Операции над линейными алгебраическими уравнениями

Линейная алгебра — примеры с решением заданий и выполнением задач

Содержание:

Линейная алгебра

Линейная алгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры.

Матрицы и операции над ними

В математике и ее приложениях наряду с числами часто бывает удобным использовать чис­ловые таблицы, которые называются матрицами. Аппарат теории матриц эффективно приме­няется, например, при решении систем линейных уравнений, как мы скоро в этом убедимся. Перейдем к точным определениям.

Определение: Матрицей размерности m х n называется прямоугольная таблица дейст­вительных чисел, состоящая из m строк и n столбцов.

Числа, составляющие матрицу, называются ее элементами. Для доступа к элементам мат­рицы используются два индекса: первый указывает на номер строки, второй — на номер столб­ца, на пересечении которых расположен данный элемент.

Обозначаются матрицы, как правило, прописными латинскими буквами A, B, C,иногда указывается размерность, например, Amxn. В развернутой форме матрица записывается как таблица:

Более компактно с указанием элементов матрица записывается в виде:

Матрицы А и В одинаковой размерности считаются равными, если все элементы одной матрицы равны соответвующим элементам другой матрицы.

Рассмотрим некоторые специальные виды матриц.

Матрица, у которой все элементы равны нулю, называется нуль-матрицей и обозначается через O.

Матрица, у которой число строк равно числу столбцов, называется квадратной. Размерность квадратной матрицы часто называют ее порядком.

Числа в квадратной матрице называются диагональными элементами. Совокупность диагональных элементов составляет главную диагональ квадрат­ной матрицы.

Квадратная матрица, диагональные элементы которой равны единице, а все остальные — нулю, называется единичной матрицей и обозначается через где n — порядок матрицы.

Квадратная матрица называется треугольной, если все ее элементы, расположенные ниже (выше) главной диагонали, равны нулю. Например, треугольной является матрица

Матрица называется трапециевидной, если она представляет собой следующую таблицу:

Операции над матрицами

Введем сначала линейные операции над матрицами.

Произведением действительного числа на матрицу называется матрица

Суммой двух матриц одинаковой размерности называется матрица

Таким образом, элементы суммы матриц равны суммам соответствующих элементов данных матриц.

Разность матриц А и B можно определить как А — В = А + (-1)В.

Свойства линейных операций над матрицами аналогичны соответствующим свойствам действительных чисел.

Пример №1

Найти матрицу -2А +3В.

Определим теперь операцию умножения матриц. Рассмотрим сначала матрицу-строку и матрицу-столбец с одинаковым числом элементов, т.е.

Произведением этих строки и столбца называется число1

Рассмотрим так называемые согласованные матрицы , у первой из которых число столбцов равно числу строк второй матрицы. Обозначим строку с номером i матрицы А через а столбец с номером j матрицы B через

Произведением данных согласованных матриц А и B называется матрица

Часто для суммы n чисел мы будем использовать короткое обо значение

размерности m х p, элементы которой равны произведениям строк матрицы A на столбцы B.

Пример №2

Найти произведение согласованных матриц

Решение. Найдем произведение строк матрицы А на столбцы матрицы В.

Осталось записать искомое произведение матриц:

Отметим некоторые свойства произведения матриц1.

Первые три сразу следуют из определения произведения матриц. Докажем последнее свой­ство. Пусть заданы три матрицы Элемент dij произ­ведения (AB)C равен произведению строки с номером i матрицы AB на столбец с номером j матрицы C : Поменяв порядок суммирования в последней двойной сумме, получим:

что представляет собой произведение Тем строки с номером i матрицы A на столбец с номером j матрицы ВС. Тем самым свойство 4 доказано.

Заметим, что в отличие от чисел матрицы, вообще говоря, не коммутируют (не переста­новочны). Приведем соответствующий

Контрпример. Доказать, что матрицы

Таким образом, для этих матриц

Замечание. Пользуясь случаем, введем здесь определение n-мерного векторного пространства Rn, как множество упорядоченных совокупностей n действительных чисел. Каждую такую совокупность мы будем обозначать через и называть n-мерным вектором.

Мы предполагаем, что все матрицы в свойствах согласованы.

Очевидно, каждый вектор мы можем отождествить с соответствующей матрицей-строкой или матрицей-столбцом, поэтому на векторы автоматически переносятся линейные операции, которые мы определили выше для матриц.

Определитель матрицы и его свойства

Познакомимся теперь с такой важнейшей характеристикой матрицы, как определитель. Вве­дем предварительно понятие перестановки и изучим некоторые ее свойства.

Перестановки

Перестановкой n натуральных чисел 1, 2, . n называется строка

(1)

содержащая все эти числа.

Первым элементом перестановки может быть любое из чисел 1, 2, . n, вторым — любое из оставшихся n — 1 чисел и так далее, следовательно, число различных перестановок данных чисел равно (читается n-факториал).

Два числа в перестановке находятся в инверсии, если большее из них имеет меньший номер. Число всех инверсий в перестановке (1) мы обозначим через

В связи с этим перестановка (1) называется четной, если в ней число четно и нечетной — в противном случае.

Отметим два свойства перестановок, которые мы будем использовать ниже.

Лемма 1. Характер четности перестановки изменится на противоположный, если в ней поменять местами какие-нибудь два элемента.

Доказательство. Предположим сначала, что меняются местами рядом стоящие элементы к и l перестановки. В этом случае число инверсий в новой перестановке изменится на единицу, а именно, увеличится на единицу, если к и l не находились в инверсии, или на­столько же уменьшится, если они находились в инверсии. Таким образом, характер четности перестановки изменится на противоположный. Рассмотрим теперь случай, когда числа к и l разделяют s других элементов перестановки. Тогда поменять местами данные элементы мы можем последовательно переставляя число к с s промежуточными элементами, а затем пере­ставляя число l в обратном порядке с элементом к и всеми s промежуточными. В результате мы выполним 2s + 1 обменов рядом стоящих элементов и, таким образом, характер четно­сти исходной перестановки изменится нечетное число раз и, следовательно, он изменится на противоположный. Лемма доказана.

Из этой леммы сразу же следует, что количество четных перестановок равно количеству нечетных. В самом деле, поменяв местами любые два элемента в каждой из p четных переста­новок, мы получим p нечетных и, следовательно, где q — количество нечетных перестано­вок. Аналогично мы можем убедиться в справедливости неравенства Из этих неравенств и следует, что p = q.

Лемма 2. Пусть

(2)

— перестановка чисел 1, 2, . n — 1. Зафиксируем число j из множества <1, 2, . , n>и оставим его перестановку (2) на место с номером i, сдвинув вправо на одну позицию все ее элементы с номерами i, i + 1, . , n — 1 и увеличив на единицу все не меньшие, чем j элемен­ты этой перестановки. В результате получим перестановку

(3)

чисел 1, 2, . , n. Четности перестановок (2) и (3) связаны равенством

Действительно, предположим сначало, что элемент j в перестановке (3) стоит на первом месте. Тогда, очевидно, количество инверсий в этой перестановке равно Перегоним теперь число j на место с номером i, последовательно обменивая его со следующими i — 1 элементами. По лемме 1 характер четности перестановки изменится i — 1 ра и, значит,

Определитель и его вычисление для матриц второго и третьего порядков

Рассмотрим квадратную матрицу порядка n :

Составим произведение элементов данной матрицы, взятых по одному из каждой строки и каждого столбца. Упорядочив элементы этого произведения по возрастанию номеров строк, мы можем записать его в виде:

Номера столбцов в записанном произведении образуют перестановку чисел 1, 2, . , n.

Определение: Число, равное сумме всех n! произведений

называется определителем данной квадратной матрицы А (определителем n-го порядка) и обозначается через |А| или det А. В развернутой форме определитель записывается как

Найдем пользуясь этим определением выражение для определителей второго и третьего порядков.

Так как то

Аналогично, для вычисления определителя третьего порядка найдем число инверсий в каждой из перестановок чисел 1, 2, 3 :

Тогда

Для упрощения вычисления определителя третьего порядка можно использовать правило треугольников, согласно которому со знаком » + » следует брать произведения по схеме

а со знаком » — » — по схеме

Пример №3

Решение. Воспользуемся правилом треугольников: = —2 + 6 — 6 — 9 — 8 — 1 = -20.

Свойства определителя

1) Если какая-либо строка (столбец) определителя состоит из нулей, то и определитель равен нулю.

2) Общий множитель элементов какой-либо строки (столбца) можно выносить за знак определителя.

3) Если все элементы какой-нибудь строки (столбца) определителя равны суммам двух слагаемых, то данный определитель равен сумме двух определителей, в которых в указан­ной строке (столбце) стоят, соответственно, первые и вторые слагаемые, а остальные элементы обоих определителей такие же, как и в исходном определителе.

Эти свойства напрямую следуют из определения определителя.

4) Если переставить две какие-нибудь строки (столбца) определителя, то он поменяет знак на противоположный.

Действительно, переставим, например, две строки определителя. В результате получим определитель, каждое слагаемое которого отличается знаком от соответствующего слагаемого исходного определителя, так как по доказанной в пункте 1 лемме 1 четность соответствующей перестановки вторых индексов изменится па противоположную.

5) Если в определителе совпадают (пропорциональны) две какие-нибудь строки (столбцы), то этот определитель равен нулю.

В самом деле, если в определителе совпадают две каие-нибудь строки (столбцы), то, с одной стороны, определитель при этом не изменится, а, с другой стороны, по предыдущему свойству его знак поменяется на противоположный. Таким образом |A| = — |A| и, стало быть, |A| = 0. Если же в определителе имеются две пропорциональные строки (столбца), то после вынесе­ния за его знак по свойству 2) общего множителя элементов строки (столбца), мы получим определитель с двумя одинаковыми строками (столбцами), который равен нулю.

6) Определитель не изменится, если к элементам какой-нибудь строки (столбца) доба­вить соответствующие элементы другой строки (столбца), умноженные на одно и тоже число.

Это следует из свойств 3) и 5), так как в этом случае полученный определитель можно представить в виде суммы двух определителей, один из которых равен исходному, а в другом имеются пропорциональные строки (столбцы), и поэтому он равен пулю.

Прежде чем сформулировать очередное свойство, введем понятие алгебраического дополне­ния к элементу матрицы.

Алгеброическим дополнением элемента aij квадратной матрицы A = (aij)nxn мы будем называть число

где — определитель порядка n — 1, полученный из определителя этой матрицы вычеркиванием i-ой строки и j-го столбца.

7) Разложение определителя по элементам строки (столбца).

Определитель матрицы равен сумме произведений элементов какой-нибудь строки (столб­ца) на соответствующие алгебраические дополнения. Таким образом,

Докажем, например, первую из этих формул. Убедимся в том, что правая часть данной формулы содержит все слагаемые определителя матрицы А. Выражение

содержит n(n — 1)! = n! различных произведений элементов определи теля матрицы A, взятых по одному из каждой строки и каждого столбца. Осталось проверить соответствие знаков.

Рассмотрим произвольное произведение

Каждое слагаемое определителя представляет собой произведение элементов данной мат­рицы, взятых по одному из каждой строки и каждого столбца, исключая строку с номером i и столбец с номером j. Знак этого произведения определяется четностью перестановки

чисел 1, 2, . , n — 1. Умножив данное произведение на число и поставив множитель на место с номером i, мы получим соответствующее произведение определителя матрицы А с перестановкой вторых индексов и знаком который по лемме 2 пункта 1 соответствует четности перестановки

Таким образом, вычисление определителя n-го порядка сводится к вычислению n определителей (n-1)-го порядка.

Пример №4

Решение. Разложим этот определитель по элементам второй строки:

Пример №5

Вычислить определитель треугольной матрицы

Разлагая этот и следующие определители по первому столбцу, получим:

таким образом, определитель треугольной матрицы равен произведению диагональных эле­ментов.

8) Сумма произведений n действительных чисел на алгебраические дополнения к элементам какой-нибудь строки (столбца) равна определителю, в котором в указанной строке (столбце) расположены данные числа, а все остальные элементы совпадают с соответствующими элементами исходного определителя.

Это свойство является прямым следствием предыдущего.

9) Сумма произведений элементов какой-нибудь строки (столбца) на алгебраические до­полнения к элементам какой-нибудь другой строки (столбца) определителя равна нулю.

Действительно, по предыдущему свойству эта сумма произведений равна определителю с двумя совпадающими строками (столбцами), а такой определитель по свойству 5) равен нулю.

10) Определитель произведения матриц равен произведению определителей этих матриц, т. е.

Достаточно громоздкое доказательство этого свойства мы приводить не будем.

Обратная матрица

Определение: Обратной к квадратной матрице называется обозначаемая через А-1 матрицы, для которой АА-1 = А-1А = Е, где Е — единичная матрица.

Из этого определения следует, что матрица А-1 также является квадратной той же размер­ности, что и матрица А.

Отметим некоторые свойства обратной матрицы, следующие из ее определения.

а) У матрицы не может существовать больше одной обратной.

Действительно, пусть для матрицы А имеются две обратные Тогда

Умножив обе части первого равенства слева на матрицу получим

c) Если для квадратных матриц А и В одного порядка существуют обратные, то и у матрицы АВ также существует обратная , причем

Выясним условия, при которых обратная матрица существует.

Теорема (критерий существования обратной матрицы). Для того, чтобы существовала матрица, обратная данной, необходимо и достаточно, чтобы данная матрица была невырожденной, то есть чтобы ее определитель был не равен нулю.

Доказательство. Докажем сначала необходимость условия теоремы. Пусть для матрицы А существует обратная матрица. Тогда из равенства АА-1 = E, воспользовавшись свойством 10) определителя произведения матриц, получаем: det(AA-1) = det А det А-1 = det E = 1. Следователь но, det А 0.

Убедимся теперь в том, что условие теоремы является и достаточным. Предположим, что матрица А является невырожденной. Проверим, что обратной к данной является матрица со следующей структурой 1:

Действительно, если

откуда, воспользовавшись свойствами 7) и 9) определителя (§2, пункт 3), заключаем:

т. е. АА-1 = Е. Аналогично убеждаем, что А-1А = Е. Теорема доказана.

В строках указанной ниже матрицы записаны алгебраические дополнения к элементам соответствующих столбцов.

Пример №6

Найти обратную к матрице

Решение. Найдем сначала определитель матрицы: Обратная матрица существует. Находим алгебраические дополнения к элементам данной матрицы:

Следовательно,

Обратную матрицу можно использовать при решении линейных матричных уравнений. Пусть, например, требуется решить матричное уравнение

с известными матрицами А и B, причем матрица A является невырожденной. Умножая обе части данного матричного уравнения слева на обратную матрицу A-1, получим:

Аналогично, решением матричного уравнения XA = B является матрица X = BA-1, а ре­шением матричного уравнения AXB = С с невырожденными матрицами A и B является матрица X = A-1CB-1.

Ранг матрицы и его вычисление

Рассмотрим произвольную матрицу

Минором порядка k матрицы A называется определитель, стоящий на пересечении выбран­ных k строк и k столбцов данной матрицы.

Определение: Рангом матрицы А называется максимальный из порядков ненулевых миноров этой матрицы. Обозначается ранг через rang A.

Естественно считать, что rang O = 0. Очевидно также, что

Пример №7

Найти ранг матрицы

Решение. Вычислим минор, находящийся на пересечении первых двух строк и первого и четвертого столбцов:

Все же миноры третьего порядка этой матрицы равны нулю, так как третья строка равна разности второй и первой строк. Следовательно, rang A = 2.

Как видно из определения, вычисление ранга матрицы через миноры является весьма тру­доемкой задачей, особенно для матриц большой размерности. Значительно сократить объем вычислений позволяет другой метод, основанный на элементарных преобразованиях матрицы.

Элементарными преобразованиями матрицы называются следующие операции над ее стро­ками или столбцами:

  1. перестановка двух строк (столбцов) матрицы;
  2. умножение строки (столбца) на ненулевое действительное число;
  3. добавление к строке (столбцу) другой строки (столбца), умноженной на действительное число.

Тот факт, что матрица В получена из матрицы А с помощью одного или нескольких последовательно выполненных элементарных преобразований, мы будем обе тачать как

Теорема. Ранг матрицы не меняется при ее элементарных преобразованиях.

Доказательство этого утверждения для первого и второго элементарных преобразований следует из того, что по свойствам 2) и 4) определителя (§2, пункт 3) миноры исходной матрицы могут отличаться от миноров преобразованной разве лишь знаком или ненулевым множителем, что. естественно, не отражается на ранге матрицы. Пусть теперь матрица А’ получена из матрицы А с помощью третьего элементарного преобразования, для определенности будем считать, что к строке с номером i добавлена строка с номером j, умноженная на действительное число Возьмем в матрице А’ минор М порядка (если такого минора нет, то rang ). Этот минор либо совпадает с минором матрицы A, либо по свойствам 3). 2). 4) определителя он равен сумме двух миноров матрицы А с действительными коэффициентами, один из которых равен 1. а второй В обоих случаях по определению ранга матрицы минор М равен 0. Следовательно, rang А’ n.

Следствие: Для того чтобы однородная система n уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы ее основной определитель был равен нулю.

Доказательство:

    Достаточность: система имеет нетривиальное решение. Так как единственный минор n -го порядка равен нулю, то r

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли), определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: \( -2<,>34 \)

Ввод: -1,15
Результат: \( -1<,>15 \)

Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -\frac<2> <3>$$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5\frac<8> <3>$$
Помните, что на ноль делить нельзя!

RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :

Немного теории.

Системы линейных алгебраических уравнений

Основные определения

Система \(m\) линейных алгебраических уравнений с \(n\) неизвестными (сокращенно СЛАУ) представляет собой систему вида
\( \left\< \begin a_<11>x_1 + a_<12>x_2 + \cdots + a_<1n>x_n = b_1 \\ a_<21>x_1 + a_<22>x_2 + \cdots + a_<2n>x_n = b_2 \\ \cdots \\ a_x_1 + a_x_2 + \cdots + a_x_n = b_m \end \right. \tag <1>\)

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от \(n\) переменных \( x_1 , \ldots x_n \), а линейными потому, что эти многочлены имеют первую степень.

Числа \(a_ \in \mathbb \) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения \(i\) и номером неизвестного \(j\). Действительные числа \( b_1 , \ldots b_m \) называют свободными членами уравнений.

СЛАУ называют однородной, если \( b_1 = b_2 = \ldots = b_m = 0 \). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных \( x_1^\circ, \ldots , x_n^\circ \), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При \(m=n\), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты \(a_\) СЛАУ при одном неизвестном \(x_j\) как элементы столбца, а \(x_j\) как коэффициент, на который умножается столбец, из (1) получаем новую форму записи СЛАУ:
\( \begin a_ <11>\\ a_ <21>\\ \vdots \\ a_ \end x_1 + \begin a_ <12>\\ a_ <22>\\ \vdots \\ a_ \end x_2 + \ldots + \begin a_ <1n>\\ a_ <2n>\\ \vdots \\ a_ \end x_n = \begin b_1 \\ b_2 \\ \vdots \\ b_m \end \)
или, обозначая столбцы соответственно \( a_1 , \ldots , a_n , b \),
\( x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b \tag <2>\)

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца \(b\) в виде линейной комбинации столбцов \( a_1, \ldots, a_n \). Соотношение (2) называют векторной записью СЛАУ.

Поскольку \(A \;,\; X\) и \(B\) являются матрицами, то запись СЛАУ (1) в виде \(AX=B\) называют матричной. Если \(B=0\), то СЛАУ является однородной и в матричной записи имеет вид \(AX=0\).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида \(AX=B\)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

«Триединство» форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
\( A = \begin a_ <11>& a_ <12>& \cdots & a_ <1n>\\ a_ <21>& a_ <22>& \cdots & a_ <2n>\\ \vdots & \vdots & \ddots & \vdots \\ a_ & a_ & \cdots & a_ \end \)
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
\( (A|B) = \left( \begin a_ <11>& a_ <12>& \cdots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \cdots & a_ <2n>& b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_ & a_ & \cdots & a_ & b_m \end \right) \)
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно (если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ \(AX=B\) необходимо и достаточно, чтобы ранг её матрицы \(A\) был равен рангу её расширенной матрицы \( (A|B) \).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = \frac<\Delta_i> <|A|>\;,\quad i=\overline <1,n>\tag <3>$$
где \(\Delta_i\) — определитель матрицы, получающейся из матрицы \(A\) заменой \(i\)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.

Однородные системы

Теорема. Если столбцы \( X^<(1)>, X^<(2)>, \ldots , X^ <(s)>\) — решения однородной СЛАУ \(AX=0\), то любая их линейная комбинация также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения \( X^<(1)>, \ldots , X^ <(s)>\) системы \(AX=0\), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из \(k=n-r\) линейно независимых столбцов, являющихся решениями однородной СЛАУ \(AX=0\), где \(n\) — количество неизвестных в системе, а \(r\) — ранг её матрицы \(A\), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице \(A\) однородной СЛАУ \(AX=0\) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.

Теорема. Пусть дана однородная СЛАУ \(AX=0\) с \(n\) неизвестными и \( \textA = r \). Тогда существует набор из \(k=n-r\) решений \( X^<(1)>, \ldots , X^ <(k)>\) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ <(1)>+ \ldots + c_kX^ <(k)>$$
где постоянные \( c_i \;, \quad i=\overline <1,k>\), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ \(AX=B\). Заменив столбец \(B\) свободных членов нулевым, получим однородную СЛАУ \(AX=0\), соответствующую неоднородной СЛАУ \(AX=B\). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец \(X^\circ\) — некоторое решение СЛАУ \(AX=B\). Произвольный столбец \(X\) является решением этой СЛАУ тогда и только тогда, когда он имеет представление \(X = X^\circ + Y \), где \(Y\) — решение соответствующей однородной СЛАУ \(AY=0\).

Следствие. Пусть \(X’\) и \(X»\) — решения неоднородной системы \(AX=B\). Тогда их разность \( Y = X’ — X» \) является решением соответствующей однородной системы \(AY=0\).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение \(X^\circ\) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть \(X^\circ\) — частное решение СЛАУ \(AX=B\) и известна фундаментальная система решений \( X^<(1)>, \ldots , X^ <(k)>\) соответствующей однородной системы \(AX=0\). Тогда любое решение СЛАУ \(AX=B\) можно представить в виде $$ X = X^\circ + c_1 X^ <(1)>+ c_2 X^ <(2)>+ \ldots + c_k X^ <(k)>$$
где \( c_i \in \mathbb \;, \quad i=\overline <1,k>\).
Эту формулу называют общим решением СЛАУ.

Системы линейных алгебраических уравнений

Системой линейных алгебраических уравнений с неизвестными называется система уравнений вида

Числа называются коэффициентами системы ; — свободными членами , — неизвестными . Количество уравнений в системе может быть меньше, больше или равно числу неизвестных.

Решением системы называется упорядоченная совокупность чисел такая, что после замены неизвестных соответственно числами каждое уравнение системы превращается в верное числовое равенство. Система называется совместной , если она имеет хотя бы одно решение. Если система не имеет ни одного решения, то она называется несовместной .

Система (5.1) называется однородной , если все свободные члены равны нулю:

В отличие от однородной, систему общего вида (5.1) называют неоднородной .

Систему (5.1) принято записывать в матричной форме. Для этого из коэффициентов системы составляем матрицу системы

свободные члены записываем в столбец свободных членов

а неизвестные — в столбец неизвестных

Матричная запись неоднородной системы уравнений (5.1) имеет вид

Матричную запись (5.3) системы уравнений можно представить в эквивалентной форме

Тогда решение системы представляется столбцом и удовлетворяет равенству

т.е. столбец свободных членов является линейной комбинацией столбцов матрицы системы.

Относительно системы уравнений нас интересуют ответы на следующие вопросы:

1. Совместна система или нет?

2. Если система совместна, то имеет ли она единственное решение или нет?

3. Если решение единственное, то как его найти?

4. Если система имеет бесконечно много решений, то какова структура множества решений?

5. Как в бесконечном множестве решений системы определить одно решение, наилучшее с практической точки зрения?

6. Если система несовместна, то как определить ее приближенное решение?

Правило Крамера

Рассмотрим случай, когда число уравнений равно числу неизвестных , т.е. систему

где матрица системы — квадратная n-го порядка:

Ее определитель обозначим

Теорема 5.1 (правило Крамера). Если определитель матрицы системы линейных уравнений с неизвестными отличен от нуля, то система имеет единственное решение, которое находится по формулам

где — определитель матрицы, полученной из матрицы системы заменой i-го столбца столбцом свободных членов, т.е.

В самом деле, рассмотрим систему (5.6) как матричное уравнение . Так как определитель матрицы отличен от нуля, по теореме 4.2 заключаем, что матричное уравнение имеет единственное решение:

где — обратная матрица. Запишем i-й элемент столбца , учитывая, что в i-й строке присоединенной матрицы стоят алгебраические дополнения i-го столбца матрицы

Заметим, что в скобках записано разложение определителя по i-му столбцу, т.е. , что и требовалось доказать.

1. На практике при больших правило Крамера не применяется, так как вычисление определителя n-го порядка требует большого числа арифметических операций. Поэтому применяются более экономичные алгоритмы. Обычно, правило Крамера используется, когда нужно найти только несколько неизвестных (например, одну) среди многих. В теоретических исследованиях правило Крамера незаменимо и используется весьма продуктивно.

2. Если и хотя бы один определитель , то система несовместна. Если , то возможны два случая: либо система несовместна, либо имеет бесконечно много решений.

Пример 5.1. Решить систему линейных уравнений с помощью правила Крамера

Решение. Составим матрицу системы . Вычислим ее определитель

Так как определитель отличен от нуля, система имеет единственное решение (см. теорему 5.1). Находим определители и неизвестные

Условие совместности системы линейных уравнений

Рассмотрим систему (5.3) линейных уравнений с неизвестными. Составим блочную матрицу, приписав к матрице справа столбец свободных членов. Получим расширенную матрицу системы :

Эта матрица содержит всю информацию о системе уравнений, за исключением обозначений неизвестных.

Теорема 5.2 Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы: .

Необходимость следует из равенства (5.5) и следствия 1 теоремы 3.3. Если система имеет решение, то столбец свободных членов есть линейная комбинация столбцов матрицы системы. Поэтому при вычеркивании столбца Ь из расширенной матрицы ее ранг не изменяется. Следовательно, .

Для доказательства достаточности нужно использовать теорему о базисном миноре. Из равенства следует, что базисный минор матрицы является базисным минором расширенной матрицы . Поэтому столбец является линейной комбинацией столбцов базисного минора матрицы , а, значит, и всех столбцов матрицы . Следовательно, существуют числа , удовлетворяющие условию (5.5), т.е. система совместна.

Замечание 5.2. Теорема Кронекера-Капелли дает лишь критерий существования решения системы, но не указывает способа отыскания этого решения.

Пример 5.2. Определить, имеет ли система уравнений решения

Решение. Составим матрицу системы и расширенную матрицу системы

Ранг матрицы равен 2, так как она имеет не равные нулю миноры второго порядка и третья строка этой матрицы равна сумме первых двух строк. Следовательно, третью строку можно вычеркнуть, при этом ранг матрицы не изменится. Ранг расширенной матрицы равен трем, так как она имеет не равный нулю минор третьего порядка, например, минор, составленный из первого, второго и последнего столбцов расширенной матрицы

Следовательно, . Поэтому система несовместна (не имеет решений).


источники:

http://www.math-solution.ru/math-task/slau

http://mathhelpplanet.com/static.php?p=sistemy-linyeinykh-algebraicheskikh-uravnenii