Определение парабола и ее уравнение

Парабола — определение и вычисление с примерами решения

Парабола:

Определение: Параболой называется геометрическое место точек равноудаленных от выделенной точки F, называемой фокусом параболы, и прямой (l), называемой директрисой.

Получим каноническое уравнение параболы. Выберем декартову систему координат так, чтобы фокус F лежал на оси абсцисс, а директриса проходила бы через точку, расположенную симметрично фокусу, перпендикулярно к оси абсцисс (Рис. 34). Пусть точка M(х; у) принадлежит параболе: Вычислим расстояния от точки M(х; у) до фокуса и директрисы

Рис. 34. Парабола, (уравнение директрисы.

Возведем обе части уравнения в квадрат

Раскрывая разность квадратов, стоящую в правой части уравнения, получим каноническое уравнение параболы: (а также аналогичные ему, см. Рис. 35а и Рис. 356).

Рис. 35а. Параболы и их уравнения.

Рис. 356. Параболы и их уравнения.

Найдем координаты точек пересечения параболы с координатными осями:

  • — точка пересечения параболы с осью абсцисс;
  • — точка пересечения параболы с осью ординат.

Определение: Точка О(0; 0) называется вершиной параболы.

Если точка М(х; у) принадлежит параболе, то ей принадлежат и точка следовательно, парабола симметрична относительно оси абсцисс.

Пример:

Дано уравнение параболы Определить координаты фокуса параболы и составить уравнение параболы.

Решение:

Так как из уравнения параболы следует, что следовательно, Таким образом, фокус этой параболы лежит в точке а уравнение директрисы имеет вид

Пример:

Составить каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат, а параметр р равен расстоянию от фокуса гиперболы до её асимптоты.

Решение:

Для определения координат фокусов гиперболы преобразуем её уравнение к каноническому виду.

Гипербола:

Следовательно, действительная полуось гиперболы а мнимая полуось — Гипербола вытянута вдоль оси абсцисс Ох. Определим расположение фокусов данной гиперболы Итак, Вычислим расстояние от фокуса до асимптоты которое равно параметру р:

Следовательно, каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат имеет вид:

Пример:

Составить каноническое уравнение параболы, фокус которой совпадает с одним из фокусов эллипса Написать уравнение директрисы.

Решение:

Для определения координат фокусов эллипса преобразуем его уравнение к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как , то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Так как фокус параболы совпадает с одним из фокусов или эллипса, то параметр р найдем из равенства уравнение параболы имеет вид Директриса определяется уравнением

Уравнение параболоида вращения

Пусть вертикальная парабола

расположенная в плоскости Охz, вращается вокруг своей оси (ось Oz). При вращении получается поверхность, носящая название параболоида вращения (рис. 207).

Для вывода уравнения поверхности рассмотрим произвольную точку параболоида вращения, и пусть эта точка получена в результате вращения точки N(X, 0, Z) данной параболы вокруг точки С(0, 0, Z).

Так как точки М и N расположены в одной и той же горизонтальной плоскости и CN = СМ как радиусы одной и той же окружности, то имеем

Подставляя формулы (2) в уравнение (1), получим уравнение параболоида вращения

Заметим, что форму параболоида вращения имеет поверхность ртути, находящейся в вертикальном цилиндрическом сосуде, быстро вращающемся вокруг своей оси. Это обстоятельство используют в технике для получения параболических зеркал.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Многогранники
  • Окружность
  • Эллипс
  • Гипербола

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Парабола

Парабола, её форма, фокус и директриса.

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^<2>=2px\label
$$
при условии \(p > 0\).

Из уравнения \eqref вытекает, что для всех точек параболы \(x \geq 0\). Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции \(y=ax^<2>\). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством \(2p=a^<-1>\).

Фокусом параболы называется точка \(F\) с координатами \((p/2, 0)\) в канонической системе координат.

Директрисой параболы называется прямая с уравнением \(x=-p/2\) в канонической системе координат (\(PQ\) на рис. 8.11).

Рис. 8.11. Парабола.

Свойства параболы.

Расстояние от точки \(M(x, y)\), лежащей на параболе, до фокуса равно
$$
r=x+\frac

<2>.\label
$$

Вычислим квадрат расстояния от точки \(M(x, y)\) до фокуса по координатам этих точек: \(r^<2>=(x-p/2)^<2>+y^<2>\) и подставим сюда \(y^<2>\) из канонического уравнения параболы. Мы получаем
$$
r^<2>=\left(x-\frac

<2>\right)^<2>+2px=\left(x+\frac

<2>\right)^<2>.\nonumber
$$
Отсюда в силу \(x \geq 0\) следует равенство \eqref.

Заметим, что расстояние от точки \(M\) до директрисы также равно
$$
d=x+\frac

<2>.\nonumber
$$

Следовательно, мы можем сделать следующий вывод.

Для того чтобы точка \(M\) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.

Докажем достаточность. Пусть точка \(M(x, y)\) одинаково удалена от фокуса и от директрисы параболы:
$$
\sqrt<\left(x-\frac

<2>\right)^<2>+y^<2>>=x+\frac

<2>.\nonumber
$$

Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы \eqref. Это заканчивает доказательство.

Параболе приписывается эксцентриситет \(\varepsilon=1\). В силу этого соглашения формула
$$
\frac=\varepsilon\nonumber
$$
верна и для эллипса, и для гиперболы, и для параболы.

Уравнение касательной к параболе.

Выведем уравнение касательной к параболе в точке \(M_<0>(x_<0>, y_<0>)\), лежащей на ней. Пусть \(y_ <0>\neq 0\). Через точку \(M_<0>\) проходит график функции \(y=f(x)\), целиком лежащий на параболе. (Это \(y=\sqrt<2px>\) или же \(y=-\sqrt<2px>\), смотря по знаку \(y_<0>\).) Для функции \(f(x)\) выполнено тождество \((f(x))^<2>=2px\), дифференцируя которое имеем \(2f(x)f'(x)=2p\). Подставляя \(x=x_<0>\) и \(f(x_<0>)=y_<0>\), находим \(f'(x_<0>)=p/y_<0>\) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_<0>=\frac

>(x-x_<0>).\nonumber
$$
Упростим его. Для этого раскроем скобки и вспомним, что \(y_<0>^<2>=2px_<0>\). Теперь уравнение касательной принимает окончательный вид
$$
yy_<0>=p(x+x_<0>).\label
$$

Заметим, что для вершины параболы, которую мы исключили, положив \(y_ <0>\neq 0\), уравнение \eqref превращается в уравнение \(x=0\), то есть в уравнение касательной в вершине. Поэтому уравнение \eqref справедливо для любой точки на параболе.

Касательная к параболе в точке \(M_<0>\) есть биссектриса угла, смежного с углом между отрезком, который соединяет \(M_<0>\) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).

Рассмотрим касательную в точке \(M_<0>(x_<0>, y_<0>)\). Из уравнения \eqref получаем ее направляющий вектор \(\boldsymbol(y_<0>, p)\). Значит, \((\boldsymbol, \boldsymbol_<1>)=y_<0>\) и \(\cos \varphi_<1>=y_<0>/\boldsymbol\). Вектор \(\overrightarrow>\) имеет компоненты \(x_<0>=p/2\) и \(y_<0>\), а потому
$$
(\overrightarrow>, \boldsymbol)=x_<0>y_<0>-\frac

<2>y_<0>+py_<0>=y_<0>(x_<0>+\frac

<2>).\nonumber
$$
Но \(|\overrightarrow>|=x_<0>+p/2\). Следовательно, \(\cos \varphi_<2>=y_<0>/|\boldsymbol|\). Утверждение доказано.

Заметим, что \(|FN|=|FM_<0>|\) (см. рис. 8.12).

Парабола — свойства, формулы и примеры построения

Основные определения

Параболой называется кривая второго порядка, состоящая из множества точек, которые удалены на равные расстояния от директрисы и вершины. Ее еще называют функцией квадратичного типа. Не следует путать с гиперболой, поскольку она является прямой второго порядка, но ее называют кубической.

Директриса — условная прямая, относительно которой строится кубическая парабола. Она не указывается на чертеже, но полезна при нахождении неизвестных параметров, когда требуется выполнить дополнительное построение.

Вершина (фокус) — ближайшая точка к директрисе. Из нее исходят симметричные ветви кривой, на которой располагаются точки, имеющие одинаковое значение ординат, а их абсциссы равны между собой по модулю и являются противоположными числами.

Полезные свойства

Парабола, как и любое геометрическое тело, обладает определенными свойствами:

  1. Ветви проходят в зависимости от коэффициента, стоящего перед аргументом старшей степени A: A 0 — вверх.
  2. Геометрическая фигура, принадлежащая к кривым ll порядка.
  3. Симметричность.
  4. Изделия, изготовленные в форме параболы, всегда отражают свет, аккумулируя его в одной точке — вершине.
  5. Отрезок, соединяющий среднюю точку хорды и точку, где пересекаются прямые-касательные, всегда перпендикулярен директрисе.
  6. Подобие всех кубических парабол.

Свойства помогают находить некоторые параметры кривой, доказывать утверждения и теоремы. Однако этого недостаточно для решения задач. Следует разобрать математические формы записи параболы.

Формула кривой

Формула параболы — математическая запись, описывающая ее поведение в пространстве. В физико-математических дисциплинах описаны 3 основные формы: каноническая, квадратичная и общая. В первом случае уравнение выглядит у^2=2nх, где у — ордината, х — абсцисса и n — параметр, равный отрезку между директрисой и вершиной кривой.

Следует отметить, что р>0. Чтобы вывести формулу параболы, следует применить алгоритм:

  1. Записать формулу директрисы. Она параллельна OУ (ординате): х+n/2=0.
  2. Координаты вершины — (n/2;0).
  3. Отметить произвольную точку М на одной из ветвей кривой, а затем соединить с вершиной (фокусом — F). В результате получится отрезок FМ.
  4. Длина FM: FM=[(х-n/2)^2+у^2]^0.5.
  5. Также FМ записывается при помощи такого тождества: х+n/2.
  6. Поставить знак равенства между тождествами в четвертом и пятом пунктах: х+n/2=[(х-n/2)^2+у^2]^0.5.
  7. Возвести обе части во вторую степень, а затем привести подобные коэффициенты: y^2 = 2pn.

Вторая форма математической записи — квадратичная функция. Последняя имеет вид обыкновенного квaдратного трехчлена, т. е. y=Ах^2+Bx+C, где А, В и С — некоторые коэффициенты. Иногда формула рассматривается без дополнительных элементов В и С, т. е. y= ax^2 . В этом случае вершина кривой II порядка находится по формулам:

  1. Абсцисса: х=-B/2A.
  2. Ордината: у=-D/2A, где D — значение дискриминанта D=(-B)^2 — 4AC.

Третье представление (уравнение параболы) — общее. Его можно править следующим образом: Ах^2+Вху+Су^2+Dх+Еу+F = 0. Некоторые коэффициенты могут быть эквивалентны нулю. Кроме того, кривая задается также в полярной системе при помощи соотношения n(1+cos(s))=n. В последнем равенстве параметр «n» эквивалентен отрезку, соединяющему директрису и вершину.

Методы нахождения координат вершины

Очень часто функция квадратичного типа при решении задач может быть представлена в некотором виде, который следует при помощи математических преобразований привести в читабельную форму. Последний термин обозначает, что требуется преобразовать формулу параболы для удобного построения таблицы и схематического представления. Делается эта операция по следующему алгоритму на примере z=t^2 +4t+2:

  1. Приравнять к нулевому значению (квадратное уравнение): t^2 +4t+2=0.
  2. Выполнить подготовительную операцию по выделению квадрата: t^2 +4t+2+2=0.
  3. Выделить формулу сокращенного умножения — квадрат: (t+2)^2 -2=0.
  4. Перенести «-2» вправо, т. е. (t+2)^2=2.
  5. Найти вершину исходя из решения тождества без «-2».
  6. Определить ординату z: z=-(2), т. е. число из правой части выражения, умноженное на -1.
  7. Вычислить координату фокуса (смещение относительно начала координат): (t;z)=(-2;-2).

Методика позволяет найти фокус без дополнительных формул. Однако существует и другой способ определения вершины, где применяется производная функции:

  1. Определить производную: z’=2t+4.
  2. Приравнять z’ к нулевому значению: 2t+4=0.
  3. Найти корень: t=-2.
  4. Подставить в первоначальную функцию для нахождения ординаты, т. е. z=-2.
  5. Координата вершины: (-2;-2). Она совпадает со значением в предыдущем примере.

Существуют программные продукты для нахождения параметров параболы. Названия имеют английскую номенклатуру, т. е. «parabola».

График функции

Иногда требуется в заданиях графическое представление функции. Для этого необходимо следовать инструкции:

  1. Найти вершину любым из способов.
  2. Рассчитать координаты точек, в которых происходит пересечение с ординатами и абсциссами в прямоугольной системе координат.
  3. Построить вспомогательную таблицу. Специалисты рекомендуют использовать для схематического построения не менее 4 точек, не считая вершины, а для точного — не менее 10. Кроме того, вершина всегда находится посередине значений таблиц.
  4. Отметить каждую точку, а затем соединить плавными линиями.

График параболы хорош тем, что позволяет освободиться от большого количества расчетов, поскольку является симметричным. Для таблицы зависимостей достаточно подставить 2 одинаково противоположные величины, а иногда и разные числа превращают значения функции в одинаковые величины.

В первом случае для уравнения z=f^2+1 возможно взять 2 значения аргумента «f» — 1 и -1. При подстановке их в формулу z не изменится, т. е. z1=2 и z2=2. Во втором — 5 и 7 могут давать значение функции, равное 8.

Пример решения

Для практического применения теоретических знаний о параболе рекомендуется решать задачи. Условие одной из них формулируется следующим образом: дана формула функции параболы f=(t+2)^2 -3t^2+8t-5+3(t-1)^2, для которой необходимо подготовить данные, чтобы построить график в схематическом виде (8 значений). Решать ее следует по следующей методике:

  1. Раскрыть скобки и привести подобные элементы: f=t^+4t-1.
  2. Приравнять к 0: t^2+4t-1=0.
  3. Выделить квадрат: (t+2)^2-5.
  4. Перенос свободного члена: (t+2)^2=5.
  5. Вершина с координатами: (-2;-5).
  6. Вычислить нули функции с абсциссами: t^2+4t-1=0. Корни: t1=-2-(5)^0.5 и t2=-2+(5)^0.5. Координаты: (-2-(5)^0.5;0) и (-2+(5)^0.5;0)
  7. Нули функции (пересечение оси ординат при t=0): (0+2)^2-5=-1. Координата — (0;-1).
  8. Построение таблицы.
f-5-3-10-50-1-3-5
t-6-5-4-3-2-1012

Можно приступать к построению графика. Специалисты рекомендуют чертить его при помощи карандаша. Отмечать следует только точки, указанные в таблице. Кроме того, необходимо указать на графике нули функции, а также ее пересечения с ординатой. Ветви искомой параболы будут направлены вверх, поскольку коэффициент при квадрате 1>0.

Таким образом, парабола — кривая ll порядка, которая используется для описания некоторых физических явлений, траекторий движения тел в пространстве, а также для описания квадратичной зависимости между двумя величинами.


источники:

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/parabola/

http://nauka.club/matematika/parabol%D0%B0.html