Определение системы уравнений 7 класс

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    Системы уравнений: определение, виды, примеры решения

    Статья знакомит с таким понятием, как определение системы уравнений и ее решением. Будут рассмотрены часто встречающиеся случаи решений систем. Приведенные примеры помогут подробно пояснить решение.

    Определение системы уравнений

    Чтобы перейти к определению системы уравнений, необходимо обратить внимание на два момента: вид записи и ее смысл. Чтобы понять это, нужно подробно остановиться на каждом из видов, тогда сможем прийти к определению систем уравнений.

    Например, возьмем два уравнения 2 · x + y = − 3 и x = 5 , после чего объединим фигурной скобкой такого плана:

    2 · x + y = — 3 , x = 5 .

    Уравнения, объединенные фигурной скобкой, считаются записями систем уравнений. Они задают множества решений уравнений данной системы. Каждое решение должно являться решением всех заданных уравнений.

    Другими словами это означает, что любые решения первого уравнения будут решениями всех уравнений, объединенных системой.

    Системы уравнений – это некоторое количество уравнений, объединенных фигурной скобкой, имеющих множество решений уравнений, которые одновременно являются решениями для всей системы.

    Основные виды систем уравнений

    Видов уравнений достаточно много, как систем уравнений. Для того, чтобы было удобно решать и изучать их, подразделяют на группы по определенным характеристикам. Это поможет в рассмотрении систем уравнений отдельных видов.

    Для начала уравнения классифицируются по количеству уравнений. Если уравнение одно, то оно является обычным уравнением, если их более, тогда имеем дело с системой, состоящей из двух или более уравнений.

    Другая классификация затрагивает число переменных. Когда количество переменных 1 , говорят, что имеем дело с системой уравнений с одной неизвестной, когда 2 – с двумя переменными. Рассмотрим пример

    x + y = 5 , 2 · x — 3 · y = 1

    Очевидно, что система уравнений включает в себя две переменные х и у .

    При записи таких уравнений считается число всех переменных, имеющихся в записи. Их наличие в каждом уравнении необязательно. Хотя бы одно уравнение должно иметь одну переменную. Рассмотрим пример системы уравнений

    2 x = 11 , x — 3 · z 2 = 0 , 2 7 · x + y — z = — 3

    Данная система имеет 3 переменные х , у , z . Первое уравнение имеет явный х и неявные у и z . Неявные переменные – это переменные, имеющие 0 в коэффициенте. Второе уравнение имеет х и z , а у неявная переменная. Иначе это можно записать таким образом

    2 x + 0 · y + 0 · z = 11

    А другое уравнение x + 0 · y − 3 · z = 0 .

    Третья классификация уравнений – это вид. В школе проходят простые уравнения и системы уравнений, начиная с систем двух линейных уравнений с двумя переменными. Имеется в виду, что система включает в себя 2 линейных уравнения. Для примера рассмотрим

    2 · x — y = 1 , x + 2 · y = — 1 и — 3 · x + y = 0 . 5 , x + 2 2 3 · y = 0

    Это основные простейшие линейные уравнения. Далее можно столкнуться с системами, содержащими 3 и более неизвестных.

    В 9 классе решают уравнения с двумя переменными и нелинейные. В целых уравнениях повышается степень для увеличения сложности. Такие системы называют системами нелинейных уравнений с определенным количеством уравнений и неизвестных. Рассмотрим примеры таких систем

    x 2 — 4 · x · y = 1 , x — y = 2 и x = y 3 x · y = — 5

    Обе системы с двумя переменными и обе являются нелинейными.

    При решении можно встретить дробно-рациональные уравнения. Например

    x + y = 3 , 1 x + 1 y = 2 5

    Могут называть просто системой уравнений без уточнения, каких именно. Редко уточняют сам вид системы.

    Старшие классы переходят к изучению иррациональных, тригонометрических и показательных уравнений. Например,

    x + y — x · y = 5 , 2 · x · y = 3 , x + y = 5 · π 2 , sin x + cos 2 y = — 1 , y — log 3 x = 1 , x y = 3 12 .

    Высшие учебные заведения изучают и исследуют решения систем линейных алгебраических уравнений (СЛАУ). Левая часть таких уравнений содержит многочлены с первой степенью, а правая – некоторые числа. Отличие от школьных в том, что количество переменных и количество уравнений может быть произвольным, чаще всего несовпадающим.

    Решение систем уравнений

    Решение системы уравнений с двумя переменными – это пара переменных, которая при подстановке обращает каждое уравнение в верное числовое неравенство, то есть является решением для каждого уравнения данной системы.

    К примеру, пара значений х = 5 и у = 2 являются решением системы уравнений x + y = 7 , x — y = 3 . Потому как при подстановке уравнения обращаются в верные числовые неравенства 5 + 2 = 7 и 5 − 2 = 3 . Если подставить пару х = 3 и у = 0 , тогда система не будет решена, так как подстановка не даст верное уравнение, а именно, мы получим 3 + 0 = 7 .

    Сформулируем определение для систем, содержащих одну и более переменных.

    Решение системы уравнений с одной переменной – это значение переменной, которая является корнем уравнений системы, значит, все уравнения будут обращены в верные числовые равенства.

    Рассмотрим на примере системы уравнений с одной переменной t

    t 2 = 4 , 5 · ( t + 2 ) = 0

    Число — 2 – решение уравнения, так как ( − 2 ) · 2 = 4 , и 5 · ( − 2 + 2 ) = 0 являются верными числовыми равенствами. При t = 1 система не решена, так как при подстановке получим два неверных равенства 12 = 4 и 5 · ( 1 + 2 ) = 0 .

    Решение системы с тремя и более переменными называют тройку, четверку и далее значений соответственно, которые обращают все уравнения системы в верные равенства.

    Если имеем значения переменных х = 1 , у = 2 , z = 0 , то подставив их в систему уравнений 2 · x = 2 , 5 · y = 10 , x + y + z = 3 , получим 2 · 1 = 2 , 5 · 2 = 10 и 1 + 2 + 0 = 3 . Значит, эти числовые неравенства верные. А значения ( 1 , 0 , 5 ) не будут решением, так как, подставив значения, второе из них будет неверное, как и третье: 5 · 0 = 10 , 1 + 0 + 5 = 3 .

    Системы уравнений могут не иметь решений вовсе или иметь бесконечное множество. В этом можно убедиться при углубленном изучении данной тематики. Можно прийти к выводу, что системы уравнений – это пересечение множеств решений всех ее уравнений. Раскроем несколько определений:

    Несовместной называют систему уравнений, когда она не имеет решений, в противном случае ее называют совместной.

    Неопределенной называют систему, когда она имеет бесконечное множество решений, а определенной при конечном числе решений либо при их отсутствии.

    Такие термины редко применяются в школе, так как рассчитаны для программ высших учебных заведений. Знакомство с равносильными системами углубит имеющиеся знания по решению систем уравнений.

    Системы уравнений – начальные сведения

    Материал этой статьи предназначен для первого знакомства с системами уравнений. Здесь мы введем определение системы уравнений и ее решений, а также рассмотрим наиболее часто встречающиеся виды систем уравнений. По обыкновению будем приводить поясняющие примеры.

    Навигация по странице.

    Что такое система уравнений?

    К определению системы уравнений будем подбираться постепенно. Сначала лишь скажем, что его удобно дать, указав два момента: во-первых, вид записи, и, во-вторых, вложенный в эту запись смысл. Остановимся на них по очереди, а затем обобщим рассуждения в определение систем уравнений.

    Пусть перед нами несколько каких-нибудь уравнений. Для примера возьмем два уравнения 2·x+y=−3 и x=5 . Запишем их одно под другим и объединим слева фигурной скобкой:

    Записи подобного вида, представляющие собой несколько расположенных в столбик уравнений и объединенных слева фигурной скобкой, являются записями систем уравнений.

    Что же означают такие записи? Они задают множество всех таких решений уравнений системы, которые являются решением каждого уравнения.

    Не помешает описать это другими словами. Допустим, какие-то решения первого уравнения являются решениями и всех остальных уравнений системы. Так вот запись системы как раз их и обозначает.

    Теперь мы готовы достойно воспринять определение системы уравнений.

    Системами уравнений называют записи, представляющие собой расположенные друг под другом уравнения, объединенные слева фигурной скобкой, которые обозначают множество всех решений уравнений, одновременно являющихся решениями каждого уравнения системы.

    Аналогичное определение приведено в учебнике [4, с. 61] , однако там оно дано не для общего случая, а для двух рациональных уравнений с двумя переменными.

    Основные виды

    Понятно, что разнообразных уравнений бесконечно много. Естественно, и составленных с их использованием систем уравнений также бесконечно много. Поэтому, для удобства изучения и работы с системами уравнений есть смысл их разделить на группы по схожим характеристикам, а дальше перейти к рассмотрению систем уравнений отдельных видов.

    Первое подразделение напрашивается по числу уравнений, входящих в систему. Если уравнений два, то можно сказать, что перед нами система двух уравнений, если три – то система трех уравнений, и т.д. Понятно, что не имеет смысла говорить о системе одного уравнения, так как в этом случае по сути мы имеем дело с самим уравнением, а не с системой.

    Следующее деление базируется на числе переменных, участвующих в записи уравнений системы. Если переменная одна, то мы имеем дело с системой уравнений с одной переменной (еще говорят с одной неизвестной), если две – то с системой уравнений с двумя переменными (с двумя неизвестными), и т.д. Например, — это система уравнений с двумя переменными x и y .

    При этом имеется в виду число всех различных переменных, участвующих в записи. Они не обязательно должны все сразу входить в запись каждого уравнения, достаточно их наличия хотя бы в одном уравнении. К примеру, — это система уравнений с тремя переменными x , y и z . В первом уравнение переменная x присутствует явно, а y и z – неявно (можно считать, что эти переменные имеют числовой коэффициент нуль), а во втором уравнении есть x и z , а переменная y явно не представлена. Другими словами, первое уравнение можно рассматривать как , а второе – как x+0·y−3·z=0 .

    Третий момент, в котором различаются системы уравнений, это вид самих уравнений.

    В школе изучение систем уравнений начинается с систем двух линейных уравнений с двумя переменными [1, с. 194; 3, с. 40, 59] . То есть, такие системы составляют два линейных уравнения. Вот пара примеров: и . На них и познаются азы работы с системами уравнений.

    При решении более сложных задач можно столкнуться и с системами трех линейных уравнений с тремя неизвестными.

    Дальше в 9 классе [2, 4] в системы двух уравнений с двумя переменными добавляются нелинейные уравнения, по большей части целые уравнения второй степени, реже – более высоких степеней. Эти системы называют системами нелинейных уравнений, при необходимости уточняют число уравнений и неизвестных. Покажем примеры таких систем нелинейных уравнений: и .

    А дальше в системах встречаются и дробно рациональные уравнения, к примеру, . Их обычно называют просто системами уравнений, не уточняя, каких именно уравнений. Здесь стоит заметить, что наиболее часто про систему уравнений говорят просто «система уравнений», а уточнения добавляют лишь при необходимости.

    В старших классах по мере изучения материала в системы проникают иррациональные, тригонометрические, логарифмические и показательные уравнения [5, 6] : , , .

    Если заглянуть еще дальше в программу первых курсов ВУЗов, то основной упор сделан на исследование и решение систем линейных алгебраических уравнений (СЛАУ), то есть, уравнений, в левых частях которых многочлены первой степени, а в правых – некоторые числа. Но там, в отличие от школы, уже берутся не два линейных уравнения с двумя переменными, а произвольное число уравнений с произвольным числом переменных, зачастую не совпадающим с числом уравнений [7, 8] .

    Что называется решением системы уравнений?

    К системам уравнений непосредственно относится термин «решение системы уравнений». В школе дается определение решения системы уравнений с двумя переменными [1, с. 195; 3, с. 61; 4, с. 61] :

    Решением системы уравнений с двумя переменными называется пара значений этих переменных, обращающая каждое уравнение системы в верное числовое равенство, другими словами, являющаяся решением каждого уравнения системы.

    Например, пара значений переменных x=5 , y=2 (ее можно записать как (5, 2) ) является решением системы уравнений по определению, так как уравнения системы при подстановке в них x=5 , y=2 обращаются в верные числовые равенства 5+2=7 и 5−2=3 соответственно. А вот пара значений x=3 , y=0 не является решением этой системы, так как при подстановке этих значений в уравнения, первое из них обратится в неверное равенство 3+0=7 .

    Аналогичные определения можно сформулировать и для систем с одной переменной, а также для систем с тремя, четырьмя и т.д. переменными.

    Решением системы уравнений с одной переменной будет значение переменной, являющееся корнем всех уравнений системы, то есть, обращающее все уравнения в верные числовые равенства.

    Приведем пример. Рассмотрим систему уравнений с одной переменной t вида . Число −2 является ее решением, так как и (−2) 2 =4 , и 5·(−2+2)=0 – верные числовые равенства. А t=1 – не является решением системы, так как подстановка этого значения даст два неверных равенства 1 2 =4 и 5·(1+2)=0 .

    Решением системы с тремя, четырьмя и т.д. переменными называется тройка, четверка и т.д. значений переменных соответственно, обращающая в верные равенства все уравнения системы.

    Так по определению тройка значений переменных x=1 , y=2 , z=0 – решение системы , так как 2·1=2 , 5·2=10 и 1+2+0=3 — верные числовые равенства. А (1, 0, 5) не является решением этой системы, так как при подстановке этих значений переменных в уравнения системы второе из них обращается в неверное равенство 5·0=10 , да и третье тоже 1+0+5=3 .

    Заметим, что системы уравнений могут не иметь решений, могут иметь конечное число решений, например, одно, два, …, а могут иметь бесконечно много решений. В этом Вы убедитесь по мере углубления в тему.

    Учитывая определения системы уравнений и их решений можно заключить, что решение системы уравнений представляет собой пересечение множеств решений всех ее уравнений.

    В заключение приведем несколько связанных определений:

    Система уравнений называется несовместной, если она не имеет решений, в противном случае система называется совместной.

    Система уравнений называется неопределенной, если она имеет бесконечно много решений, и определенной, если имеет конечное число решений, либо не имеет их вообще.

    Эти термины вводятся, например, в учебнике [3, с. 64] , однако в школе применяются довольно редко, чаще их можно услышать в высших учебных заведениях.

    Дальше не помешает познакомиться с равносильными системами уравнений, а уже потом можно будет переходить к процессу нахождения решений систем уравнений.


    источники:

    http://zaochnik.com/spravochnik/matematika/systems/sistemy-uravnenij-nachalnye-svedenija/

    http://www.cleverstudents.ru/systems/systems_of_equations.html