Оксид железа и вода уравнение

Оксид железа (III)

Оксид железа (III)

Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

Способы получения

Оксид железа (III) можно получить различными методами :

1. Окисление оксида железа (II) кислородом.

2. Разложение гидроксида железа (III) при нагревании :

Химические свойства

Оксид железа (III) – амфотерный .

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например , оксид железа (III) взаимодействует с азотной кислотой:

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит) .

Например , оксид железа (III) взаимодействует с гидроксидом натрия:

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Например , хлорат калия в щелочной среде окисляет оксид железа (III) до феррата:

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

5. Оксид железа (III) проявляет окислительные свойства . Но есть интересный нюанс — при восстановлении оксида железа (III), как правило, образуется смесь продуктов: это может быть оксид железа (II), просто вещество железо, или железная окалина Fe3O4. Но в реакции мы записываем при этом только один продукт. А вот какой именно это будет продукт, зависит от условий реакции. Как правило, в экзаменах по химии нам даются указания на возможный продукт (цвет образовавшегося вещества или дальнейшие характерные реакции).

Например , оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до простого железа, так и до оксида железа (II) или железной окалины:

При восстановлении оксида железа (III) водородом также возможно образование различных продуктов, например, простого железа:

Железом можно восстановить оксид железа только до оксида железа (II):

Оксид железа (III) реагирует с более активными металлами .

Например , с алюминием (алюмотермия):

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например , с гидридом натрия:

Fe2O3 + 3NaH → 3NaOH + 2Fe

6. Оксид железа (III) – твердый, нелетучий и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната натрия:

Реакция железа с водой

Железо вода реакция

Реакцию железа с водой можно выразить следующим суммарным уравнением:

Реакция идет с достаточной скоростью при нагревании (примерно до 400 °С). На ней был основан железопаровой способ получения водорода, утративший в настоящее время практическое значение. Однако эта реакция представляет интерес для истории химии: этим превращением в конце XVIII в. было доказано, что вода не простое вещество, а химическое соединение, в состав которого входит «горючий воздух» (т. е. водород).

Для опыта удобно воспользоваться свежевосстановленным железом в виде порошка, полученным взаимодействием водорода с оксидом железа (III) при сильном нагревании. Вместо восстановленного железа можно взять железные стружки, очищенные от оксидов железа споласкиванием их в кислоте, обезжиренные раствором щелочи, промытые водой и высушенные. Однако в этом случае реакция протекает медленнее.

Железо помещают в железную трубку, куда подводится вода (водяной пар). На рисунке 2 изображен вариант I опыта в железной трубке с диаметром 1,5—2 см. Более удобной для опытов является изогнутая трубка с длиной колен 15 и 25 см, которую можно изготовить в порядке самооборудования.

Рис. 2. Установка для взаимодействие раскаленного железа с водяным паром (вариант I):

1 — железная трубка, 2 — пробки, 3 — алонж, 4 — капельная воронка, 5 — газоотводная трубка, 6 — цилиндр, 7 — чаша кристаллизационная, 5 — горелка с насадкой.

В среднюю часть трубки 1 ближе к пробке помещают около 20 г железного порошка (или железных стружек) и слабо запирают его стеклянной ватой. Концы трубки закрывают хорошо подогнанными корковыми пробками 2 с отверстиями для алонжа 3 с капельной воронкой 4 и газоотводной трубкой 5. Нагревают железную трубку, не доводя ее до красного каления (более высо кая температура способствует обратному — эндотермическому — процессу). Из капельной воронки 4 прибавляют по каплям воду.

После вытеснения из установки воздуха образующийся водород собирают в цилиндры и испытывают его, соблюдая правила техники безопасности. Заканчивают опыт: вынимают газоотводную трубку вместе с пробкой, прекращают нагревание железной трубки и приливание воды из капельной воронки. Содержащиеся в трубке оксиды железа могут быть использованы для восстановления из них железа для опытов, а иногда их оставляют в трубке для проведения другого опыта — восстановления оксидов железа водородом.

Рис. 3. Установка для взаимодействия железа с водяным паром (вариант II):

1 — колба круглодонная с водой, 2 —тройник, 3 — стеклянная трубка с порошком восстановленного железа между комками стеклянной ваты, 4 — газоотводная трубка, 5 — чаша кристаллизационная, б — цилиндр, 7 — газовая горелка со щелевой насадкой.

В другом варианте опыта, при котором пропускают над раскаленным железом не воду, а водяные пары, применяют не изогнутую, а прямую железную или фарфоровую трубку. В этой установке использовано сочетание двух типов реакторов: колба и реакционная трубка.

Для проведения опыта собирают установку, изображенную на рисунке 3. В трубке 3 помещают железный порошок или железные опилки между комками стеклянной ваты. Трубку сильно накаливают, после чего воду в колбе 1 доводят до кипения (для равномерного кипения в колбу помещают капилляры-кипятильники). Избыток пара выходит через тройник 2. Через несколько минут, когда из установки будет вытеснен воздух, подводят под цилиндр 6 газоотводную трубку и собирают водород. Наличие водорода доказывают поджиганием собранного в цилиндре газа.

Восстановление железа водородом

Взаимодействие железа с водой может протекать и в обратном направлении. Восстановление оксидов железа водородом — эндотермические процессы:

Для проведения опыта можно использовать установку, показанную на рисунке 3.

Рис. 3. Установка для получения железа восстановлением оксидов железа водородом:

1 — газоотводная трубка для подачи водорода, 2 — промывная склянка с концентрированной серной кислотой, 3 — железная трубка, 4 — стакан с охлаждающей смесью, 3 — приемник с обезвоженным медным купоросом, 6 — пробирка для собирания водорода.

Поступающий из аппарата Киппа по трубке 1 водород проходит через концентрированную серную кислоту в склянке 2 и в сухом виде проникает в реакционную трубку 3, и далее водород выходит наружу через трубку 6. После вытеснения из установки воздуха (проба водорода на чистоту!) водород поджигают у газоотводной трубки 6. Затем сильно нагревают трубку 3 с оксидом железа, что может привести к угасанию пламени у отверстия трубки 6. Через 10—15 мин разъединяют реактор с приемником, вынув пробку из него. В пробирке легко можно заметить голубые кристаллы медного купороса.

Они образовались при взаимодействии безводного сульфата меди с водой — одним из продуктов реакции водорода с оксидами железа. После этого прекращают нагревание трубки, продолжая пропускать водород до ее остывания. Высыпают содержимое трубки на стекло или в фарфоровую чашку и сравнивают его с исходным веществом. Если для опыта был взят оксид железа (III) красного цвета, то он отличается от образовавшегося продукта реакции — железа — по цвету и отсутствию магнитных свойств. В том же случае, когда в реакционной трубке находится оксид Fe3О4, в состав которого входит железо со степенями окисления +2 и +3, то исходные и конечные продукты идентифицируют при помощи разбавленной соляной кислоты, а не с помощью магнита, так как оба они — железо (Fe) и оксид железа (Fe3О4) — почти не отличаются по цвету и обладают магнитными свойствами.

Полученное таким способом железо может быть использовано в качестве катализатора при синтезе аммиака.

Железо восстановленное, Fe

Горючий порошок. Состав, % (масс): железо 98,5, углерод 0,18, кислород 0,9. Дисперсность образца менее 50 мкм. Т. самовоспл.: аэрогеля 240 °С, аэровзвеси 400 °С; нижн. конц. предел распр. пл. 100 г/м 3 ; макс. давл. взрыва 250 кПа; макс, скорость нарастания давл. 3 МПа/с; МВСК 13,1% (об.); миним. энергия зажигания аэровзвеси 80 мДж. В зависимости от состава и дисперсности образца нижн. конц. предел распр. пл. колеблется в интервале 66—460 г/м 3 .

Железо Fe физические свойства

Порошок железа в зависимости от состава, крупности и технологии получения может быть горючим или трудногорючим веществом. Уменьшение размеров частиц порошка, т-ры восстановления или отжига, содержания кислорода способствуют развитию пирофорных свойств.

Железные порошки марок ПЖМ и ПЖОМ дисперсностью 40—100 мкм имеют следующие показатели пожаро-взрывоопасности: т. самовоспл. аэрогеля 260—460 °С, аэровзвеси 300—940 °С; нижн. конц. предел распр. пл. 100—875 г/мз. макс. давл. взрыва 101,3—3039 кПа; скор, нарастания давл. взрыва 1 — 18,2 МПа/с; МВСК 13—18% (об.); миним. энергия зажигания 6,8—23 мДж; железные порошки марок ПЖС и ПЖИ не воспламеняются в слое вплоть до 1000 °С и в аэровзвеси до 2000 0 С.

Для определения пожароопасных свойств использованы нестандартные методики, можно применять распыленную воду.

Железо карбонильное

Горючий порошок. Содержание Fe 99% (масс). Дисперсность образца менее 74 мкм. Т. самовоспл.: аэрогеля 170 °С, аэровзвеси 320 °С; нижн. конц. предел распр. пл. 105 г/м 3 ; миним. энергия зажигания 20 мДж; при конц. пыли 1000 г/м 3 макс, давл. взрыва 300 кПа; макс, скорость нарастания давл. 16,6 МПа/с; МВСК 10% (об.) при разбавлении пылевоздушной смеси диоксидом углерода. Для образца со следами аммиаками дисперсностью менее 44 мкм т. самовоспл.: аэрогеля 260 °С, аэровзвеси 460 °С; нижн. конц. предел распр. пл. 120 г/м 3 ; при конц. пыли 500 г/м 3 макс. давл. взрыва 350 кПа; макс, скорость нарастания давл. 48,2 МПа/с; миним. энергия зажигания 120 мДж [471]. Средства тушения: табл. 4.1, гр. 3.

Железо карбонильное КЖ-20ф

Горючий серый порошок. Состав, % (масс): железо 97—98, углерод 0,7—0,8, азот 0,7—0,8, фосфор 0,01. Насыпная масса 2500—4500 кг/м 3 . Дисперсность образца 2—3 мкм. Т. воспл, 473 °С; т. самовоспл. 542 °С; т. тлен. 223 °С; нижн. конц. предел распр. пл. 102 г/м 3 . Средства тушения: табл. 4.1, гр. 3.

Железо карбонильное КЖР-10ф

горючий серый порошок. Состав, % (масс): железо 97—98, углерод 0,8—0,9, азот 0,8—0,9, фосфор 0,01. Насыпная масса 2500—4500 кг/м 3 . Дисперсность образца 3—4 мкм. Т. воспл. 482 °С; т. самовоспл. 555 °С; т. тлен. 229 °С; нижн. конц. предел распр. пл. 106 г/м 3 . Средства тушения: табл. 4.1, гр. 3.

Железо электролитическое

Горючее вещество, склонно к самовозгоранию. Дисперсность образца 25 мкм. Т. самовоспл. аэровзвеси 430 °С; т. тлен. 350 °С; нижн. конц. предел распр. пл. 220 г/м 3 ; макс, давл. взрыва 330 кПа; миним. энергия зажигания 240 мДж; МВСК 13% (об.) [394, 532]. Средства тушения: табл. 4.1, гр. 10.

Статья на тему Реакция железа с водой

Похожие страницы:

Понравилась статья поделись ей

Leave a Comment

Для отправки комментария вам необходимо авторизоваться.

Оксид железа FeO(II)

Физические свойства FeO(II):

  • кристаллы черного цвета;
  • плотность 5,7 г/см 3 ;
  • нерастворим в воде.

Химические свойства FeO(II):

  • это основной оксид;
  • легко вступает в реакции с кислотами, образуя соли железа:
    FeO+H2SO4 = FeSO4+H2O;
    FeO+2HCl = FeCl2+H2O
  • легко окисляется кислородом воздуха:
    4FeO+O2 = 2Fe2O3
  • FeO(II) получают восстановлением FeO(III) при высоких температурах:
    Fe2O3+H2 = 2Fe+H2O;
    Fe2O3+CO = 2FeO+CO2

Гидроксид железа Fe(OH)2(II)

Физические свойства Fe(OH)2:

  • белый порошок;
  • на воздухе частично окисляется, приобретая зеленый оттенок;
  • не растворяется в воде.

Химические свойства Fe(OH)2:

  • Fe(OH)2 проявляет основные свойства;
  • в присутствии влаги окисляется, образуя гидроксид железа (III), приобретая при этом бурый цвет:
    4Fe(OH)2+O2+2H2O = 4Fe(OH)3
  • легко реагирует с кислотами:
    Fe(OH)2+2HCl = FeCl2+2H2O
    Fe(OH)2+H2SO4 = FeSO4+2H2O
  • в концентрированных растворах щелочей образует ферраты (комплексные соли железа) при кипячении:
    Fe(OH)2+2NaOH = Na2[Fe(OH)4]
  • разлагается при нагревании:
    Fe(OH)2 = FeO+H2O

Получают Fe(OH)2 из солей железа (II) при их взаимодействии с щелочами:
FeCl2+2NaOH = Fe(OH)2+2NaCl
FeSO4+2NaOH = Fe(OH)2+Na2SO4

Поскольку, Fe +2 легко окисляется до Fe +3 , все соединения железа(II) являются восстановителями. Также восстановительными свойствами обладают и соли железа (II).

Качественная реакция на катион железа (II):

  • для обнаружения Fe +2 используют красную кровяную соль (гексацианоферрат калия):
    3FeSO4+2K3[Fe(CN)6] = Fe3[Fe(CN)6]2↓+3K2SO4
  • о присутствии катионов железа судят по образовавшемуся осадку темно-синего цвета (турнбулева синь):
    3Fe 2+ +2[Fe(CN)6] 3- = Fe3[Fe(CN)6]2

Оксид железа Fe2O3(III)

  • порошок бурого цвета;
  • может существовать в трех модификациях: α, β, γ
  • нерастворим в воде.

Fe2O3 содержится в буром и красном железняке, являющихся исходным сырьем в производстве чугуна.

Гидроксид железа Fe(OH)3(III)

Физические свойства Fe(OH)3:

  • вещество рыхлой консистенции красно-коричневого цвета.

Химические свойства Fe(OH)3:

  • Fe(OH)3 является слабым основанием;
  • Fe(OH)3 проявляет амфотерные свойства с преобладанием оснОвных;
  • реагирует с разбавленными кислотами с образованием солей:
    Fe(OH)3+3HCl = FeCl3+3H2O
  • реагирует с концентрированными растворами щелочей при длительном нагревании с образованием устойчивых гидроксокомплексов:
    Fe(OH)3+3NaOH = Na3[Fe(OH)6]
  • при нагревании разлагается с образованием оксида железа (III):
    2Fe(OH)3 = Fe2O3+3H2O
  • Fe(OH)3 получают из солей железа (III) при их взаимодействии с щелочами:
    Fe(OH)3+3NaOH = Fe(OH)3↓+3NaCl

Поскольку, под действием восстановителей Fe +3 превращается в Fe +2 , все соединения железа со степенью окисления +3 являются окислителями:
2Fe +3 Cl3+2KI -1 = 2Fe +2 Cl2+2KCl+I2 0

Качественные реакции на катион железа (III):

  • катионы Fe +3 обнаруживаются действием желтой кровяной соли (гексацианоферрат калия) — реакция идет с выпадением берлинской лазури (осадка темно-синего цвета):
    4Fe +3 Cl3+3K4[Fe(CN)6] -4 = Fe4[Fe(CN)6]3↓+12KCl
  • катионы Fe +3 обнаруживаются роданидом аммония (в результате реакции образуется роданид железа красного цвета):
    Fe +3 Cl3+3NH4CNS — ↔ Fe(CNS)3+3NH4Cl

Соли железа

  • Соли, в которых железо имеет степень окисления +2 (FeCl2, FeSO4), обладают восстановительными свойствами:
    • сульфат железа FeSO4 применяют в качестве фунгицидов, консерванта древесины, как компонент электролитов;
    • хлорид железа FeCl2 применяют для получения хлорида железа (III), в качестве катализатора в органическом синтезе.
  • Соли, в которых железо имеет степень окисления +3 (FeCl3, Fe2(SO4)3), являются слабыми окислителями:
    • сульфат железа Fe2(SO4)3 применяют для очистки воды, для получения квасцов, как компонент электролитов;
    • хлорид железа FeCl3 применяют в качестве коагулятора при очистке воды, катализатора в органическом синтезе, протравы при крашении текстиля.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе


источники:

http://znaesh-kak.com/x/h/%D1%80%D0%B5%D0%B0%D0%BA%D1%86%D0%B8%D1%8F-%D0%B6%D0%B5%D0%BB%D0%B5%D0%B7%D0%B0-%D1%81-%D0%B2%D0%BE%D0%B4%D0%BE%D0%B9

http://prosto-o-slognom.ru/chimia/510_oksidy_zheleza.html