Определение уравнения как логического понятия

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня — 2 , 1 и 5 , то пишем — 2 , 1 , 5 или < - 2 , 1 , 5 >.

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Теоретические основы формирования понятия уравнения в начальной школе; методика введения понятия уравнение на примере разных УМК
статья по математике (2 класс)

В настоящее время сложно представить школьный курс математики без понятия уравнение. Большинство задач сводятся к решению и применению различных видов уравнений. При этом уравнения, являются одним из средств моделирования явлений из окружающего нас мира и знакомство с ними, а также они являются существенной частью математического образования.

Понятие уравнение относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое, и доступное для учащихся, приступающих к овладению школьным курсом математики.

В словаре по педагогике под редакцией В.А. Мижерикова, дается следующее определение понятию уравнения – это два выражения, которые соединены знаком равенства и в них входят одна или несколько переменных, называемых неизвестными.

Е.А. Крапивина, говорит о том, что уравнение, представляет собой равенство, содержащее в себе неизвестное число, значение которого нужно найти.

И.А. Моргунова, указывает на то, что понятие уравнение, является равенством, которое выполняется только при некоторых значениях входящих в него букв. Буквы, которые входят в состав уравнения, могут быть неравноправными: одни могут принимать все свои допустимые значения, а другие, значения которых требуется отыскать, называют неизвестными данного уравнения (как правило, их обозначают последними буквами латинского алфавита x, y, z, u, v, w).

Рассмотрев множество определений понятия уравнение можно сделать вывод, что уравнение – это вид равенства с неизвестной величиной, которая чаще всего обозначается латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.

В школьном курсе математики термин «уравнение» называют «выражение» или «предложение с переменной».

Можно выделить основные признаки понятия уравнение:

— содержит букву, значение которой неизвестно и его надо найти

Понятие «решить уравнение», является центральным.

Решение уравнения представляет собой преобразование исходного уравнения к более простому уравнению, способ решения которого уже известен.

Решить уравнение – значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

Например, установим, является ли уравнением с одним неизвестным равенство х+0=х. Если требуется найти это неизвестное число, то рассматриваемое утверждение является уравнением. Если же рассматривать это равенство, как буквенную запись правила: при сложении любого числа с нулем получается то же самое число, то утверждение не является уравнением.

У уравнения х+0=х сколько угодно решений: любое число х является его решением. У уравнения a+3=4+a нет решений, а у уравнения a+3=4 одно решение: a=1

В определении понятия уравнение используется один из двух терминов: «переменная» или «неизвестное». Переменная — это величина, характеризующаяся множеством значений, которое она может принимать.

И.А. Моргунова, говорит о том, что уравнения имеют важное теоретическое значение, а также служат в практических целях. Большинство задач о пространственных формах и количественных отношениях реального

мира сводится к решению различных видов уравнений.

По мнению А.В. Самойловой, знакомить учащихся в начальной школе с понятием уравнения надо как можно раньше и в процессе их решения осуществлять работу по усвоению детьми правил о взаимосвязи

компонентов и результатов действий.

Математические понятия, в свою очередь, являются важнейшей неотъемлемой частью науки и учебного предмета математики. В начальном курсе математики учитель старается знакомить младших школьников с большинством понятий наглядно, путём созерцания конкретных примеров или практического оперирования ими, опираясь при этом на жизненный опыт учащихся.

В.А. Далингер, считает, что внимание должно быть направлено на умение определять понятия, а не на их заучивание. Следует правильно донести до учащихся, что научные понятия изменчивы: определение понятия – это лишь один из начальных этапов его формирования, а затем происходит процесс, который представляет собой развитие понятий, который характеризуется как постепенное уточнение и усвоение содержания и объёма понятия, его связей и отношений с другими понятиями.

Как отмечает Г.Г. Кочеткова, формирование понятия, является длительным и сложным процессом, которому следует уделять достаточное внимание в образовательном процессе. Важным этапом при формировании понятий, является усвоение его существенных признаков. Словесное определение понятия должно быть итогом работы по усвоению существенных признаков. Следует отметить, что бывает так, когда даётся словесное определение понятия, и оно сразу же используется в дальнейшей работе. Преувеличение роли при словесном определении, является одной из причин пробелов в знаниях учащихся.

Совершенно иного мнения придерживается П. Я. Гальперин, который считает, что формирование понятия не следует растягивать во времени, что это можно осуществить в один приём, когда содержание нового понятия усваивается одновременно, в полном объеме и правильном соотношении признаков, сразу применяется на всем диапазоне намеченного обобщения.

Развитие математических понятий происходит от простого к сложному, или от конкретного к обобщенному. Развитие понятий может происходить поэтапно, при этом на новом уровне обобщения, углубляющем или расширяющем содержание развиваемого понятия.

В процессе усвоения научных знаний младшие школьники сталкиваются с разными видами понятий. Формирование понятия уравнения в начальной школе подготавливает младших школьников к более успешному изучению математики в дальнейшем.

Умение решать уравнения представляет большую сложность для младших школьников. Изучение уравнений в начальных классах обладает пропедевтическим характером. В этой связи крайне важной является подготовка детей в начальных классах к более глубокому изучению уравнений в старшей школе. В начальных классах в ходе работы над уравнениями проводится закрепление правил о взаимосвязи части и целого, сторон прямоугольника и его площади, формирование вычислительных навыков и понимания связи между элементами действий, закрепление порядка действий и формирование умения решать текстовые задачи, осуществляется работа над формированием правильной математической речи. На уроках закрепления уравнения способствуют разнообразию видов заданий.

В начальных классах рассматриваются уравнения только с одной переменной.

Виды уравнений, рассматриваемых в начальных классах:

I. Простые уравнения: х – 4=6

II. Усложненные уравнения:

1. Уравнения, в которых переменная находится в правой части: 6= x-4

2. Уравнения, в которых правая часть представляет числовое выражение: х-4=36:6

3. Уравнения, в которых числовое выражение находится в обеих частях: х-(16:4)=4+2

4. Уравнения, в которых неизвестное входит в состав выражения с переменной: (х+5)-4=6

5. Уравнения, представленные комбинацией уравнений (1-4) (х+5)-4*2=36:6

6. Уравнения, в которых неизвестное находится в обеих частях 2*х-8=х+5 (только в программе Аргинской)

Проанализировав разные учебно-методические комплексы можно сделать вывод о том, что знакомство учащихся с уравнениями обычно начинается на уроках математики во 2 классе.

Автор развивающего обучения Д.Б. Эльконин, предлагают знакомить учащихся с понятием уравнение с самого начала обучения математики, но при этом, не используя взаимосвязи между компонентами и результатами арифметических действий.

Методические аспекты формирования понятия уравнения

УРАВНЕНИЯ И НЕРАВЕНСТВА В КУРЕ МАТЕМАТИКИ СРЕДНЕЙ ШКОЛЫ

Понятие уравнения в математике

Уравнение относится к числу ведущих алгебраических понятий. В математике оно рассматривается в трёх аспектах:

· как особого рода формула, являющаяся в алгебре объектом изучения;

· как средство решения текстовой задачи;

· как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.

Определение понятия уравнения в математике основано на понятии «предикат» или «предложение с переменной».

Приведём пример такого предложения: «п – есть простое число». Подставляя вместо переменной п натуральные числа, будем получать высказывания – предложения без переменной, содержащие утверждения и обладающие определёнными истинностными значениями. Так, при п = 5 получим истинное высказывание «5 – простое число», а при п = 12 ложное высказывание «12 – простое число». Уравнение – это тоже предложение с переменной (или с несколькими переменными), которое при одних значениях переменной, принадлежащих некоторому числовому множеству D, обращается в истинное высказывание (числовое равенство), а при других – в ложное.

Определение. Уравнением называется предложение с переменной, имеющее вид равенства между двумя выражениями с этой переменной.

По аналогии с уравнением можно определить и неравенство как предложение с переменной, имеющее вид неравенства между двумя выражениями с этой переменной.

Отметим, что теория решения уравнений, неравенств и их систем, а также методы решения уравнений и неравенств отдельных видов рассмотрены в курсе НПОПМ.

Понятие уравнения в школе

Ввиду важности и обширности материала, связанного с понятиями уравнения и неравенства, их изучение в современной методике математики организовано в содержательно – методическую линию уравнений и неравенств.

Учитывая приведённые выше аспекты функционирования понятия уравнения в математике, целесообразно выделить три основных направления развёртывания линии уравнений и неравенств школьного курса алгебры.

1. Теоретико – математическое, которое раскрывается в двух аспектах:

· выделение и изучение наиболее важных классов уравнений, неравенств, систем;

· изучение обобщённых понятий, относящихся ко всей линии в целом, что позволяет сформировать обобщённый аппарат теории (выделить общие понятия линии: неизвестное, равенство, равносильность, логическое следствие, система и совокупность уравнений (неравенств); общие и частные методы решения).

2. Прикладное, связанное с решением текстовых задач, как одним из видов математического моделирования.

3. Систематизирующее, то есть устанавливающее взаимосвязи с другими содержательно-методическими линиями: числовых систем, тождественных преобразований, функциональной и другими.

В связи с выше сказанным, определим цели изучения линии уравнений и неравенств в школе:

· формирование теоретических знаний;

· формирование умений решать уравнения и неравенства определённых видов, их систем и совокупностей;

· обучение решению текстовых задач для формирования представлений об уравнении (неравенстве) как средстве математического моделирования;

· установление взаимосвязей линии уравнений и неравенств с другими содержательно-методическими линиями школьного курса математики в процессе решения целесообразно подобранных задач.

Содержание учебного материала

Классы.

Смотри практические занятия.

Уравнения

Класс.

Формируются понятия уравнения с одной переменной, решения или корня уравнения, выясняется, что значит решить уравнение. Вводится понятие равносильных уравнений. Рассматриваются свойства:

· если в уравнении перенести слагаемые из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

· если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Отмечается, что указанные свойства уравнений можно доказать, опираясь на соответствующие свойства числовых равенств.

Изучаются линейные уравнения с одной переменной, уравнения, решаемые на основании условия равенства произведения нулю, линейные уравнения с двумя переменными и их системы. Решаются текстовые задачи на составление уравнений и их систем.

Класс.

Квадратные уравнения и дробные рациональные уравнения, сводимые к линейным и квадратным уравнениям. Для тех, кто хочет знать больше, уравнения с параметром.

Класс.

Элементы теории решения целых уравнений и методы их решения:

разложение на множители и замены. Для тех, кто хочет знать больше, приводится теорема о корне многочлена и теорема о целых корнях целого уравнения, которые позволяют расширить приёмы решения целых уравнений. Рассматриваются возвратные уравнения для частного случая симметрических уравнений (возвратным называется уравнение вида Изучаются дробно-рациональные уравнения и методы их решения: приведение к целому виду, сведение к пропорции, замены. Уравнение с двумя переменными и системы уравнений второй степени с двумя переменными. Задачи, решаемые с помощью систем уравнений второй степени. Для тех, кто хочет знать больше, приёмы решения однородных, симметрических систем уравнений второй степени. Метод сведения системы к совокупности систем.

Класс.

Простейшие тригонометрические уравнения. Методы решения тригонометрических уравнений: введение вспомогательного угла, замены, разложение на множители.

Класс.

Иррациональные, показательные и логарифмические уравнения.

Неравенства

Класс.

Числовые неравенства и их свойства. Неравенства с одной переменной.

Вводится определение решения неравенства, выясняется смысл слов «решить неравенство», формируется понятие равносильных неравенств и рассматриваются следующие свойства:

· если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство;

· если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство;

· если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.

Изучаются линейные неравенства и их системы. При этом вводятся понятия системы неравенств, даётся определение решения системы неравенств с одной переменной. Для тех, кто хочет знать больше, приводятся примеры доказательства неравенств.

Класс.

Решение неравенства второй степени с одной переменной графически и методом интервалов.

Неравенства с двумя переменными и их системы.

Класс.

Простейшие тригонометрические неравенства. Решение целых и дробных рациональных неравенств методом интервалов.

Класс.

Показательные и логарифмические неравенства.

Методические аспекты формирования понятия уравнения

Уравнения рассматриваются в начальной школе, в 5,6 классах. В 7 классе понятие уравнения формируется посредством задачи: «На нижней полке в 4 раза больше книг, чем на верхней. Если с нижней полки переставить на верхнюю 15 книг, то книг на полках станет поровну. Сколько книг на верхней полке»?

Было книг Стало книг

Нижняя полка 4х 4х — 15

Верхняя полка х х+15

Так как книг стало поровну соединим полученные выражения знаком равенства: 4х – 15 = х+15.

Чтобы найти неизвестное число книг, мы составили равенство. Такие равенства называются уравнениями с одной переменной или с одним неизвестным.

Нам надо найти число, при подстановке которого вместо х в уравнение 4х – 15 = х+15 получается верное равенство. Такое число называется решением или корнем уравнения. Вводится определение корня или решения уравнения.

Уравнения такого вида учащиеся решали в 6 классе. Они получат х=10.

Далее на примерах уравнений школьники убеждаются, что уравнение может иметь два корня или не иметь корней. Выясняем, что значит решить уравнение. Решить уравнение это значит найти все корни уравнения или доказать, что их нет. Поэтому, решая уравнение ответ лучше записать в виде «Ответ: 4; 5; 6», а не в виде «Ответ: х=4, х=5, х=6».

На примере уравнений убеждаем, что существуют уравнения с одинаковыми корнями. Вводим определение: «Уравнения, имеющие одни и те же корни, называют равносильными уравнениями. Уравнения, не имеющие корней, также считают равносильными». Далее приводятся два свойства (смотри содержание учебного материала), суть которых состоит в описании преобразований, не нарушающих равносильности уравнений.

К сожалению, в дальнейшем теория равносильных уравнений в общеобразовательных классах основной и даже полной школы не развивается. Основное внимание уделяется методам решения уравнений отдельных видов, которые не получают должного теоретического обоснования.


источники:

http://nsportal.ru/nachalnaya-shkola/matematika/2021/09/09/teoreticheskie-osnovy-formirovaniya-ponyatiya-uravneniya-v

http://lektsii.org/10-56316.html