Определить координаты вершин фокусов уравнения асимптот

Как найти координаты фокусов гиперболы

Гиперболой Называется геометрическое место точек на плоскости, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная.

Обозначим эту постоянную через 2А, расстояние между фокусами через 2С, а оси координат выберем так же, как в разделе 2.3.

Пусть М(Х, У) – произвольная точка гиперболы (рисунок 2.4).

По определению гиперболы F2MF1М = ±2A. (Знак плюс в правой части надо выбрать, если F2M > F1М, и минус, если F2M A).

Исследуем формулу гиперболы.

1. Уравнение (2.7) содержит квадраты текущих координат, следовательно, оси координат являются осями симметрии гиперболы. Ось симметрии, на которой находятся фокусы, называется фокальной осью, точка пересечения осей симметрии – центром гиперболы. Для гиперболы, заданной уравнением (2.7), фокальная ось совпадает с осью ОХ, а центр – с началом координат.

В этом случае координаты фокусов гиперболы имеют вид F1(с,0), F2(-с,0).

2. Точки пересечения с осями симметрии. Точки пересечения гиперболы с осями симметрии называются Вершинами гиперболы. Полагая в уравнении (2.7) У = 0, найдем абсциссы точек пересечения с осью ОХ:

или X2 = А2, откуда Х = ±А.

Итак, точки и являются вершинами гиперболы.

Если же в уравнении (2.7) принять x = 0, получим

или У2 = –B2,

Т. е. для У мы получили мнимые значения. Это означает, что гипербола не пересекает ось ОY.
В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью (фокальная ось); ось симметрии, которая не пересекает гиперболу, – ее мнимой осью. Для гиперболы, заданной уравнением (2.7), действительной осью симметрии является ось ОХ, а мнимой осью – ось ОY. Длина отрезка А1А2 = 2А, число А называется действительной полуосью гиперболы. Отложим на мнимой оси гиперболы по обе стороны от центра симметрии O отрезки ОВ1 и ОВ2 длиною B, тогда отрезок В1B2 = 2B называют мнимой осью, а величину B – мнимой полуосью гиперболы.

Из уравнения (2.7) видно, что , следовательно, |X| ³ A. Кривая имеет форму, изображенную на рисунке 2.5. Она располагается вне прямоугольника со сторонами, равными 2А и 2B, с центром в начале координат, и состоит из двух отдельных ветвей, простирающихся в бесконечность (см. рисунок 2.5). Диагонали этого прямоугольника определяются уравнениями

(2.8)

И являются Асимптотами гиперболы.

Если A = B, гипербола называется равносторонней.

Замечание 1. Если мнимая ось гиперболы равна 2А и расположена на оси ОХ, а действи-тельная ось равна 2B и расположена на оси ОY, то уравнение такой гиперболы (рисунок 2.6) имеет вид (каноническое уравнение гиперболы, если ее фокальная ось – ось Y)

(2.9)

Координаты фокусов в этом случае имеет вид F1(0,с) и F2(0,-с).

Гиперболы (2.7) и (2.9) называются Сопряженными гиперболами.

Замечание 2. Эксцентриситетом Гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

(2.10)

Для любой гиперболы ε > 1, это число определяет форму гиперболы.

Пример 2.3. Найти координаты фокусов и вершин гиперболы

Написать уравнение ее асимптот и вычислить эксцентриситет.

Решение. Напишем каноническое уравнение гиперболы, для чего обе части уравнения поделим на 144. После сокращения получим

.

Отсюда видно, что А2 = 9, т. е. A = 3 и B2 = 16, т. е. B = 4.

Для гиперболы С2 = А2 + B2 = 16 + 9 = 25, отсюда C = 5.

Теперь можем написать координаты вершин и фокусов гиперболы:

Эксцентриситет , а уравнения асимптот имеют вид

и .

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

По определению | r 1r 2 | = 2 a . F 1 , F 2 – фокусы гиперболы. F 1 F 2 = 2 c .

Выберем на гиперболе произвольную точку М(х, у). Тогда :

обозначим с 2 – а 2 = b 2 (геометрически эта величина – меньшая полуось)

Получили каноническое уравнение гиперболы.Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат.

Ось 2а называется действительной осью.

Ось 2 b называется мнимой осью.

Гипербола имеет две асимптоты, уравнения которых

Определение. Отношение называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с 2 – а 2 = b 2

:

Если а = b , e = , то гипербола называется равнобочной (равносторонней).

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения:

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r / d – величина постоянная, равная эксцентриситету.

Доказательство. Изобразим схематично гиперболу.

Из очевидных геометрических соотношений можно записать:

a / e + d = x , следовательно d = x – a / e .

( x – c ) 2 + y 2 = r 2

Из канонического уравнения: , с учетом b 2 = c 2 – a 2 :

Тогда т.к. с/ a = e , то r = ex – a .

Итого:

Для левой ветви доказательство аналогично. Теорема доказана

Пример 1 . Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса

Для эллипса: c 2 = a 2 – b 2 . Для гиперболы: c 2 = a 2 + b 2 .

Уравнение гиперболы:

Пример 2 . Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением

Находим фокусное расстояние c 2 = 25 – 9 = 16.

Для гиперболы: c 2 = a 2 + b 2 = 16, e = c / a = 2; c = 2 a ; c 2 = 4 a 2 ; a 2 = 4;

Итого: – искомое уравнение. Copyright © 2004-2019

Асимптоты

п.1. Понятие асимптоты

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:


Вертикальная асимптота x=3

Горизонтальная асимптота y=1

Наклонная асимптота y=x

п.2. Вертикальная асимптота

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции \(y=\frac<1><(x-1)(x+3)>\)
ОДЗ: \(x\ne \left\<-3;1\right\>\)
\(\left\\notin D\) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем \(x_0=-3\). Найдем односторонние пределы: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-3-0-1)(-3-0+3)>=\frac<1><-4\cdot(-0)>=+\infty\\ \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-3+0-1)(-3+0+3)>=\frac<1><-4\cdot(+0)>=-\infty \end Односторонние пределы не равны и бесконечны.
Точка \(x_0=-3\) — точка разрыва 2-го рода.
Исследуем \(x_1=1\). Найдем односторонние пределы: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(1-0-1)(1-0+3)>=\frac<1><-0\cdot 4>=-\infty\\ \lim_\frac<1><(x-1)(x+3)>=\frac<1><(1+0-1)(1+0+3)>=\frac<1><+0\cdot 4>=+\infty \end Односторонние пределы не равны и бесконечны.
Точка \(x_1=1\) — точка разрыва 2-го рода.
Вывод: у функции \(y=\frac<1><(x-1)(x+3)>\) две точки разрыва 2-го рода \(\left\\), соответственно – две вертикальные асимптоты с уравнениями \(x=-3\) и \(x=1\).

п.3. Горизонтальная асимптота

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции \(y=\frac<1><(x-1)(x+3)>\)
Ищем предел функции на минус бесконечности: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-\infty)(-\infty)>=+0 \end На минус бесконечности функция имеет конечный предел \(b=0\) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(+\infty)(+\infty)>=+0 \end На плюс бесконечности функция имеет тот же конечный предел \(b=0\) и также стремится к нему сверху.
Вывод: у функции \(y=\frac<1><(x-1)(x+3)>\) одна горизонтальная асимптота \(y=0\). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции \(y=\frac<1><(x-1)(x+3)>\):

п.4. Наклонная асимптота

Число наклонных асимптот не может быть больше двух.

Чтобы построить график асимптотического поведения, заметим, что у функции \(y=\frac\), очевидно, есть вертикальная асимптота x=1. При этом: \begin \lim_\frac=-\infty,\ \ \lim_\frac=+\infty \end

График асимптотического поведения функции \(y=\frac\):

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция \(y=f(x)\)
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) \( y=\frac<4x> \)
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: \(x=\pm 1\)
Односторонние пределы в точке \(x=-1\) \begin \lim_\frac<4x><(x+1)(x-1)>=\frac<4(-1-0)><(-1-0+1)(-1-0-1)>=\frac<-4><-0\cdot(-2)>=-\infty\\ \lim_\frac<4x><(x+1)(x-1)>=\frac<4(-1+0)><(-1+0+1)(-1+0-1)>=\frac<-4><+0\cdot(-2)>=+\infty \end Точка \(x=-1\) — точка разрыва 2-го рода
Односторонние пределы в точке \(x=1\) \begin \lim_\frac<4x><(x+1)(x-1)>=\frac<4(1-0)><(1-0+1)(1-0-1)>=\frac<4><2\cdot(-0)>=-\infty\\ \lim_\frac<4x><(x+1)(x-1)>=\frac<4(1+0)><(1+0+1)(1+0-1)>=\frac<4><2\cdot(+0)>=+\infty \end Точка \(x=1\) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты \(x=\pm 1\)

График асимптотического поведения функции \(y=\frac<4x>\)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: \begin b_1=\lim_e^<\frac<1>>=e^0=1\\ b_2=\lim_e^<\frac<1>>=e^0=1\\ b=b_1=b_2=1 \end Функция имеет одну горизонтальную асимптоту \(y=1\). Функция стремится к этой асимптоте на минус и плюс бесконечности.

График асимптотического поведения функции \(y=e^<\frac<1>>\)

в) \( y=\frac \)
Заметим, что \( \frac=\frac<(x+1)(x-1)>=\frac<(x^2)(x+1)><(x+1)(x-1)>=\frac \) $$ y=\frac\Leftrightarrow \begin y=\frac\\ x\ne -1 \end $$ График исходной функции совпадает с графиком функции \(y=\frac\), из которого необходимо выколоть точку c абсциссой \(x=-1\).

3) Наклонные асимптоты
Ищем угловые коэффициенты: \begin k_1=\lim_\frac=\left[\frac<\infty><\infty>\right]=\lim_\frac\right)>=\frac<1+0><1-0>=1\\ k_2=\lim_\frac=\left[\frac<\infty><\infty>\right]=\lim_\frac\right)>=\frac<1+0><1-0>=1\\ k=k_1=k_2=1 \end У функции есть одна наклонная асимптота с \(k=1\).
Ищем свободный член: \begin b=\lim_(y-kx)= \lim_\left(\frac-2\right)= \lim_\frac= \lim_\frac=\left[\frac<\infty><\infty>\right]=\\ =\lim_\frac=\frac<1+0><1-0>=1 \end Функция имеет одну наклонную асимптоту \(y=x+1\).
График асимптотического поведения функции \(y=\frac\)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: \begin b_1=\lim_xe^<\frac<1><2-x>>=-\infty\cdot e^0=-\infty\\ b_2=\lim_xe^<\frac<1><2-x>>=+\infty\cdot e^0=+\infty \end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

График асимптотического поведения функции \(y=xe^<\frac<1><2-x>>\)

Асимптоты графиков функций

Вертикальные асимптоты
Наклонные асимптоты
Горизонтальные асимптоты как частный случай наклонных асимптот
Поиск наклонных асимптот графиков функций

Вертикальные асимптоты

Во многих разделах нашего справочника приведены графики различных функций. Для многих функций существуют прямые, к которым графики функций неограниченно приближаются. Такие прямые называют асимптотами, и их точное определение мы дадим чуть позже. Как мы увидим далее, асимптоты бывают вертикальными, горизонтальными и наклонными. С вертикальными и горизонтальными асимптотами графика функции мы уже встречались, в частности, в разделе «Гипербола на координатной плоскости. График дробно-линейной функции». С наклонными асимптотами, за исключением горизонтальных, мы пока еще дела не имели.

Определение 1. Говорят, что x стремится к x0 слева и обозначают

Говорят, что x стремится к x0 справа и обозначают

Определение 2. Прямую

называют вертикальной асимптотой графика функции y = f (x) при x , стремящемся к с справа, если функция y = f (x) определена на некотором интервале (с, d) и выполнено соотношение выполнено соотношение

при xc + 0

называют вертикальной асимптотой графика функции y = f (x) при x , стремящемся к с слева, если функция y = f (x) определена на некотором интервале (d, c) и выполнено соотношение выполнено соотношение

при xc – 0

Пример 1. Прямая

является вертикальной асимптотой графика функции

как справа, так и слева (рис. 1)

Пример 2. Прямая

является вертикальной асимптотой графика функции

при x , стремящемся к 0 справа (рис. 2)

Наклонные асимптоты

Определение 3. Прямую

называют наклонной асимптотой графика функции y = f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

называют наклонной асимптотой графика функции y = f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

Горизонтальные асимптоты как частный случай наклонных асимптот

Определение 4. Прямую

называют горизотальной асимптотой графика функции y = f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

называют горизотальной асимптотой графика функции y f (x) при x , стремящемся к , если функция y = f (x) определена на некотором интервале и выполнено соотношение выполнено соотношение

Замечание . Из определений 3 и 5 вытекает, что горизонтальная асимптота является частным случаем наклонной асимптоты y = kx + b, когда угловой коэффициент прямой k = 0 .

Пример 3. Прямая

является горизонтальной асимптотой графика функции

как при x , стремящемся к , так и при x , стремящемся к (рис. 3)

Пример 4. Прямая

является горизонтальной асимптотой графика функции

при x , стремящемся к (рис. 4)

имеет две горизонтальные асимптоты: прямая

является горизонтальной асимптотой графика функции при , а прямая

является горизонтальной асимптотой графика функции при .

Поиск наклонных асимптот графиков функций

Для того, чтобы найти наклонную асимптоту графика функции y = f (x) при (или убедиться, что наклонной асимптоты при не существует), нужно совершить 2 операции.

Первая операция. Вычислим предел предел

(1)

Если предел (1) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

переходим ко второй операции.

Вторая операция. Вычислим предел предел

(2)

Если предел (2) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

делаем вывод о том, что прямая

является наклонной асимптотой графика функции y = f (x) при .

Совершенно аналогично поступаем для того, чтобы найти наклонную асимптоту графика функции y = f (x) при (или убедиться, что наклонной асимптоты при не существует).

Первая операция. Вычислим предел предел

(3)

Если предел (3) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

переходим ко второй операции.

Вторая операция. Вычислим предел предел

(4)

Если предел (4) не существует или существует, но равен существует, но равен , то делаем вывод о том, что у графика функции y = f (x) при наклонных асимптот нет.

делаем вывод о том, что прямая

является наклонной асимптотой графика функции y = f (x) при .

Пример 5. Найти асимптоты графика функции

(5)

и построить график этой функции.

Решение. Функция (5) определена для всех и вертикальных асимптот не имеет.

Найдем наклонные асимптоты графика функции (5). При получаем

Отсюда вытекает, что прямая

– наклонная асимптота графика функции (5) при .

При получаем

Отсюда вытекает, что прямая

– наклонная асимптота графика функции (5) при .

Итак, y’ > 0 при x > 0 , y’ при x y’ = 0 при x = 0 . Точка x = 0 – стационарная, причем производная функции (5) при переходе через точку x = 0 меняет знак с «–» на «+» . Следовательно, x = 0 – точка минимума функции (5). Других критических точек у функции (5) нет.

Теперь мы уже можем построить график функции (5):

Заметим, что график функции (5) находится выше асимптот y = x и y =v– x , поскольку справедливо неравенство:

.


источники:

http://reshator.com/sprav/algebra/10-11-klass/asimptoty/

http://www.resolventa.ru/spr/matan/asymptote.htm