 4КОН (3)

Mn +6 –1ē →Mn +7 2 окисление

Mn +6 + 2ē → Mn +4 1 восстановление.

Как видно из представленных уравнений, в реакции (1) окислитель и восстановитель – разные элементы в молекулах двух разных веществ, значит, данная реакция относится к типу межмолекулярных окислительно-восстановительных реакций. В реакции (2) окислитель (хлор) и восстановитель (кислород) содержатся в одной молекуле, следовательно, реакция внутримолекулярная. В реакции (3) роль окислителя и восстановителя выполняет один и тот же элемент − марганец, значит, это реакция диспропорционирования.

Задачи и упражнения для самостоятельного решения

4.1. а). Исходя из степени окисления серы в веществах S, H 2 S, Na 2 SO 3 , H 2 SO 4 , определить, какое из них является только окислителем, только восстановителем и какие могут быть и окислителем, и восстановителем. Ответ обосновать.

б). На основании электронных уравнений подобрать коэффициенты в уравнении реакции, идущей по схеме: NaI + NaIO 3 + H 2 SO 4 → I 2 + Na 2 SO 4 + H 2 O.

Определить тип окислительно-восстановительной реакции.

4.2 . Реакции выражаются схемами:

Zn + HNO 3 (разб) → Zn(NO 3 ) 2 + N 2 O + H 2 O;

SnCl 2 + K 2 Cr 2 O 7 + H 2 SO 4 S→ n(SO 4 ) 2 + CrCl 3 + K 2 SO 4 + H 2 O.

Составить электронные уравнения, подобрать коэффициенты, указать, какое вещество в каждой реакции является окислителем, какое восстановителем.

4.3. а). Составить электронные уравнения и указать, какой процесс (окисление или восстановление) происходит при следующих превращениях:

P –3 → P +5 ; N +3 → N –3 ; Cl – → (ClO 3 ) – ; (SO 4 ) 2− → S –2 .

б ). Реакция выражается схемой

KMnO 4 + H 2 S + H 2 SO 4 → MnSO 4 + S + K 2 SO 4 + H 2 O.

Определить окислитель и восстановитель, на сновании электронных уравнений расставить коэффициенты в уравнении реакции.

4.4. а). Могут ли протекать окислительно-восстановительные реакции между веществами: а) Cl 2 и H 2 S; б) KBr и KBrO; в) HI и NH 3 ? Ответ обосновать.

б). На основании электронных уравнений подобрать коэффициенты, определить тип окислительно-восстановительной реакции, идущей по схеме

NaCrO 2 + PbO 2 + NaOH → Na 2 CrO 4 + Na 2 PbO 2 + H 2 O.

4.5. а). Возможные степени окисления железа в соединениях +2, +3, +6. Определить, какое из веществ может быть только восстановителем, только окислителем и какое – и окислителем и восстановителем: FeSO 4 , Fe 2 O 3 , K 2 FeO 4 . Ответ обосновать.

б). На основании электронных уравнений подобрать коэффициенты для веществ в уравнении реакции, идущей по схеме

CrCl 3 + Br 2 + NaOH → Na 2 CrO 4 + NaBr + NaCl + H 2 O.

4.6. а). Составить электронные уравнения и указать, какой процесс (окисление или восстановление) происходит при следующих превращениях:

As +3 → As +5 ; (CrO 4 ) 2– → (CrO 2 ) – ; (MnO 4 ) – → (MnO 4 ) 2– ; Si +4  Si 0 .

б). На основании электронных уравнений расставить коэффициенты в реакции, идущей по схеме H 2 S + H 2 SO 3  S + H 2 O.

4.7. Реакции выражаются схемами:

NaNO 3 → NaNO 2 + O 2 ;

MnSO 4 + KClO 3 + KOH → K 2 MnO 4 + KCl + K 2 SO 4 + H 2 O.

Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

4.8 . Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

KBr + KBrO 3 + H 2 SO 4 → Br 2 + K 2 SO 4 + H 2 O ;

NH 4 NO 3 → N 2 O + H 2 O .

4.9. . Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

H 2 S + K 2 Cr 2 O 7 + H 2 SO 4 → S + Cr 2 ( SO 4 ) 3 + K 2 SO 4 + H 2 O ;

NaBrO → NaBrO 3 + NaBr.

4.10. а). Исходя из степени окисления хлора определить и дать мотивированный ответ, какое из соединений Cl 2 , HCl, HClO 4 является только окислителем, только восстановителем и какое из них может иметь функцию и окислителя, и восстановителя.

б). На основании электронных уравнений расставить коэффициенты в уравнении реакции, идущей по схеме HNO 3 + Bi → NO + Bi(NO 3 ) 3 + H 2 O.

4.11. . Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

H 3 AsO 3 + KMnO 4 + H 2 SO 4 → H 3 AsO 4 + MnSO 4 + K 2 SO 4 + H 2 O ;

AgNO 3 → Ag + NO 2 + O 2 .

4.12. а ). Могут ли происходить окислительно-восстановительные реакции между веществами: а) H 2 S и Br 2 ; б) HI и HIO 3 ; в) KMnO 4 и K 2 Cr 2 O 7 ? Ответ обосновать.

б). На основании электронных уравнений расставить коэффициенты в уравнении реакции, идущей по схеме

4.13 . а). Составить электронные уравнения и указать, какой процесс (окисление или восстановление) происходит при следующих превращениях:

(BrO 4 ) – → Br 2 ; Bi → (BiO 3 ) – ; (VO 3 ) – →V; Si –4 → Si +4 .

б). На основании электронных уравнений подобрать коэффициенты в уравнении реакции, идущей по схеме

Al + KMnO 4 + H 2 SO 4 → Al 2 (SO 4 ) 3 + MnSO 4 + K 2 SO 4 + H 2 O.

4.14. Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

Na 2 SO 3 + Na 2 S + H 2 SO 4 → S + Na 2 SO 4 + H 2 O ;

KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 .

4.15. а ). Могут ли идти окислительно-восстановительные реакции между следующими веществами: а) PbO 2 и KBiO 3 ; б) Н 2 S и Н 2 SO 3 ; в) H 2 SO 3 и HClO 4 ? Ответ обосновать.

б). На основании электронных уравнений расставить коэффициенты в уравнении реакции, идущей по схеме S + KOH → K 2 SO 3 + K 2 S + H 2 O.

Определить тип окислительно-восстановительной реакции.

4.16. Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

(NH 4 ) 2 Cr 2 O 7 → N 2 + Cr 2 O 3 + H 2 O;

P + HNO 3 + H 2 O → H 3 PO 4 + NO.

4.17. Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

Ba(OH) 2 + I 2 → Ba(IO 3 ) 2 + BaI 2 + H 2 O;

MnSO 4 + PbO 2 + HNO 3 → HMnO 4 + Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

Pb ( NO 3 ) 2 + PbSO 4 + H 2 O .

4.18. Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

AgNO 3 + H 2 O 2 + KOH → Ag + O 2 + KNO 3 + H 2 O;

Ni(NO 3 ) 2 → NiO + NO 2 + O 2 .

4.19. На основании электронных уравнений расставить коэффициенты в уравнениях реакций, идущих по схемам

HNO 2 → HNO 3 + NO + H 2 O;

Cr 2 O 3 + KClO 3 + KOH → K 2 CrO 4 + KCl + H 2 O.

Указать окислитель и восстановитель в каждой реакции, определить ее тип.

4.20. Составить электронные уравнения, расставить коэффициенты, определить окислитель и восстановитель в каждой реакции. К какому типу относится каждая из приведенных реакций?

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.

Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
  • сложные вещества, в составе которых есть ионыметаллов или неметаллов с высокими положительными (как правило, высшими) степенями окисления : кислоты (H N +5 O3, H Cl +7 O4), соли (K N +5 O3, K Mn +7 O4), оксиды ( S +6 O3, Cr +6 O3)
  • соединения, содержащие некоторые катионы металлов, имеющих высокие степени окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn 2+ , Fe 2+ , Cr 2+ ), которые, отдавая электроны, могут повышать свою степень окисления;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S +4 O3) 2– , (НР +3 O3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.

Типичные окислители и восстановители приведены в таблице.

В лабораторной практике наиболее часто используются следующие окислители :

К восстановителям , которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na2S) и сероводород (H2S);
  • сульфит натрия (Na2SO3);
  • хлорид олова (SnCl2).

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления .

2 Al 0 + Fe +3 2O3 → Al +3 2O3 + 2 Fe 0 ,

C 0 + 4H N +5 O3(конц) = C +4 O2 ↑ + 4 N +4 O2 ↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:

2 Na N +5 O -2 3 → 2 Na N +3 O2 + O 0 2↑.

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

2H2 S -2 + S +4 O2 = 3 S + 2H2O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается , а восстановитель окисляется .

В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса .

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K + 2 S -2 + 2K + Mn +7 O -2 4 = 2K + 2 Mn +6 O -2 4 + S 0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S -2 -2e = S 0

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса. Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций .

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO4, где Mn +7 в кислой среде восстанавливается до Mn +2 , а в щелочной — до Mn +6 );
  • окислительная активность усиливается в более щелочной среде, и окислитель восстанавливается глубже (например, нитрат калия KNO3, где N +5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N -3 );
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например , при взаимодействии азотной кислоты HNO3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстанавливается азот N +5 .

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества . Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn 2+ . Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны . В нейтральном растворе марганец восстанавливается до степени окисления +4 , с образованием амфотерного оксида MnO2коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6 . Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты . Манганаты придают раствору зеленую окраску .

Рассмотрим взаимодействие перманганата калия KMnO4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S 0 .

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключенияфосфор, мышьяк — до +5 ;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

KMnO4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

KMnO4 + P -3 , As -3 = P +5 , As +5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K2CrO4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K2Cr2O7) — соли, устойчивые в кислой среде .

Восстанавливаются соединения хрома (VI) до соединений хрома (III) . Соединения хрома Cr +3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH)3 , и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K3[Cr(OH)6] .

Соединения хрома VI окисляют:

  • неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключенияфосфор, мышьяк – до +5 ;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель. Такой азот может окислять кислород (О -2 ). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O2 .

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород .

Например:

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь) , то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород . Оксид металла образует также при разложении нитрат лития .

Например , разложение нитрата цинка:

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Ионы металлов , расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N +5 , участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород .

Например , разложение нитрата серебра:

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается. При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

Это пример реакции контрдиспропорционирования .

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N +3 и восстановителя N -3

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

Нитрат никеля (II) разлагается до нитрита при нагревании до 150 о С под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

Окислительные свойства азотной кислоты

Азотная кислота HNO3 при взаимодействии с металлами практически никогда не образует водород , в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO2 (N +4 ); оксид азота (II) NO (N +2 ); оксид азота (I) N2O («веселящий газ»); молекулярный азот N2; нитрат аммония NH4NO3 . Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты . При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются .

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH4NO3;

Например , взаимодействие цинка с очень разбавленной азотной кислотой:

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe . При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппызолотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами иметаллами средней активности азотная кислота восстанавливается до оксида азота (IV)NO2 ;

Например , окисление меди концентрированной азотной кислотой:

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота(I) N2O ;

Например , окисление натрия концентрированной азотной кислотой:

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO ;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N2O, либо молекулярный азот N2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N2.

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например , взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода. Окислителем здесь выступают ионы H + , которые восстанавливаются до молекулярного водорода H2. При этом металлы окисляются, как правило, до минимальной степени окисления.

Например :

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S +4 O2, молекулярная сера S либо сероводород H2S -2 , в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Например , медь окисляется концентрированной серной кислотой :

Cu 0 + 2H2 S +6 O4(конц) = Cu +2 SO4 + S +4 O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S 2- (в зависимости от температуры, степени измельчения и активности металла).

Например , взаимодействие концентрированной серной кислоты с цинком :

Пероксид водорода

Пероксид водорода H2O2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например :


источники:

http://infourok.ru/okislitelnovosstanovitelnie-reakcii-klass-331995.html

http://chemege.ru/materials/ovr/