Определение корня n ой степени уравнения

Корень n-ой степени

Определение корня n-й степени из действительного числа

Корнем n-й степени (\(n=2, 3, 4, 5, 6… \)) некоторого числа \(a\) называют такое неотрицательное число \(b\), которое при возведении в степень \(n\) дает \(a\):

Число \(n\) при этом называют показателем корня.

Если \(n=2\), то перед вами корень 2-й степени или обычный квадратный корень.

Если \(n=3\), то корень 3-й степени и т.д.

Операция извлечения корня n-й степени является обратной к операции возведения в n-ю степень.

Кубический корень из числа 27 равняется 3. Действительно, если число 3 возвести в 3-ю степень, то мы получим 27.

Корень 4-й степени из 16-и равен 2. Двойка в 4-й степени равна 16.

Если извлечь корень n-й степени из 0, всегда будет 0.

Мы не можем в уме подобрать такое число, которое при возведении в 3-ю степень даст 19. Если посчитать на калькуляторе, то получим \(2,668…\) – иррациональное число с бесконечным количеством знаков после запятой.

Обычно, в математике, когда у вас получается иррациональное число, корень не считают и оставляют так как есть \(\sqrt[3]<19>\).

Что же делать, если под рукой нет калькулятора, а нужно оценить, чему равен такой корень. В этом случае нужно подобрать справа и слева такие ближайшие числа, корень из которых посчитать можно:

$$ \sqrt[3] <8>\le \sqrt[3] <19>\le \sqrt[3] <27>$$ $$ 2 \le \sqrt[3] <19>\le 3 $$

Получается, что наш корень лежит между числами 2 и 3.

Корень четной и нечетной степени

Надо четко различать правила работы четными и нечетными степенями. Дело в том, что корень четной степени можно взять только из положительного числа. Из отрицательных чисел корень четной степени не существует.

Корень нечетной степени можно посчитать из любых действительных чисел. Иногда в школьной программе встречаются задания, в которых требуется определить имеет ли смысл выражение:

Данное выражение имеет смысл, так как корень нечетной степени можно посчитать из любого числа, даже отрицательного.

Так как корень четной степени, а под корнем стоит отрицательное число, то выражение не имеет смысла.

Свойства корня n-й степени

Пусть есть два неотрицательных числа a и b, для них будут выполняться следующие свойства:

Корни нужны для точных и сокращенных подсчетов в математике. Это необходимая функция, без которой представить современную математику невозможно. Корень n-ой степени обозначается при помощи всем известного значка радикала. Даже самый простой корень из двух будет равен длинному набору чисел, округлив который вы получите лишь приблизительное значение. Такие числа называются иррациональными и намного лучше представить их в виде радикала.

Основные ограничения и свойства

  • Корень четной степени существует только из положительных чисел. Число, возводимое в четную степень, а затем извлеченное из той же степени не становится исходным, а превращается в модуль этого числа.
  • Из-под знака нечетного показателя корня можно выносить минус. Это упрощает процесс подсчета.

В данном учебном ролике в понятной форме изложены все основные свойства и теоремы корней n-ой степени. Тема непонятна для большинства школьников 7-9 классов, но не по причине их сложности (всего пара определений и свойств), а вследствие неправильной подачи информации в учебниках. Поэтому в данном видео мы расскажем о самом грамотном и понятном определении корня – все то, что действительно нужно запомнить. Далее покажем, как все это можно применить на практике.

Корни бывают четные и нечетные. Основные определения, необходимые для изучения данной темы звучат так: корень четной степени n из числа a — это любое неотрицательное число b, которое при умножении на само себя n раз даст число a . А корень нечетной степени n из числа a — это любое неотрицательное или отрицательное число b, которое также при умножении на само себя даст a.

Арифметический корень n-й степени

Арифметический корень натуральной степени

Арифметическим корнем натуральной степени $n \ge 2$ из неотрицательного числа $a \ge 0$ называется неотрицательное число, n-я степень которого равна a.

Поиск корня n-й степени называют извлечением корня n-й степени.

Эта операция является обратной возведению в n-ю степень.

$ \sqrt[3] <27>= 3, т.к. 3^3 = 27 $

$ \sqrt[4] <625>= 5, т.к. 5^4 = 625 $

Корень нечётной степени из отрицательного числа

Если степень n нечётная, то корнем нечётной степени n из отрицательного числа $a \lt 0$ называют такое отрицательное число, n-я степень которого равна a.

Решение уравнений $x^n = a$

$$ x^2 = 16 \iff x^2-16 = 0 \iff (x+4)(x-4) = 0 \iff \left[ \begin x_1 = -4 \\ x_2 = 4 \end \right. $$

$$ x^2 = -9 \lt 0 \iff x \in \varnothing, решений \quad нет$$

$$ x^4 = 81 \iff x^4-81 = 0 \iff (x^2+9)(x^2-9) = 0 \iff $$

$$ \iff (x^2+9)(x+3)(x-3) = 0 \iff \left[ \begin x_1 = -3 \\ x_2 = 3 \end \right. $$

$$ x^3 = 27 \iff x^3-27 = 0 \iff (x-3)(x^2+3x+9) = 0 \iff x = 3 $$

$$ x^3 = -27 \iff x^3+27 = 0 \iff (x+3)(x^2-3x+9) = 0 \iff x = -3 $$

Если n – чётно и $a \ge 0$, уравнение $x^n = a$ имеет два решения: $x = \pm \sqrt[n]$

Если n – чётно и $a \lt 0$, уравнение $x^n = a$ решений не имеет.

Если n — нечётно, уравнение $x^n = a$ имеет одно решение $x = \sqrt[n]$ при любом $a \in \Bbb R$.

Свойства арифметических корней натуральной степени

$$ \sqrt[n] = \sqrt[np]>, \quad a \ge 0, n \in \Bbb N, m \in \Bbb N, p \in \Bbb N $$

Примеры

Пример 1. Упростите выражение:

Пример 2. Вычислите:

Пример 3. Сравните числа:

$ 14 \lt 17 \Rightarrow \sqrt[3] <14>\lt \sqrt[3] <17>$

$ -14 \gt -17 \Rightarrow \sqrt[3] <-14>\gt \sqrt[3] <-17>$

$ \sqrt[3] <-14>\lt 0 \lt \sqrt <5>\Rightarrow \sqrt[3] <-14>\lt \sqrt <5>$

$ \sqrt[3] <29>\gt \sqrt[3] <27>= 3, \sqrt[4] <78>\lt \sqrt[4] <81>= 3 $

$ \sqrt[4] <78>\lt 3 \lt \sqrt[3] <29>\Rightarrow \sqrt[3] <29>\gt \sqrt[4] <78>$

Пример 4. Найдите область определения функции:

Выражение под чётным корнем должно быть неотрицательным:

$ \frac \ge 0 \Rightarrow \left[ \begin <\left\< \begin x+3 \ge 0 \\ x-1 \gt 0 \end \right.> \\ <\left\< \begin x+3 \le 0 \\ x -1 \lt 0 \end \right.> \end \right. \Rightarrow \left[ \begin <\left\< \begin x ≥ -3 \\ x \gt 1 \end \right.> \\ <\left\< \begin x \le -3 \\ x \lt 1 \end \right.> \end \right. \Rightarrow \left[ \begin x \gt 1 \\ x \le -3 \end \right. \Rightarrow x \le -3 \cup x \gt 1 $

Область определения: $x \in (-\infty;-3] \cup (1;+\infty)$

Выражение под нечётным корнем может иметь любой знак.

Ограничения области определения связаны только с делением на 0:

Область определения: $x \in (-\infty;-3) \cup (-3;8) \cup (8;+\infty)$

Пример 5. Решите уравнение:

$ x = \pm \sqrt[6] <64>= \pm \sqrt[6] <2^6>= \pm 2 $

$ x \in \varnothing$ — решений нет

Пример 6*. Найдите значение выражения $\sqrt[3]<9+\sqrt<80>> +\sqrt[3]<9-\sqrt<80>>$

Мы получили уравнение: $A^3 = 3(A+6)$ или $ \frac <3>= A+6$. Решим его графически:

Уравнения высших степеней в математике с примерами решения и образцами выполнения

Уравнение n-й степени с одним неизвестным:

Определение:

Уравнением n-й степени с одним неизвестным х называется уравнение

где — любые комплексные числа, а₀ ≠ 0, n— натуральное.

Изучение уравнения (1) в общем виде выходит за рамки школьного курса алгебры. В этой главе рассматриваются лишь некоторые свойства уравнения (1) и, кроме того, изучаются некоторые его частные виды.

Деление многочлена относительно х на ха

Теорема:

Остаток от деления многочлена относительно х на двучлен х — а равен значению этого многочлена при х, равном а.

Доказательство:

Разделим многочлен n-й степени

на двучлен х — а. Как известно, частным (неполным) в этом случае будет многочлен n— 1 степени

а остатком — некоторое число r. Так как делимое равно делителю, умноженному на частное, плюс остаток, то

Равенство (3) есть тождество, оно справедливо при любых значениях х. В частности, оно справедливо и при х = а. При х = а. первое слагаемое правой части равенства (3) обращается в нуль, а потому

Следствие:

Для того чтобы многочлен относительно х делился на двучлен х — а, необходимо и достаточно, чтобы число а было корнем этого многочлена, т. е. чтобы при х = а многочлен обращался в нуль.

Доказательство:

Необходимость:

Пусть многочлен (1) делится на х — а, т. е. остаток r равен нулю. Тогда на основании равенства (4)

т. е. а — корень многочлена (1).

Достаточность:

Пусть а — корень многочлена (1), т. е. имеет место равенство (5). Тогда на основании равенства (4) r = 0, т. е. многочлен (1) делится на двучлен х — а.

Рассмотрим вновь тождество (3). Если в правой части его раскрыть скобки и сделать приведение подобных членов, в результате должен получиться тот же многочлен, что и в левой части. На этом основании, приравнивая коэффициенты при одинаковых степенях х, получаем

Перепишем эти равенства так:

Полученные равенства показывают, что коэффициенты частного и остаток, т. е. , удобно вычислять последовательно одно за другим. Эти вычисления обычно располагают следующим образом:

Пример:

Решение:

Первый коэффициент 2 второй строки просто сносится (b₀ = а₀). Второй коэффициент 3 получен так:

Третий коэффициент 10 получен так:

и т. д. Неполное частное равно

Пример:

Найти значение многочлена

Решение:

Искомое значение многочлена равно остатку от деления многочлена на x + 2

В двух местах первой строки потребовалось вписать 0. Объясняется это тем, что делимое имеет следующий вид:

Обычно члены, коэффициенты которых равны нулю, пропускаются. Здесь их пропускать нельзя.

Составление уравнения n-й степени по его корням

Теорема:

Каковы бы ни были числа можно составить уравнение n-й степени, корнями которого будут эти числа и только они. Доказательство. Составим произведение

где a₀ — любое число, отличное от нуля. При x = x₁ двучлен x — x₁ обращается в нуль, значит, при этом значении х обращается в нуль и произведение (1). При х = х₂ обращается в нуль двучлен х — x₂, и опять произведение (1) обращается в нуль. То же самое происходит при х =x₃; х = хₙ.

Пусть теперь х = а, где a — число, отличное от x₁ x₂ , …., хₙ . Ни одна из разностей а— x₁ а— x₂ ,…..о— хₙ „ не равна нулю. Число а₀ тоже отлично от нуля. Значит, и произведение

отлично от нуля.

Таким образом, уравнение

имеет корнями x₁ x₂ , …., хₙ и только эти числа.

Раскрыв скобки и выполнив приведение подобных членов, получим в левой части уравнения многочлен n-й степени относительно х, т. е.

Корнями уравнения (2) являются числа x₁ x₂ , …., хₙ и только эти числа.

Возможно, что корни x₁ x₂ , …., хₙ уравнения (2) не все различны между собой. В этих случаях говорят, что уравнение (2) имеет кратные корни. Так, например, если x₁ = x₂ и отлично от других корней уравнения (2), число является корнем второй кратности уравнения (2). Левая часть уравнения (2) делится в этом случае на (xx₁ )³ и не делится на (х — x₁)³. Если x₁ = x₂ = x₃ и отлично от других корней уравнения (2), число x₁ является корнем третьей кратности уравнения (2). Левая часть уравнения (2) делится в этом случае на (х — x₁ )³ и не делится на (х— x₁ )⁴.

Вообще корнем кратности k уравнения (2) называется такое число а, что левая часть уравнения (2) делится на (х — а)ᵏ и не делится на

Пример:

Составить уравнение второй степени, корни которого

Решение:

. Положим а₀ = 3. Имеем

Пример:

Составить уравнение второй степени, корни которого x₁ = 1; х₂ =i.

Решение:

Положим

Пример:

Составить уравнение четвертой степени, корни которого i; —i; 1+i; 1-i

Решение:

Пример:

Составить уравнение третьей степени, корни которого x₁ = 1; х₂ = 1; х₃ = — 1.

Решение:

. Положим а₀ = 1.

Число единица является здесь корнем второй кратности,

Основная теорема алгебры и некоторые следствия из нее

Мы видели, что, выбрав произвольные п комплексных чисел, можно составить уравнение п-й степени, корнями которого будут выбранные числа. Коэффициенты этого уравнения могут при -этом оказаться как вещественными, так и мнимыми. Возникает следующий весьма важный вопрос.

Дано уравнение n-й степени с комплексными коэффициентами

Можно ли утверждать, что среди комплексных чисел найдется хоть одно число, являющееся корнем этого уравнения?

В свое время мы видели, что среди целых чисел нет числа, являющегося корнем уравнения 2х— 3 = 0 с целыми коэффициентами. Среди положительных чисел нет числа, являющегося корнем уравнения x+ 1 = 0 с положительными коэффициентами.

Среди рациональных чисел нет числа, являющегося корнем уравнения x² — 2 = 0 с рациональными коэффициентами. Среди действительных чисел нет числа, являющегося корнем уравнения x²+ 1 = 0 с действительными коэффициентами.

Понятно поэтому, сколь важное значение имеет поставленный вопрос. Ответ на него дает основная теорема алгебры.

Всякое уравнение n-й степени с любыми комплексными коэффициентами имеет комплексный корень.

Доказательство этой теоремы выходит за рамки школьной программы.

Теорема:

Всякий многочлен n-й степени с любыми комплексными коэффициентами может быть представлен и притом единственным образом в виде произведения п двучленов первой степени, т. е.

где a ≠ 0, n ≥ 1. (Два таких разложения, отличающиеся только порядком расположения множителей, не считаются различными.)

Доказательство:

Доказательство разбивается на две части. В первой части доказывается возможность представления многочлена n-й степени в виде произведения п двучленов первой степени, во второй—единственность такого представления.

Для n = 1 теорема верна, так как

Предположим, что теорема справедлива для многочленов степени n—1.

Согласно основной теореме алгебры многочлен имеет по крайней мере один корень x₁ и, следовательно, делится на х — х₁ т. е.

Для многочлена теорема справедлива. Значит,

Допустим, что имеется два таких разложения:

Так как коэффициенты при хⁿ в правой и левой частях равенств (2) и (3) должны быть равны, то

Приравниваем правые части равенств (2) и (3). После сокращения на а₀ имеем

Методом математической индукции докажем, что правая и левая части равенства (4) состоят из соответственно равных множителей, но, быть может, записанных в другом порядке.

Для n= 1 утверждение, очевидно, справедливо.

Пусть утверждение справедливо для произведений, состоящих из n—1 множителей. Докажем, что утверждение справедливо и для произведений, состоящих из n множителей.

Левая часть равенства (4) при x = x₁ обращается в нуль. Значит, при x = x₁ обращается в нуль и правая часть этого равенства, т. е.

Произведение равно нулю. Значит, хоть один из сомножителей равен нулю. Допустим, что В случае необходимости мы можем изменить нумерацию сомножителей так, чтобы первым был множитель, равный нулю. Тогда

Сократим равенство (4) на хx₁ получим

По допущению правая и левая части равенства (5) состоят из соответственно равных множителей, но, быть может, записанных в другом порядке. Приписав в каждую часть равенства (5) по одинаковому множителю хx₁ получим, что правая и левая части равенства (4) состоят из соответственно равных сомножителей.

Теорема доказана полностью.

некоторые из сомножителей правой части могут быть одинаковы. Обозначив различные из них, а буквами кратность их вхождения, получим

где все различны между собой

Представление левой части уравнения в виде (6) называется представлением левой части уравнения в канонической форме.

Теорема:

Всякое уравнение п-й степени с любыми комплексными коэффициентами имеет ровно п корней, среди которых могут быть и равные друг другу.

Доказательство:

где a₀ ≠ 0, n ≥ 0 Как доказано, левая часть может быть представлена в виде произведения n множителей первой степени. Таким образом, имеем

При x=x₁; х = х₂; х=хₙ левая часть уравнения превращается в нуль и, следовательно, х₁, х₂, …,xₙ— корни уравнения. Покажем, что никакое число а, отличное от х₁ х₂,…..хₙ, не может быть корнем этого уравнения.

Действительно, произведение а₀ (а — x₁) (а — х ₂ ,)… (а — x ₙ )не равно нулю, так как ни один из множителей его не равен нулю. Таким образом, корнями рассматриваемого уравнения являются числа x₁; х ₂ ;…; x ₙ и других корней нет.

Следствие:

Уравнение n-й степени имеет n корней, если каждый корень считать столько раз, какова его кратность.

Теорема:

Если уравнение n-й степени имеет действительные коэффициенты и мнимое число а + bi является корнем этого уравнения, то и сопряженное число а — bi является также корнем этого уравнения.

Доказательство:

Пусть мнимое число а + bi является корнем уравнения

с действительными коэффициентами. Требуется доказать, что сопряженное число а — bi также является корнем уравнения (7). Составим многочлен

Этот многочлен имеет действительные коэффициенты. Разделим левую часть уравнения (7) на многочлен (8). В частном получим многочлен n— 2 степени с действительными коэффициентами, в остатке многочлен степени не выше первой и тоже с действительными коэффициентами.

Так как делимое равно делителю, умноженному на частное плюс остаток, то

Положим в этом равенстве х = а + bi . Получим

так как и левая часть равенства и трехчлен при х = а + bi обращаются в нуль. Имеем

Так как b ≠ 0, то A = 0. Из первого уравнения системы (9) имеем В = 0. Выходит, что остаток Ах + В равен нулю, т. е.

При х = а — bi первый сомножитель правой части равенства (10) превращается в нуль, значит, и левая часть равенства тоже обращается в нуль. Значит, число а — bi является корнем уравнения (7).

Теорема:

Всякий многочлен n-й степени с действительными коэффициентами может быть представлен в виде произведения многочленов первой или второй степени с действительными коэффициентами.

Доказательство этой теоремы проводится методом математической индукции. Теорема, очевидно, справедлива для многочленов первой и второй степени. При этом многочлен второй степени либо имеет действительные корни и тогда разлагается на множители первой степени с действительными коэффициентами, либо он имеет два мнимых сопряженных корня, и тогда он на множители с действительными коэффициентами не разлагается.

Допустим, что теорема справедлива для многочленов n— 2 степени и многочленов n—1 степени. Докажем, что тогда она справедлива и для многочленов n-й степени.

Пусть — многочлен n-й степени с действительными коэффициентами.

Если этот многочлен имеет действительный корень x₁ то он представляется в виде произведения многочлена первой степени на многочлен n—1 степени с действительными коэффициентами, т. е.

Если же многочлен действительных корней не имеет, то он имеет мнимый корень а + bi и сопряженный с ним корень а — bi. В этом случае многочлен представляется в виде произведения трехчлена второй степени на многочлен n— 2 степени с действительными коэффициентами, т. е.

Так как теорема для многочленов п—1 степени и многочленов n— 2 степени справедлива, то она справедлива и для многочленов степени n.

Теорема Виета

легко получить теорему Виета для уравнений любой степени. Перепишем это равенство так:

К правой части этого равенства применим правило умножения двучленов, первые члены которых одинаковы (см. гл. VIII, § 5). Получаем

где имеют тот же смысл, что и в гл. VIII. Обозначим знаком f₁ сумму корней уравнения (1), т. е.

Знаком f₂ обозначим сумму всевозможных произведений корней, взятых по два. Подобный же смысл имеют знаки f₃, f₄, …, f . Тогда

Равенство (1) теперь можно переписать так:

Приравнивая коэффициенты при одинаковых степенях х в правой и левой частях равенства (2), получим

Последние равенства и выражают теорему Виета для уравнения любой степени. При n= 2, т. е. для уравнения получаем известный результат:

Пример:

Не решая уравнения , определить сумму квадратов его корней.

Решение:

Пусть х₁ x₂, х₃, — корни данного уравнения. Рассмотрим равенство

По теореме Виета

Полученный результат означает, что среди чисел х₁ x₂, х₃, имеются мнимые, иначе сумма квадратов их не могла бы быть отрицательной.

Предложенное уравнение нетрудно решить и подсчитать сумму квадратов корней непосредственно:

О решении уравнений высших степеней

Прежде всего возникает такой вопрос: можно ли для уравнений любой степени составить формулы для выражения корней уравнения через его коэффициенты, подобно известной формуле для квадратного уравнения? Оказывается, что это можно сделать для уравнений 3-й и 4-й степени, при этом формулы эти содержат столь сложные радикалы, что на практике ими предпочитают не пользоваться.

Что же касается уравнений выше 4-й степени, то доказано, что для них при помощи радикалов такие формулы составить нельзя.

В математике разработан ряд способов, дающих возможность вычислить любой корень любого уравнения с любой точностью. Один из таких способов разработан великим русским математиком, творцом неевклидовой геометрии Н. И. Лобачевским.

Ограничимся рассмотрением графического способа. Этот способ может применяться для вычисления действительных корней уравнений с действительными коэффициентами.

Пример:

Вычислить вещественные корни уравнения

Решение:

Построим график функции у = х³ — 2х— 5 (рис. 107). Имеем

Нетрудно видеть, что при x > 2,5 первое слагаемое х³ будет столь большим сравнительно с остальными, что у будет положительным числом.

По мере продвижения направо от х = 2,5 график будет подниматься кверху и, следовательно, больше пересекать ось Ох не будет.

Точно так же при х

Это означает, что точка 2,1 лежит правее корня, так как соответствующая ордината положительна (см. график).

Таким образом, 2 Вычисление рациональных корней уравнений с целыми коэффициентами

Теорема:

Для того чтобы несократимая дробь была корнем уравнения

с целыми коэффициентами, необходимо, чтобы р было делителем свободного члена аₙ, a q было делителем старшего коэффициента а₀.

Доказательство:

Пусть —корень уравнения (1), т. е. имеет место тождество

Умножим обе части тождества на qⁿ, получим

Из тождества (2) имеем

Правая часть равенства — целое число. Значит, целое.

По условию, дробь несократима, значит, ни одно простое число, входящее в р, в число q не входит. По этой причине ни одно простое число, входящее в р, не может входить и в qⁿ. Выходит, что аₙ делится на р.

Из тождества (2) имеем

Так как ни одно простое число, входящее в q, не входит в р, число может быть целым только тогда, когда а₀ делится на q.

Следствие:

Если уравнение имеет целые коэффициенты и старший из них равен единице, то рациональными корнями такого уравнения могут быть только целые числа.

Действительно, а₀ = 1, a q — делитель а₀ . Значит, q = ± 1, а тогда целое.

Следствие:

Целые корни уравнения с целыми коэффициент тами являются делителями свободного члена.

Пример:

Вычислить рациональные корни уравнения

Решение:

Свободный член равен 2. Поэтому для р возможны только следующие значения: 1, —1, 2 и —2.

Старший коэффициент равен 2. Поэтому для q возможны только следующие значения: 1, —1, 2, —2.

Составляя всевозможными способами несократимые дроби найдем, что рациональные корни данного уравнения, если они имеются, содержатся среди следующих чисел:

Подстановкой в уравнение легко выяснить, что из этих шести

чисел удовлетворяют уравнению 2, ,— 1.

Таким образом, уравнение имеет три рациональных корня:

Для испытания, является ли данное число корнем уравнения, удобно пользоваться правилом сокращенного деления многочлена на двучлен ха. Для данного примера эти испытания проводятся так:

1 не является корнем уравнения, так как при делении левой части уравнения на х — 1 в остатке получилось — 2.

Испытываем число 2

2 — корень уравнения. В результате деления оказалось, что

Поэтому для отыскания остальных корней данного уравнения достаточно решить уравнение

Ответ.

Пример:

Найти рациональные корни уравнения

Решение:

Старший коэффициент уравнения равен единице, поэтому рациональными корнями уравнения могут быть только целые числа.

Делители свободного члена суть: 1,2, — 1, — 2. Сразу видно,-что никакое положительное число не может быть корнем данного уравнения, так как при любом положительном значении х левая часть уравнения положительна. Остается испытать — 1 и — 2:

Ответ. Уравнение рациональных корней не имеет.

Полученный в последнем примере результат означает, что корни рассматриваемого уравнения иррациональные или мнимые.

Пример:

Решение:

Выясним прежде всего, не имеет ли уравнение рациональных корней. Испытанию подлежат два числа 1 и — 1:

x₁² = 1. Остальные корни данного уравнения являются корнями уравнения третьей степени х³ — х² + х —1=0:

x₂ = 1. Остальные корни данного уравнения являются корнями квадратного уравнения х² + 1 = 0.

Ответ. x₁ = x₂ = 1; х₃ = i; x₄= — 1.

Решение двучленных уравнений 3-й, 4-й и 6-й степени

Определение. Двучленным уравнением n-й степени называется уравнение вида Очевидно, что делением на a₀ такое уравнение сводится к уравнению Если коэффициенты уравнения действительны, то двучленное уравнение можно представить в виде хⁿ — аⁿ = 0 или хⁿ + aⁿ= 0 где а — положительное число.

В этом параграфе излагается решение двучленных уравнений с действительными коэффициентами при n= 3, 4 и 6.

Уравнение имеет один действительный и два мнимых сопряженных корня.

Уравнение имеет один действительный и два мнимых сопряженных корня.

Уравнение имеет два действительных и два мнимых сопряженных корня.

Уравнение имеет две пары мнимых сопряженных корней.

Уравнение распадается на два кубических двучленных уравнения. На основании рассмотренного в п. а)

Уравнение имеет два действительных и две пары мнимых сопряженных корней

Уравнение распадается на три квадратных уравнения. Решая их, получаем

Уравнение имеет три пары мнимых сопряженных корней.

Замечание. Пользуясь извлечением корня n-й степени из комплексного числа, можно решить двучленное уравнение хⁿ = а любой степени n при любой правой части а.

Корнями уравнения хⁿ = а являются все значения корня n-й степени из а.

Пример:

Решение:

Запишем правую часть уравнения в тригонометрической форме

Пусть кубический корень из —2 + 2i равен р (cos 0 +isin 0). Тогда имеем

отсюда (§ 9 гл. IX) имеем

Для получения всех значений корня достаточно k положить равным 0, 1, 2. При k = 0 имеем

Решение трехчленных уравнений

Определение:

Трехчленным уравнением называется уравнение вида

При n= 2 уравнение является биквадратным.

Решение трехчленного уравнения подстановкой хⁿ = у сводятся к квадратному уравнению ay² + by + с = 0 и двучленному уравнению n-й степени.

Пример:

Решение:

Положим x⁴ = у. Имеем

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://reshator.com/sprav/algebra/9-klass/arifmeticheskij-koren-n-stepeni/

http://lfirmal.com/uravneniya-vysshih-stepeney/