Определение понятия уравнение химической реакции

Формулы веществ и уравнения химических реакций

Содержание:

Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов. Уравнение химической реакции даёт качественную и количественную информацию о химической реакции.

На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.

Формулы веществ и уравнения химических реакций

Химическая реакция — это превращение одних веществ в другие. Впрочем, такое определение нуждается в одном существенном дополнении. В ядерном реакторе или в ускорителе тоже одни вещества превращаются в другие, но такие превращения химическими не называют. В чем же здесь дело? В ядерном реакторе происходят ядерные реакции. Они заключаются в том, что ядра элементов при столкновении с частицами высокой энергии (ими могут быть нейтроны, протоны и ядра иных элементов) — разбиваются на осколки, представляющие собой ядра других элементов. Возможно и слияние ядер между собой. Эти новые ядра затем получают электроны из окружающей среды и, таким образом, завершается образование двух или нескольких новых веществ. Все эти вещества являются какими-либо элементами Периодической системы.

В отличие от ядерных реакций, в химических реакциях не затрагиваются ядра атомов. Все изменения происходят только во внешних электронных оболочках. Разрываются одни химические связи и образуются другие.

Химическими реакциями называются явления, при которых одни вещества, обладающие определенным составом и свойствами, превращаются в другие вещества — с другим составом и другими свойствами. При этом в составе атомных ядер изменений не происходит.

Расчёты по химическим формулам

По химическим формулам веществ можно производить различные расчеты:
1. Определение численного соотношения атомов.
Для молекулы SO3 численное соотношение атомов составляет 1 : 3, а для
– 3 : 1 : 4.

2. Определение относительной молекулярной массы вещества.

3. Расчет массы одной молекулы вещества.
Для молекулы

4. Определение массовых отношений химических элементов в сложном
веществе.​

Для молекулы вначале записываем значения атомных масс:

5. Расчет массы элемента по известной массе вещества и обратная задача.

а) Сколько граммов меди содержится в 320 г оксида меди (II)?

​​​​​​
б) В какой массе карбоната кальция содержится 80 г кальция?

6. Расчет массовой доли химического элемента в сложном веществе.
По формуле вещества можно рассчитать массовую долю каждого химического элемента, который входит в состав вещества.
Массовая доля химического элемента в данном веществе равна отношению относительной атомной массы данного элемента, умноженной на число его атомов в молекуле, к относительной молекулярной массе вещества:

– массовая доля элемента;
– относительная атомная масса элемента;
n – число атомов элемента (Э) в молекуле вещества;
– относительно молекулярная масса вещества.
Массовые доли обычно выражаются в процентах:

Пример: Рассчитать массовые доли водорода и кислорода в воде

Рассчитываем массовые доли водорода (Н) и кислорода (О):

Если вещество состоит из трех элементов, для определения массовой доли третьего элемента можно определить массовые доли двух элементов, затем их сумму отнять от 100%.

6. Составление формул по соотношению масс и массовых долей элементов в молекуле.

а) Выведите формулу вещества, если соотношение масс элементов
m (S) : m (O) = 2 : 3.

Относительные атомные массы элементов:

Расчет числа атомов элементов:
x (S) = 2 : 32 = 0,0625
y (О) = 3 : 16 = 0,1875

x : y = 0,0625 : 0,1875

Определение соотношения чисел атомов элементов.
Поскольку в молекулах не может быть дробных чисел атомов, то делением на наименьшее значение или умножением на какое-то число превращаем дробные числа в целое число:

Значит, формула вещества –

Ответ:

б) Составьте формулу вещества, если массовые доли элементов в соединении таковы:
= 0,414. = 0,552. = 0,034.

Определение чисел атомов элементов:

Ответ:

Массовая доля элементов в веществе, массовые соотношения атомов, соотношения чисел атомов.

Составление уравнений химических реакций

Химические формулы, индексы, химические реакции

Используя различные слова, мы составляем предложения. Используя формулы веществ, составляем уравнения реакций. Химическое уравнение –условная запись химической реакции с помощью химических формул и знаков. По уравнениям реакций можно определить, в каких количественных отношениях реагируют вещества и сколько продуктов при этом образуется. Вещества, вступающие в реакцию, называются реагентами. Образующиеся при этом вещества называются продуктами.

Алгоритм составления уравнений реакций

1. Записываем схему уравнения реакции: формулы вступающих в реакцию веществ – слева, а образовавшихся – справа.
2. Уравнения реакций отличаются от схем этих же реакций. Например, горение железа в кислороде записывается в виде схемы:

3. В уравнениях реакций число атомов реагирующих веществ должно быть равно числу атомов продуктов реакций. Поэтому в схемах реакций перед формулами веществ ставятся коэффициенты. Подбираем коэффициенты, чтобы число атомов каждого элемента в левой и правой частях равенства было одинаковым. Коэффициент 1 не ставится. Вначале уравниваем число атомов кислорода. Для этого находим наименьшее кратное число для атомов кислорода до и после реакции: 2 · 3 = 6. Делением этого числа на число атомов кислорода находим коэффициенты в левой части – 6 : 2 = 3; затем в правой части – 6 : 3 = 2.

4. Теперь уравниваем число атомов железа и, наконец, заменяем стрелку на знак равенства:

Коэффициенты перед формулами веществ в химических уравнениях называются стехиометрическими коэффициентами.

В полученном уравнении число атомов каждого элемента в левой части равно числу тех же атомов в правой части. Уравнение читается так: 4 атома железа плюс 3 молекулы кислорода равны 2 молекулам оксида железа (III).

При записи химического уравнения подбираются только коэффициенты, а индексы в формулах менять нельзя, так как нельзя произвольно менять состав вещества.

По уравнениям реакций можно получить следующие сведения:
1) качественный состав реагирующих и образовавшихся веществ
2) соотношения коэффициентов перед формулами:

3) соотношения масс веществ:

Уравнения реакции, реагенты, продукты, коэффициенты.

Закон сохранения массы веществ

При химических реакциях происходит распад молекул реагирующих
веществ, осуществляется перегруппировка атомов и групп атомов, образуются молекулы продуктов реакции. В результате реакций число атомов не изменяется, поэтому не должны изменяться и массы этих атомов.

Рассмотрим реакцию горения магния:

Масса веществ, вступивших в реакцию, равна массе веществ, образовавшихся в результате реакции.

В этом и состоит закон сохранения массы. Закон был открыт опытным путем в 1748 г. русским ученым М. В. Ломоносовым. Позднее, в 1789 г., французский ученый А. Лавуазье пришел к такому же выводу независимо от М. В. Ломоносова. Закон сохранения массы веществ имеет огромное значение для естественных наук.

Значение закона сохранения массы веществ

  • 1. Открытие закона способствовало дальнейшему развитию химии.
  • 2. Все расчетные задачи в химии решаются на его основе. Все химические уравнения составляются на основании этого закона.
  • 3. Этот закон является одним из проявлений общего закона природы: вещество не исчезает бесследно и не образуется из ничего.

Закон сохранения массы веществ.

Демонстрация №1

Опыт, доказывающий закон сохранения массы веществ

Цель: Знать закон сохранения массы веществ и доказать это опытным путём.

Проведите реакцию карбоната кальция с соляной кислотой. Для этого предварительно взвесьте колбу с кислотой, а также шарик на весах (рис. 9). Насыпьте 1 г карбоната
кальция в шарик. Затем наденьте его на колбу. Закрепите скотчем. Поднимите надувной шарик, чтобы весь карбонат высыпался в колбу. После проведения реакции взвесьте.
Сделайте выводы.

Соотношение масс реагирующих веществ. Закон постоянства состава

Состав вещества можно выразить числом атомов или массовым отношением атомов в молекуле. Например, для молекулы отношение числа молей атомов n (С) : n (О) =
= 1 : 2, а массовые отношения элементов m (C) : m (O) = 12 : 32 = 3 : 8. Или можно взять отношения массовых долей элементов:

Углекислый газ выделяется при горении топлива, при разложении некоторых сложных веществ или в результате дыхания.

Как вы видите, в молекуле независимо от способа образования, отношения масс, массовых долей остаются неизменными. На основании этого можно сделать вывод о постоянстве состава образующегося вещества. К этому важному выводу первым пришел французский ученый Ж. Л. Пруст в результате многочисленных исследований на протяжении ряда лет (1799–1806). Им был открыт закон постоянства состава веществ:

Состав химически чистого, имеющего молекулярное строение вещества, независимо от способа получения, остается постоянным. Химически чистое вещество имеет постоянный качественный и количественный состав.

В настоящее время известны вещества с переменным составом, с ними вы познакомитесь позднее.
В формулах веществ молекулярного строения индекс указывает на количество химического элемента в молекуле вещества.
На основе закона постоянства состава вещества можно производить различные расчеты. Рассмотрим следующий пример:
При взаимодействии меди с серой образуется 1 моль сульфида меди (II):

m (Cu) : m (S) = 64 : 32 = 2 : 1

Значит, из 2 г Cu и 1 г S образуется сульфид меди (ІІ).
Проведем два опыта.
1. Возьмем смесь, состоящую из 5 г меди и 2 г серы. После нагревания получим смесь сульфида меди с медью, так как 1 г меди находится в избытке. В смеси содержится 6 г CuS и 1 г Сu.
2. Теперь возьмем по 4 г меди и серы. В этом случае после нагревания образуется смесь сульфида меди и серы, так как 2 г серы остаются неизрасходованными и образуется 6 г сульфида меди.
Проверим результаты опытов математическим путем.

Для первого опыта:

По условию задачи было взято 5 г меди, следовательно, масса оставшейся меди: 5 г Сu, 5 – 4 = 1 г Cu в избытке.

Расчет массы сульфида меди:
m(Cu) + m(S) = 4 + 2 = 6 г.

Ответ: 1 г Cu в избытке, 6 г CuS.

Для второго опыта:

Расчет массы серы, которая остается в избытке:
По условию задачи было взято 4 г серы, значит, масса оставшейся
серы:
4 – 2 = 2 г S в избытке.

Расчет массы сульфида меди:
По закону сохранения массы веществ 4 г Cu взаимодействует с 2 г S с образованием 6 г CuS.

Ответ : 2 г S в избытке, 6 г CuS.

Соотношение масс реагирующих веществ, закон постоянства состава.

Лабораторный опыт №2

І вариант.

Цель: определить опытным путем соотношение масс реагирующих веществ, доказать правильность закона постоянства состава и закона сохранения масс.

Ход работы

1. Налейте во все пробирки, закрепленные в штативах, по 5 мл раствора
гидроксида натрия.
2. С помощью бюретки налейте определенные объемы раствора сульфата
меди в таком порядке: 1 мл, 1,5 мл, 2 мл, 2,5 мл, 3 мл, 3,5 мл, 4 мл.
3. Через некоторое время в некоторых пробирках образуется осадок, и
надо дать ему отстояться.
4. Заполните таблицу. Высота осадка будет измеряться линейкой.

Вопросы и задания:
1. Напишите уравнение реакции.
2. Какое объемное отношение растворов достаточно для образования осадка?
3. Определите массовые отношения исходных веществ.
4. Сделайте выводы: выполняется ли закон постоянства состава и закон сохранения масс.

ІІ вариант.
Цель
: определять опытным путем соотношение масс реагирующих веществ.

Ход работы
1. Напишите уравнение реакции взаимодействия железа с серой:

2. Определить соотношение масс реагирующих веществ:
m (Fe) : m (S) = 56 : 32 = 7 : 4
3. Для удобства и экономии реагентов можно брать исходные вещества в соотношении 3,5 : 2, т. е. на технических весах взвесить 3,5 г железа и 2 г серы.
4. Закрепить тигель на кольце штатива, нагреть, перемешивая стеклянной палочкой взвешенные железо и серу до образования однородной темной массы сульфида железа (ІІ) (рис. 10).

Типы химических реакций

По числу и составу реагентов, вступивших в реакцию, и продуктов реакций различают четыре типа химических реакций.

1. Реакции соединения – это реакции, в результате которых из нескольких
простых или сложных веществ образуется одно сложное вещество (рис. 10).

2. Реакции разложения – это реакции, в результате которых из одного сложного вещества образуются два и более веществ – простых или сложных.

3. Реакции замещения – это реакции между простым и сложным веществами, в которых атомы простого вещества замещают атомы одного из элементов в сложном соединении. В результате образуются новые простое и сложное вещества (рис. 11а).

4. Реакции обмена – это реакции, в результате которых два сложных вещества обмениваются своими составными частями и образуются два новых сложных вещества (рис. 11б).

С классификацией химических реакций по другим признакам вы познакомитесь позднее.

Химические реакции в природе и жизнедеятельности живых организмов и человека

Вам известно, что в результате химических явлений одни вещества превращаются в другие, отличающиеся от исходных веществ по составу. Это вы можете наблюдать в окружающей среде каждодневно. Например: ржавление железного гвоздя, потускнение серебряных украшений и предметов кухонной утвари, позеленение тазика из латуни, горение дров и газа на плите. Что общего между ними? Все эти процессы происходят под действием кислорода
воздуха, т. е. идет окисление.

Химия в природе. В природе непрерывно идут реакции образования органических веществ из простых неорганических соединений, т. е. идут реакции синтеза (рис. 12):

Такой процесс идет в зеленых растениях и водорослях. Хлорофилл находится в хлоропластах зеленых листьев, поэтому они окрашены в зеленый цвет.

Во время грозы в летний период воздух становится свежее и чище в результате следующих реакций:

При разложении кислорода получаем атомарный кислород. Атомарный кислород, соединяясь с молекулой кислорода, образует озон.

Озон – это газ синего цвета с характерным запахом свежести. Накапливается в верхних слоях атмосферы и образует озоновый слой, который выполняет роль щита нашей планеты. Озон защищает Землю от солнечной радиации из космоса и не допускает остывание Земли, поглощая инфракрасное излучение.

Гниение также относится к реакциям окисления. В отличие от горения, гниение – это медленно протекающие процессы. В результате гниения сложные азотсодержащие вещества взаимодействуют с кислородом при участии микроорганизмов. Для того чтобы шел процесс гниения, кроме микроорганизмов, необходимо наличие влаги. Это уникальный, сложный многоступенчатый процесс, позволяющий перерабатывать белки погибших животных и
растений в соединения, пригодные к усвоению растениями.

На реакциях, лежащих в основе брожения сахаристых веществ, основаны многие производства, например, хлебобулочных изделий и напитков.

В результате реакции окисления глюкозы образуется углекислый газ, вода и большое количество тепла:

Это является источником энергии, необходимой для физической и умственной деятельности в повседневной жизни человека.

Использование пищевой соды способствует поднятию теста, так как при взаимодействии с органическими кислотами выделяется углекислый газ.

Выделяющийся углекислый газ разрыхляет тесто, поэтому булочки получаются мягкими и пышными.

Химия в живых организмах

С точки зрения химика, дыхание – также процесс окисления органических веществ: углеводов, жиров, белков.

Часть энергии, выделенной в результате этой реакции, организм использует
для совершения умственной, физической работы.

А вторая часть запасается в организме для того, чтобы можно было использовать ее при синтезе характерных для данного организма белков, углеводов и жиров. Таким образом, энергия, необходимая для жизнедеятельности, получается из питательных веществ, поступающих в организм из окружающей среды.

Антацидные вещества – лекарственные средства для лечения желудочно-кишечных заболеваний. Они нейтрализуют соляную кислоту, которая входит в состав желудочного сока.

Химия в быту

Работа двигателей внутреннего сгорания основана на реакции горения углеводородов (топлива).

Вы, наверное, заметили, что на стенках чайника через некоторое время образуется накипь. При этом идет реакция разложения солей магния и кальция, обусловливающих временную жесткость воды. В результате этих реакций образуются нерастворимые соли кальция и магния.

Из-за накипи выходят из строя нагревательные элементы в стиральных и посудомоечных машинах, утюгах, а также промышленные котлы.

Для очистки чайника от накипи достаточно прокипятить воду, в которую добавлена уксусная кислота.

Для этой цели можно использовать и лимонную кислоту.

«Гашение» соды уксусом – часто наблюдаемая на кухне реакция:

сода 4- уксусная кислота -> соль 4- вода 4- углекислый газ

Хозяйственное мыло не мылится в жесткой воде, т. к. идет реакция обмена с солями кальция и магния и образуется нерастворимая соль, которая «всплывает». Это объясняется тем, что натриевые соли органических кислот растворимые, а кальциевые, магниевые соли – нерастворимые в воде.

Санатории для больных туберкулезом обычно расположены в сосновых борах. Почему? Потому что в хвойных растениях содержится соединение, которое при окислении озоном (после грозы) выделяет атомарный кислород, который обладает дезинфицирующим и отбеливающим свойствами.

Еще одно интересное природное явление – образование в пещерах сталактитов и сталагмитов – это осадок карбоната кальция СаСО3. Сталактиты растут сверху вниз как сосульки, а сталагмиты – снизу вверх (рис. 13).

Химия дает человечеству огромные возможности и силы, но только она требует грамотного и ответственного отношения к ней. За день в мире происходят тысячи различных (опасных для человечества, в то же время интересных) химических реакций. Не зря говорится в изречении М. В. Ломоносова: «Широко распространяет химия руки свои в дела человеческие».

  • 1. Обозначения качественного и количественного состава простых и сложных веществ с помощью символов элементов и индексов называются химическими формулами.
  • 2. Химическое уравнение — условная запись химической реакции с помощью химических формул и знаков.
  • 3. По числу и составу реагентов, вступивших в реакцию, и продуктов реакций различают четыре типа химических реакций: реакция соединения, реакция разложения, реакция замещения, реакция обмена.
  • 4. Масса веществ, вступивших в реакцию, равна массе веществ, образовавшихся в результате реакции. Эта формулировка называется законом сохранения масс веществ.
  • 5. Состав химически чистого, имеющего молекулярное строение вещества, независимо от способа получения, остается постоянным. Химически чистое вещество имеет постоянный качественный и количественный состав.

Услуги по химии:

Лекции по химии:

Лекции по неорганической химии:

Лекции по органической химии:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Урок 1. Основные понятия и законы предмета «Химия»

Простейшие понятия: вещество, молекула, атом, химический элемент

Что такое химия? Где мы встречаемся с химическими явлениями? Везде. Сама жизнь — это бесчисленное множество разнообразных химических реакций, благодаря которым мы дышим, видим голубое небо, ощущаем изумительный запах цветов…

Что изучает химия? Химия изучает вещества, а также химические процессы, в которых участвуют эти вещества.

Что такое вещество — понятно: это то, из чего состоит окружающий нас мир и мы сами. Но что такое химический процесс (явление)?

К химическим явлениям относятся процессы, в результате которых изменяется состав или строение молекул, образующих данное вещество. Изменились молекулы — изменилось вещество (оно стало другим!), — изменились его свойства:

  • свежее молоко стало кислым;
  • зелёные листья стали жёлтыми;
  • сырое мясо при обжаривании изменило запах.

Все эти изменения — следствие сложных и многообразных химических процессов. Итак,

химия — это наука о веществах и их превращениях.

При этом исследуются не всякие превращения, а только такие, при которых

  • обязательно изменяется состав или строение молекул;
  • никогда не изменяется состав и заряд ядер атомов.

В этом определении встречаются такие понятия, как «вещество», «молекула», «атом». Разберём их подробнее.

Вещество — это то, из чего состоят окружающие нас предметы. Каждому абсолютно чистому веществу (таких в природе, кстати, не существует) приписывают определённую химическую формулу, которая отражает его состав, например:

Выше приведены молекулярные формулы двух веществ. Следует отметить, что далеко не все вещества состоят из молекул, так как существуют вещества, которые состоят из атомов или ионов. Например, алмаз состоит из атомов углерода, а обычная поваренная соль — из ионов Na + и ионов Cl – (условная «молекула» — NaСl).

Наименьшая частица вещества, которая отражает его качественный и количественный состав, называется молекулой.

Молекулы состоят из атомов. Атомы в молекуле соединены при помощи химических связей. Каждый атом обозначается при помощи символа (химического знака):

  • Н — атом водорода;
  • О — атом кислорода.

Число атомов в молекуле обозначают при помощи индекса:

  • О2 — это молекула вещества кислорода, состоящая из двух атомов кислорода;
  • Н2О — это молекула вещества воды, состоящая из двух атомов водорода и одного атома кислорода.

Но! Если атомы не связаны химической связью, то их число обозначают при помощи коэффициента:

Аналогично изображают число молекул:

  • 2 — две молекулы водорода;
  • 2О — три молекулы воды.

Почему атомы водорода и кислорода имеют разное название, разный символ? Потому что это атомы разных химических элементов.

Химический элемент — это частицы с одинаковым зарядом ядер их атомов.

Что такое ядро атома? Почему заряд ядра является признаком принадлежности атома к данному химическому элементу? Чтобы ответить на эти вопросы, следует уточнить: изменяются ли атомы в химических реакциях? Из чего состоит атом*?

* Подробнее о строении атома будет рассказано в уроке 3.

Атом не имеет заряда, хотя и состоит из положительно заряженного ядра и отрицательно заряженных электронов:

В ходе химических реакций число электронов любого атома может изменяться, но заряд ядра атома в химических реакциях НЕ МЕНЯЕТСЯ!

Поэтому заряд ядра атома — своеобразный «паспорт» химического элемента. Все атомы с зарядом ядра +1 принадлежат химическому элементу под названием «водород». Атомы с зарядом ядра +8 составляют химический элемент «кислород».

Каждому химическому элементу присвоен химический символ (знак), порядковый номер в таблице Менделеева (порядковый номер равен заряду ядра атома); определённое название и, для некоторых химических элементов, особое прочтение символа в химической формуле (табл. 1).

Подведём итог. Вещества состоят из молекул, молекулы состоят из атомов, атомы с одинаковым зарядом ядра относятся к одному и тому же химическому элементу.

Но, если вещество состоит из молекул, то любое изменение состава или строения молекулы приводит к изменению самого вещества, его свойств.

Вопрос. Чем отличаются химические формулы веществ: Н2О и Н2О2?

Хотя по составу молекулы этих веществ отличаются на один атом кислорода, сами вещества по свойствам сильно отличаются друг от друга. Воду Н2О мы пьём и жить без неё не можем, а Н2О2 — перекись водорода, пить нельзя, а в быту её используют для обесцвечивания волос.

Вопрос. А чем отличаются химические формулы веществ:

Состав этих веществ — аллозы (А) и глюкозы (Б) — одинаков — С6Н12О6. Отличаются они строением молекул, в данном случае — расположением групп ОН в пространстве. Глюкоза — универсальный источник энергии для большинства живых организмов, а аллоза практически не встречается в природе и не может быть источником энергии.

Простые и сложные вещества. Валентность

Вещества бывают простые и сложные. Если молекула состоит из атомов одного химического элемента, — это простое вещество:

Если в состав вещества входят атомы только одного химического элемента — это простое вещество. Причём некоторые химические элементы образуют несколько простых веществ. Так, химический элемент кислород образует простое вещество «кислород» О2 и простое вещество «озон» О3*.

* В 2002 г. появилось сообщение о существовании ещё одного простого вещества кислорода — O4.

А химический элемент углерод образует четыре простых вещества, причём ни одно из них не называется «углерод». Эти вещества отличаются пространственным расположением атомов:

  • Алмаз — атомы углерода находятся в вершинах воображаемых тетраэдров;

  • Графит — атомы углерода находятся в одной плоскости;

  • Карбин — атомы углерода образуют «нити».

В четвертой модификации «углерода» — фуллерене — атомы углерода образуют сферу, т. е. молекулы фуллерена напоминают мячик.

Существование элемента в виде нескольких простых веществ называется аллотропией. Алмаз, графит, карбин, фуллерен — аллотропные модификации элемента «углерод», а кислород и озон — аллотропные модификации элемента «кислород».

Таким образом, не следует путать эти понятия: «химический элемент» и «простое вещество», а также «молекула» и «атом».

Очень часто в письменных записях слова «молекула» или «атом» заменяют соответствующими символами, но не всегда правильно. Так, нельзя писать: «В состав воды входит Н2», так как речь здесь идёт о химическом элементе водороде — Н. Нужно писать: «В состав воды входит (Н)». Аналогично, правильной будет запись: «При действии металла на раствор кислоты выделится Н2», т. е. вещество водород, молекула которого двухатомна.

Молекулы сложных веществ состоят из атомов разных химических элементов:

Как известно, в состав сложных веществ входят атомы разных химических элементов. Эти атомы соединяются между собой химическими связями: ковалентными, ионными, металлическими.

Способность атома образовывать определённое число ковалентных химических связей называется валентностью. (Подробнее см. урок 4 «Химическая связь».) Правильнее всего определять валентность по графическим или структурным формулам:

В таких формулах одна чёрточка обозначает одну ковалентную связь, т. е. «одну валентность». На практике чаще всего валентность определяют по молекулярной формуле, хотя здесь правильнее говорить о степени окисления элемента (см. урок 7). Иногда результат определения степени окисления соответствует реальному значению валентности, но бывают и неодинаковые результаты.

Задание 1.1. Определите «валентность» (степени окисления) атомов кальция и углерода по формуле СаС2. Совпадает ли полученный результат с реальным значением валентности?

В устойчивой молекуле не может быть «свободных», «лишних» валентностей! Поэтому для двухэлементной молекулы число химических связей (валентностей) атомов одного элемента равно общему числу химических связей атомов другого элемента.

Валентность атомов некоторых химических элементов постоянна (табл. 2).

Для других атомов валентность можно определить (вычислить) из химической формулы вещества.

Строго говоря, по нижеизложенным правилам определяют не валентность, а степень окисления (см. урок 7). Но поскольку в некоторых соединениях числовые значения этих понятий совпадают, то иногда по формуле можно определять и валентность.

При этом следует учитывать изложенное выше правило о химической связи.

Сделаем практические выводы.

1. Если один из атомов в молекуле одновалентен, то валентность второго атома равна числу атомов первого элемента (см. на индекс!):

2. Если число атомов в молекуле одинаково, то валентность первого атома равна валентности второго атома:

3. Если у одного из атомов индекс отсутствует, то его валентность равна произведению валентности второго атома на его индекс:

4. В остальных случаях ставьте валентности «крест-накрест», т. е. валентность первого атома равна числу атомов второго элемента и наоборот:

Задание 1.2. Определите валентности элементов в соединениях:

Вначале укажите валентности атомов, у которых она постоянна! Аналогично определяется валентность атомных групп (ОН), (РО4), (SО4) и так далее.

Задание 1.3. Определите валентности атомных групп (в формулах выделены курсивом):

Обратите внимание! Одинаковые группы атомов (OH), (РО4), (SO4) имеют одинаковые валентности во всех соединениях.

Зная валентности атома или группы атомов можно составить формулу соединения. Для этого пользуются правилами:

  • Если валентности одинаковы, то и число атомов одинаково, т. е. индексы не ставим:

  • Если валентности кратны (одно число делится на другое), то число атомов элемента с меньшей валентностью определяем делением:

  • В остальных случаях индексы определяют «крест-накрест»:

Задание 1.4. Составьте химические формулы соединений:

Уравнения химических реакций

Вещества, состав которых отражают химические формулы, могут участвовать в химических процессах (реакциях). Графическая запись, соответствующая данной химической реакции, называется уравнением химической реакции. Например, при сгорании (взаимодействии с кислородом) угля происходит химическая реакция:

Запись показывает, что один атом углерода С, соединяясь с одной молекулой кислорода O2, образует одну молекулу углекислого газа СО2. Число атомов каждого химического элемента до и после реакции должно быть одинаково! Это правило — следствие Закона сохранения массы вещества: масса исходных веществ равна массе продуктов реакции. Закон был открыт в 18-м веке М. В. Ломоносовым и, независимо от него, А. Л. Лавуазье.

Выполняя этот закон, необходимо в уравнениях химических реакций расставлять коэффициенты так, чтобы число атомов каждого химического элемента не изменялось в результате реакции. Например, при разложении бертолетовой соли КClO3, получается соль КСl и кислород О2:

Число атомов калия и хлора одинаково, а кислорода — разное. Уравняем их:

Теперь изменилось число атомов калия и хлора до реакции. Уравняем их:

Теперь между правой и левой частями уравнения можно поставить знак равенства:

Полученная запись показывает, что при разложении двух молекул КClO3 получается две молекулы КСl и три молекулы кислорода O2. Число молекул показывают при помощи коэффициентов.

При подборе коэффициентов необязательно считать отдельные атомы. Если в ходе реакции не изменился состав некоторых атомных групп, то можно учитывать число этих групп, считая их единым целым:

Последовательность действий такова:

1. Определим валентность исходных атомов и группы PO4:

2. Перенесём эти числа в правую часть уравнения:

3. Составим химические формулы полученных веществ по валентностям составных частей:

4. Обратим внимание на состав «самого сложного» соединения: Ca3(PO4)2 и уравняем число атомов кальция (их три) и число групп РО4 (их две):

5. Число атомов натрия и хлора до реакции теперь стало равным шести; доставим соответствующий коэффициент:

Эти правила образуют Алгоритм составления уравнений химических реакций обмена, так как, пользуясь этой последовательностью, можно уравнять схемы многих химических реакций, за исключением более сложных окислительно-восстановительных реакций (см. урок 7).

Химические реакции бывают разных типов. Основными являются:

1. Реакции соединения:

Здесь из двух и более веществ образуется одно вещество:

2. Реакции разложения:

Здесь из одного вещества получаются два вещества и более веществ:

3. Реакции замещения:

Здесь реагируют простое и сложное вещества, образуются также простое и сложное вещества, причём простое вещество замещает часть атомов сложного вещества:

4. Реакции обмена:

Здесь реагируют два сложных вещества и получаются два сложных вещества. В ходе реакции сложные вещества обмениваются своими составными частями:

Существуют и другие типы химических реакций.

Задание 1.5. Расставьте коэффициенты в предложенных выше примерах.

Задание 1.6. Расставьте коэффициенты и определите тип химической реакции:

Выводы

Вещества бывают простые и сложные. Состав веществ показывают при помощи химических формул. Формулы веществ составляют, учитывая валентности составных частей этих веществ. Запись химического процесса при помощи формул называется уравнением химической реакции. Химические реакции бывают разных типов: обмена, замещения, разложения, соединения и другие.

Химические уравнения.

Химическое уравнение – это условное изображение химической реакции с помощью химических формул веществ, числовых коэффициентов и математических символов.

При записи химических уравнений должен строго соблюдаться закон сохранения массы: массы вступивших в реакцию веществ, равны массе продуктов реакции.

Химическая реакция – процесс, при котором вещества, обладающие определенным составом и свойствами, превращаются в другие вещества – с другим составом и свойствами. При этом в составе атомных ядер изменений не происходит.

Химические реакции всегда сопровождаются физическими эффектами – поглощением или выделением теплоты, изменениями агрегатного состояния и окраски веществ.

Пример составления химического уравнения:

слева 2 атома Fe – справа 1 атом Fe (множитель 2)

слева 3 атома O – справа 1 атом O (множитель 3)

Затем подбирается коэффициент для H2O:

слева 2 атома H – справа 2 атома H (множитель 1), но т.к. справа 3 атома O, то множитель для H2O получаем 3. Н в правой части уравнения имеет множитель 6, для равновесия Н, в левой части используем множитель 3.

Итоговое химическое уравнение:

Выпадение осадка в результате химической реакции обозначается в химическом уравнении стрелкой вниз ↓. Это означает, что соединение нерастворимо:

Выделение газа в результате химической реакции обозначается в химическом уравнении стрелкой вверх ↑.

Виды химических реакций.

Реакции соединения: хотя бы два элемента образуют один продукт:

Реакции разложения: вещество распадается на два или более простых элемента (соединения):

Реакция замещения: обязательно участвуют атомы какого-нибудь простого вещества, которые замещают атомы одного из элементов в сложном веществе:

Цинк заместил водород в его соединении с хлором (HCl). Водород при этом выделяется в виде газа.

Реакция обмена: реагенты и продукты реакции являются сложными веществами:


источники:

http://himi4ka.ru/samouchitel-po-himii/urok-1-osnovnye-ponjatija-i-zakony-predmeta-himija.html

http://www.calc.ru/Khimicheskiye-Uravneniya.html