Определить тип дифференциального уравнения параболический

Дифференциальные уравнения в частных производных¶

Дифференциальные уравнениями в частных производных с дополнительными уравнениями, выражающими граничные и начальные условия описывают большинство физических процессов. В общем случае линейное дифференциальное уравнение в частных производных второго порядка имеет вид

Классификация проводится в соответствии с характеристическими кривыми второго порядка для данных уравнений. По соотношению значений a, b и c уравнение относят к эллиптическим, параболическим или гиперболическим в данной точке. Тип ДУ определяется знаком выражения, называемого дискриминантом: \(D(x,y) = b^2-4ac\) .

  • Если \(D(x, y) , дифференциальное уравнение является эллиптическим в точке (x, y).
  • Если \(D(x, y) = 0\) , дифференциальное уравнение является параболическим в точке (x, y).
  • Если \(D(x, y) > 0\) , дифференциальное уравнение является гиперболическим в точке (x, y).

Если коэффициенты a, b, c постоянные и значение D не зависит от точки, то в зависимости от знака D уравнение является полностью эллиптическим, гиперболическим или параболическим. В случае если коэффициенты не являются постоянными, для одного и того же уравнения возможны области, в которых оно является уравнением разного типа.

Эллиптические уравнения¶

Эллиптическими уравнениями являются уравнения Лапласа и Пуассона, возникающие в теории потенциала для электрического поля. Так же к уравнению этого тапа сводятся многие стационарные (установившиеся) решения параболических и гиперболических задач.

Простейший вид Эллиптического уравнения:

Такими уравнения описываются стационарное распределение температуры в процессе теплопереноса и стационарное распределение концентрации при диффузии. К уравнению Лапласа приводят и многие другие задачи, например, задача о распределении электростатического поля в однородной непроводящей среде в отсутствие электрических зарядов. В общем случае в векторной форме уравнение Пуассона имеет вид:

где \(u(x, y, z)\) – искомая функция; \(A(x, y, z)\) , \(f(x, y, z)\) – некоторые функции независимых переменных. Функция А описывает «коэффициент распространения» величины u и может являться тензорной величиной в случае анизотропной среды. Функция f это функция источников – скалярная величина, показывающая плотность «скорости появления» величины u в единице объема. В качестве величин, входящих в это уравнение могут использоваться, температура, коэффициент теплопроводности, плотность тепловых источников или потенциал эл. поля, диэлектрическая проницаемость и плотность зарядов и т.д

Параболические уравнения¶

Параболические уравнения появляются в нестационарных задачах теплопроводности, диффузии, иногда параболические задачи получаются из гиперболических уравнений (параболическое приближение в оптике) и т. д. Уравнение теплопроводности, например, имеет вид:

В первом слагаемом коэффициенты это плотность и удельная теплоемкость, во втором слгаемом – коэффициент теплопроводности, правая часть – плотность источников тепла.

Гиперболические уравнения¶

Гиперболические уравнения, часто называют волновыми уравнениями, т.к. с их помощью описывается распространения волн (упругих, электро — магнитных, сдвиговых). К этому же типу уравнений относится уравнение Шредингера квантовой механики.

Начальные и граничные условия¶

Из курса высшей математики известно, что дифференциальные уравнения, как правило, имеют бесконечное множество решений. Это связано с появлением в процессе интегрирования констант, при любых значениях которых решение удовлетворяет исходному уравнению. Решение задач физики связано с нахождением зависимостей от координат и времени определенных физических величин, которые, безусловно, должны удовлетворять требованиям однозначности, конечности и непрерывности. Иными словами, любая задача физики предполагает поиск единственного решения (если оно вообще существует). Поэтому математическая формулировка физической задачи должна помимо основных дифференциальных уравнений, описывающих искомые функции, включать дополнительные уравнения (дифференциальные или алгебраические), описывающие искомые функции на границах рассматриваемой области в любой момент времени и во всех внутренних точках области в начальный момент времени. Эти дополнительные уравнения называют соответственно граничными и начальными условиями задачи. Условия, относящиеся к точкам пространства, называются граничными. Обычно это неизменные условия, накладываемые на значение функции или на ее производную (поток через границу) на границе рассматриваемой области. Начальные условия – условия о значениях физической величины в начальный момент времени. Только после задания обоих типов условий можно получить описание развития процесса во времени. Для ДУЧП редко решают задачи, когда условия внутри области заданы для различных моментов времени, т.к. это сильно усложняет и без того не простую процедуру поиска решения.

Курсовая работа: Решение параболических уравнений

Реферат

В курсовой работе рассматривается метод сеток решения параболических уравнений. Теоретическая часть включает описание общих принципов метода, его применение к решению параболических уравнений, исследование разрешимости получаемой системы разностных уравнений. В практической части разрабатывается программа для численного решения поставленной задачи. В приложении представлен текст программы и результаты выполнения тестовых расчетов.

Объем курсовой работы: 33 с.

Ключевые слова: параболическое уравнение, уравнение теплопроводности, метод сеток, краевая задача, конечные разности.

1. Теоретическая часть

1.1 Метод сеток решения уравнений параболического типа

1.2 Метод прогонки решения разностной задачи для уравненийпараболического типа

1.3 Оценка погрешности и сходимость метода сеток

1.4 Доказательство устойчивости разностной схемы

2. Реализация метода

2.1 Разработка программного модуля

2.2 Описание логики программного модуля

2.3 Пример работы программы

К дифференциальным уравнениям с частными производными приходим при решении самых разнообразных задач. Например, при помощи дифференциальных уравнений с частными производными можно решать задачи теплопроводности, диффузии, многих физических и химических процессов.

Как правило, найти точное решение этих уравнений не удается, поэтому наиболее широкое применение получили приближенные методы их решения. В данной работе ограничимся рассмотрением дифференциальных уравнений с частными производными второго порядка, а точнее дифференциальными уравнениями с частными производными второго порядка параболического типа, когда эти уравнения являются линейными, а искомая функция зависит от двух переменных. В общем случае такое уравнение записывается следующим образом:

.

Заметим, что численными методами приходится решать и нелинейные уравнения, но находить их решение много труднее, чем решение линейных уравнений.

введем в рассмотрение величину . В том случае, когда уравнение называется параболическим. В случае, когда величина не сохраняет знак, имеем смешанный тип дифференциального уравнения. Следует отметить, что в дифференциальном уравнении все функции являются известными, и они определены в области , в которой мы ищем решение.

1. Теоретическая часть

1.1 Метод сеток решения уравнений параболического типа

Для решения дифференциальных уравнений параболического типа существует несколько методов их численного решения на ЭВМ, однако особое положение занимает метод сеток, так как он обеспечивает наилучшие соотношения скорости, точности полученного решения и простоты реализации вычислительного алгоритма. Метод сеток еще называют методом конечных разностей.Пусть дано дифференциальное уравнение

. (1.1)

Требуется найти функцию в области с границей при заданных краевых условиях. Согласно методу сеток в плоской области строится сеточная область , состоящая из одинаковых ячеек. При этом область должна как можно лучше приближать область . Сеточная область (то есть сетка) состоит из изолированных точек, которые называются узлами сетки. Число узлов будет характеризоваться основными размерами сетки : чем меньше , тем больше узлов содержит сетка. Узел сетки называется внутренним, если он принадлежит области , а все соседние узлы принадлежат сетке . В противном случае он называется граничным. Совокупность граничных узлов образует границу сеточной области .

Сетка может состоять из клеток разной конфигурации: квадратных, прямоугольных, треугольных и других. После построения сетки исходное дифференциальное уравнение заменяется разностным уравнением во всех внутренних узлах сетки. Затем на основании граничных условий устанавливаются значения искомого решения в граничных узлах. Присоединяя граничные условия сеточной задачи к разностным уравнениям, записанных для внутренних узлов, получаем систему уравнений, из которой определяем значения искомого решения во всех узлах сетки.

Замена дифференциального уравнения разностным может быть осуществлена разными способами. Один из способов аппроксимации состоит в том, что производные, входящие в дифференциальное уравнение, заменяются линейными комбинациями значений функции в узлах сетки по тем или иным формулам численного дифференцирования. Различные формулы численного дифференцирования имеют разную точность, поэтому от выбора формул аппроксимации зависит качество аппроксимации дифференциального уравнения разностным уравнением.

Рассмотрим неоднородное уравнение теплопроводности, являющееся частным случаем уравнений параболического типа:

, (1.2)

– известная функция.

Будем искать решение этого уравнения в области

Заметим, что эту полуполосу всегда можно привести к полуполосе, когда . Уравнение (1.2) будем решать с начальными условиями:

, (1.3)

– известная функция, и краевыми условиями:

(1.4)

где – известные функции переменной .

Для решения задачи область покроем сеткой .

Узлы сетки, лежащие на прямых , и будут граничными. Все остальные узлы будут внутренними. Для каждого внутреннего узла дифференциальное уравнения (1.2) заменим разностным. При этом для производной воспользуемся следующей формулой:

.

Для производной запишем следующие формулы:

,

,

.

Можем получить три вида разностных уравнений:

, (1.5)

, (1.6)

, (1.7)

.

Разностные уравнения (1.5) аппроксимируют уравнение (1.2) с погрешностью , уравнение (1.6) – с такой же погрешностью, а уравнение (1.7) уже аппроксимирует уравнение (1.2) с погрешностью .

В разностной схеме (1.5) задействованы 4 узла. Конфигурация схемы (1.5) имеет вид:

В схеме (1.6) также участвуют 4 узла, и эта схема имеет вид:

В схеме (1.7) участвуют 5 узлов, и эта схема имеет вид:

Первая и третья схемы – явные, вторая схема неявная. В случае явных схем значения функции в узле очередного слоя можно найти, зная значения в узлах предыдущих слоев. В случае неявных схем для нахождения значений решения в узлах очередного слоя приходится решать систему уравнений.

Для узлов начального (нулевого) слоя значения решения выписываются с помощью начального условия (1.3):

(1.8)

Для граничных узлов, лежащих на прямых и , заменив производные по формулам численного дифференцирования, получаем из граничных условий (1.4) следующие уравнения:

(1.9)

Уравнения (1.9) аппроксимируют граничные условия (1.4) с погрешностью , так как используем односторонние формулы численного дифференцирования. Погрешность аппроксимации можно понизить, если использовать более точные односторонние (с тремя узлами) формулы численного дифференцирования.

Присоединяя к системе разностных уравнений, записанных для внутренних узлов, начальные и граничные условия (1.8) и (1.9) для разностной задачи получим полные разностные схемы трех видов. Для проведения вычислений самой простой схемой оказывается первая: достаточно на основании начального условия найти значения функции в узлах слоя , чтобы в дальнейшем последовательно определять значения решения в узлах слоев и т.д.

Третья схема также весьма проста для проведения вычислений, но при ее использовании необходимо кроме значений решения в узлах слоя найти каким-то образом значения функции и в слое . Далее вычислительный процесс легко организовывается. В случае второй схемы, которая является неявной, обязательно приходится решать систему уравнений для нахождения решения сеточной задачи.

С точки зрения точечной аппроксимации третья схема самая точная.

Введем в рассмотрение параметр . Тогда наши разностные схемы можно переписать, вводя указанный параметр. При этом самый простой их вид будет при .

В любом случае согласно методу сеток будем иметь столько уравнений, сколько имеется неизвестных (значения искомой функции в узлах). Число неизвестных равно числу всех узлов сетки. Решая систему уравнений, получаем решение поставленной задачи.

Разрешимость этой системы для явных схем вопросов не вызывает, так как все действия выполняются в явно определенной последовательности. В случае неявных схем разрешимость системы следует исследовать в каждом конкретном случае. Важным вопросом является вопрос о том, на сколько найденные решения хорошо (адекватно) отражают точные решения, и можно ли неограниченно сгущая сетку (уменьшая шаг по осям) получить приближенные решения, сколь угодно близкие к точным решениям? Это вопрос о сходимости метода сеток.

На практике следует применять сходящиеся разностные схемы, причем только те из них, которые являются устойчивыми, то есть при использовании которых небольшие ошибки в начальных или промежуточных результатах не приводят к большим отклонениям от точного решения. Всегда следует использовать устойчивые разностные схемы, проводя соответствующие исследования на устойчивость.

Первая из построенных выше разностных схем в случае первой краевой задачи будет устойчивой при . Вторая схема устойчива при всех значениях величины . Третья схема неустойчива для любых , что сводит на нет все ее преимущества и делает невозможной к применению на ЭВМ.

Явные схемы просты для организации вычислительного процесса, но имеют один весьма весомый недостаток: для их устойчивости приходится накладывать сильные ограничения на сетку. Неявные схемы свободны от этого недостатка, но есть другая трудность – надо решать системы уравнений большой размерности, что на практике при нахождении решения сложных уравнений в протяженной области с высокой степенью точности может потребовать больших объемов памяти ЭВМ и времени на ожидание конечного результата. К счастью, прогресс не стоит на месте и уже сейчас мощности современных ЭВМ вполне достаточно для решения поставленных перед ними задач.

1.2 Метод прогонки решения разностной задачи для уравнений параболического типа

Рассмотрим частный случай задачи, поставленной в предыдущем разделе. В области

найти решение уравнения

(1.10)

с граничными условиями

(1.11)

и начальным условием

. (1.12)

Рассмотрим устойчивую вычислительную схему, для которой величина не является ограниченной сверху, а, значит, шаг по оси и может быть выбран достаточно крупным. Покроем область сеткой

Запишем разностное уравнение, аппроксимирующее дифференциальное уравнение (1.10) во всех внутренних узлах слоя . При этом будем использовать следующие формулы:

,

.

Эти формулы имеет погрешность . В результате уравнение (1.10) заменяется разностным:

(1.13)

Перепишем (1.13) в виде:

. (1.14)

Данная вычислительная схема имеет следующую конфигурацию:

(1.15)

(1.16)

Система (1.14) – (1.16) представляет собой разностную задачу, соответствующую краевой задаче (1.10) – (1.12).

За величину мы положили .

(1.14) – (1.16) есть система линейных алгебраических уравнений с 3-диагональной матрицей, поэтому ее резонно решать методом прогонки, так как он в несколько раз превосходит по скорости метод Гаусса.

. (1.17)

Здесь , – некоторые коэффициенты, подлежащие определению. Заменив в (1.17) на будем иметь:

. (1.18)

Подставив уравнение (1.18) в (1.14) получим:

. (1.19)

Сравнив (1.17) и (1.19) найдем, что:

(1.20)

Положим в (1.14) и найдем из него :

,

.

(1.21)

Заметим, что во второй формуле (1.21) величина подлежит замене на согласно первому условию (1.15).

С помощью формул (1.21) и (1.20) проводим прогонку в прямом направлении. В результате находим величины

Затем осуществляем обратный ход. При этом воспользуемся второй из формул (1.15) и формулой (1.17). Получим следующую цепочку формул:

(1.22)

Таким образом, отправляясь от начального слоя , на котором известно решение, мы последовательно можем найти значения искомого решения во всех узлах стеки.

Итак, мы построили неявную схему решения дифференциальных уравнений параболического типа методом сеток.

1.3 Оценка погрешности и сходимость метода сеток

При решении задачи методом сеток мы допускаем погрешность, состоящую из погрешности метода и вычислительной погрешности.

Погрешность метода – это та погрешность, которая возникает в результате замены дифференциального уравнения разностным, а также погрешность, возникающая за счет сноса граничных условий с на .

Вычислительная погрешность – это погрешность, возникающая при решении системы разностных уравнений, за счет практически неизбежных машинных округлений.

Существуют специальные оценки погрешности для решения задач методом сеток. Однако эти оценки содержат максимумы модулей производных искомого решения, поэтому пользоваться ими крайне неудобно, однако эти теоретические оценки хороши тем, что из них видно: если неограниченно измельчать сетку, то последовательность решений будет сходиться равномерно к точному решению. Здесь мы столкнулись с проблемой сходимости метода сеток. При использовании метода сеток мы должны быть уверены, что, неограниченно сгущая сетку, можем получить решение, сколь угодно близкое к точному.

Итак, на примере решения краевой задачи для дифференциального уравнения параболического типа рассмотрим основные принципы метода сеток. Отметим, что если при решении разностной задачи небольшие ошибки в начальных и краевых условиях (или в промежуточных результатах) не могут привести к большим отклонениям искомого решения, то говорят, что задача поставлена корректно в смысле устойчивости по входным данным. Разностную схему называют устойчивой, если вычислительная погрешность неограниченно не возрастает. В противном случае схема называется неустойчивой.

1.4 Доказательство устойчивости разностной схемы

Пусть есть решение уравнения (1.14), удовлетворяющее возмущенным начальным условиям

и граничным условиям

.

Здесь – некоторые начальные ошибки.

.

Погрешность будет удовлетворять уравнению

(1.23)

(в силу линейности уравнения (1.14)), а также следующими граничными и начальными условиями:

, (1.24)

. (1.25)

Частное решение уравнения (1.23) будем искать в виде

. (1.26)

Здесь числа и следует подобрать так, чтобы выражение (1.26) удовлетворяло уравнению (1.23) и граничным условиям (1.24).

При целом удовлетворяет уравнению (1.23) и условиям (1.24).

Подставим уравнение (1.26) в уравнение (1.24). При этом получим:

.

Выражение в квадратных скобках равно

.

Подставляя это выражение в предыдущее уравнение вместо выражения в квадратных скобках и проводя сокращения на получим:

,

откуда находим :

.

Таким образом, согласно уравнению (1.26), получаем линейно-независимые решения уравнения (1.23) в виде

Заметим, что это частное решение удовлетворяет однородным краевым условиям (1.24). Линейная комбинация этих частных решений также является решением уравнения (1.23):

, (1.27)

причем , определенное в выражении (1.27), удовлетворяет для любых однородным граничным условиям (1.24). Коэффициенты подбираются исходя из того, что должны удовлетворять начальным условиям (1.25):

.

В результате получаем систему уравнений

,

содержащую уравнений с неизвестными . Решая построенную систему определяем неизвестные коэффициенты .

Для устойчивости исследуемой разностной схемы необходимо, чтобы при любых значениях коэффициентов , определяемое формулой (1.27), оставалось ограниченной величиной при . Для этого достаточно, чтобы для всех выполнялось неравенство

. (1.28)

Анализируя (1.28) видим, что это неравенство выполняется для любых значений параметра . При этом при или в крайнем случае, когда

,

остается ограниченным и при фиксированном не возрастает по модулю. Следовательно мы доказали, что рассматриваемая разностная схема устойчива для любых значений параметра .

2. Реализация метода

2.1 Разработка программного модуля

Поставлена цель: разработать программный продукт для нахождения приближенного решения параболического уравнения:

(1.29)

,

(1.30)

Разобьем область прямыми

– шаг по оси ,

– шаг по оси .

Заменив в каждом узле производные конечно-разностными отношениями по неявной схеме, получим систему вида:

. (1.31)

Преобразовав ее, получим:

, (1.32)

В граничных узлах

(1.33)

В начальный момент

. (1.34)

Эта разностная схема устойчива при любом . Будем решать систему уравнений (1.32), (1.33) и (1.34) методом прогонки. Для этого ищем значения функции в узле в виде

, (1.35)

где – пока неизвестные коэффициенты.

. (1.36)

Подставив значение (1.35) в (1.32) получим:

.

. (1.37)

Из сравнения (1.35) и (1.37) видно, что

. (1.38)

. (1.39)

Для из (1.32) имеем:

.

.

Откуда, используя (1.35), получим:

, (1.40)

. (1.41)

Используя данный метод, мы все вычисления проведем в следующем порядке для всех .

1) Зная значения функции на границе (1.33), найдем значения коэффициентов по (1.40) и по (1.38) для всех .

2) Найдем по (1.41), используя для начальное условие (1.34).

3) Найдем по формулам (1.39) для .

4) Найдем значения искомой функции на слое, начиная с :

2.2 Описание логики программного модуля

Листинг программы приведен в приложении 1. Ниже будут описаны функции программного модуля и их назначение.

Функция main() является базовой. Она реализует алгоритм метода сеток, описанного в предыдущих разделах работы.

Функция f (x, y) представляет собой свободную функцию двух переменных дифференциального уравнения (1.29). В качестве аргумента в нее передаются два вещественных числа с плавающей точкой типа float. На выходе функция возвращает значение функции , вычисленное в точке .

Функции mu_1 (t) и mu_2 (t) представляют собой краевые условия. В них передается по одному аргументу (t) вещественного типа (float).

Функция phi() является ответственной за начальный условия.

В функции main() определены следующие константы:

– правая граница по для области ;

– правая граница по для области ;

– шаг сетки по оси ;

– шаг сетки по оси ;

Варьируя и можно изменять точность полученного решения от менее точного к более точному. Выше было доказано, что используемая вычислительная схема устойчива для любых комбинаций параметров и , поэтому при устремлении их к нуля можем получить сколь угодно близкое к точному решение.

Программа снабжена тремя механизмами вывода результатов работы: на экран в виде таблицы, в текстовый файл, а также в файл списка математического пакета WaterlooMaple. Это позволяет наглядно представить полученное решение.

Программа написана на языке программирования высокого уровня Borland C++ 3.1 в виде приложения MS-DOS. Обеспечивается полная совместимость программы со всеми широко известными операционными системами корпорации Майкрософт: MS-DOS 5.x, 6.xx, 7.xx, 8.xx, Windows 9x/Me/2000/NT/XP.

2.3 Пример работы программы

В качестве примера рассмотрим численное решение следующего дифференциального уравнения параболического типа:

,

Задав прямоугольную сетку с шагом оси 0.1 и по оси 0.01, получим следующее решение:

2.10 1.91 1.76 1.63 1.53 1.44 1.37 1.31 1.26 1.22 1.18

2.11 1.75 1.23 1.20 1.15 1.10 1.07 1.04 1.04 1.07 1.21

2.12 1.61 0.95 0.96 0.93 0.91 0.90 0.90 0.94 1.03 1.24

2.13 1.51 0.79 0.81 0.81 0.80 0.81 0.83 0.89 1.03 1.27

2.14 1.45 0.69 0.73 0.74 0.74 0.76 0.80 0.88 1.04 1.31

2.15 1.41 0.64 0.69 0.70 0.71 0.74 0.79 0.89 1.05 1.34

В таблице ось x расположена горизонтально, а ось t расположена вертикально и направлена вниз.

На выполнение программы на среднестатистическом персональном компьютере тратится время, равное нескольким миллисекундам, что говорит о высокой скорости алгоритма.

Подробно выходной файл output.txt, содержащий таблицу значений функции представлен в приложении 3.

В работе был рассмотрен метод сеток решения параболических уравнений в частных производных. Раскрыты основные понятия метода, аппроксимация уравнения и граничных условий, исследована разрешимость и сходимость получаемой системы разностных уравнений.

На основании изученного теоретического материала была разработана программная реализация метода сеток, проанализирована ее сходимость и быстродействие, проведен тестовый расчет, построен графики полученного численного решения.

1. Березин И.С., Жидков Н.П.Методы вычислений. Т.2. – М.: Физматгиз, 1962.

2. Тихонов А.Н., Самарский А.А.Уравнения математической физики. – М.: Наука, 1972.

3. Пирумов У.Г.Численные методы. – М.: Издательство МАИ, 1998.

4. Калиткин Н.Н.Численные методы. – М.: Наука, 1976.

Виды дифференциальных уравнений

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1 -го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2 -го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y ‘ = d x d y , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )

Начнем с примеров таких уравнений.

y ‘ = 0 , y ‘ = x + e x — 1 , y ‘ = 2 x x 2 — 7 3

Оптимальным для решения дифференциальных уравнений f ( x ) · y ‘ = g ( x ) является метод деления обеих частей на f ( x ) . Решение относительно производной позволяет нам прийти к уравнению вида y ‘ = g ( x ) f ( x ) . Оно является эквивалентом исходного уравнения при f ( x ) ≠ 0 .

Приведем примеры подобных дифференциальных уравнений:

e x · y ‘ = 2 x + 1 , ( x + 2 ) · y ‘ = 1

Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х , при которых функции f ( x ) и g ( x ) одновременно обращаются в 0 . В качестве дополнительного решения в уравнениях f ( x ) · y ‘ = g ( x ) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х .

Наличие дополнительных решений возможно для дифференциальных уравнений x · y ‘ = sin x , ( x 2 — x ) · y ‘ = ln ( 2 x 2 — 1 )

Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1 -го порядка».

Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )

Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f ( y ) d y = g ( x ) d x . Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у , разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.

Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫ f ( y ) d y = ∫ f ( x ) d x

К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:

y 2 3 d y = sin x d x , e y d y = ( x + sin 2 x ) d x

Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f 2 ( y ) ⋅ g 1 ( x ) . Так мы придем к уравнению f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x . Преобразование можно будет считать эквивалентным в том случае, если одновременно f 2 ( y ) ≠ 0 и g 1 ( x ) ≠ 0 . Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.

В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: d y d x = y · ( x 2 + e x ) , ( y 2 + a r c cos y ) · sin x · y ‘ = cos x y .

К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = a x + b y . Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y ‘ = f ( a x + b y ) , a , b ∈ R .

Подставив z = 2 x + 3 y в уравнение y ‘ = 1 e 2 x + 3 y получаем d z d x = 3 + 2 e z e z .

Заменив z = x y или z = y x в выражениях y ‘ = f x y или y ‘ = f y x , мы переходим к уравнениям с разделяющимися переменными.

Если произвести замену z = y x в исходном уравнении y ‘ = y x · ln y x + 1 , получаем x · d z d x = z · ln z .

В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.

Предположим, что в условии задачи нам дано уравнение y ‘ = y 2 — x 2 2 x y . Нам необходимо привести его к виду y ‘ = f x y или y ‘ = f y x . Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x 2 или y 2 .

Нам дано уравнение y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R .

Для того, чтобы привести исходное уравнение к виду y ‘ = f x y или y ‘ = f y x , нам необходимо ввести новые переменные u = x — x 1 v = y — y 1 , где ( x 1 ; y 1 ) является решением системы уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0

Введение новых переменных u = x — 1 v = y — 2 в исходное уравнение y ‘ = 5 x — y — 3 3 x + 2 y — 7 позволяет нам получить уравнение вида d v d u = 5 u — v 3 u + 2 v .

Теперь выполним деление числителя и знаменателя правой части уравнения на u . Также примем, что z = u v . Получаем дифференциальное уравнение с разделяющимися переменными u · d z d u = 5 — 4 z — 2 z 2 3 + 2 z .

Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».

Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )

Приведем примеры таких уравнений.

К числу линейных неоднородных дифференциальных уравнений 1 -го порядка относятся:

y ‘ — 2 x y 1 + x 2 = 1 + x 2 ; y ‘ — x y = — ( 1 + x ) e — x

Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y ( x ) = u ( x ) v ( x ) . Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».

Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a

Приведем примеры подобных уравнений.

К числу дифференциальных уравнений Бернулли можно отнести:

y ‘ + x y = ( 1 + x ) e — x y 2 3 ; y ‘ + y x 2 + 1 = a r c t g x x 2 + 1 · y 2

Для решения уравнений этого вида можно применить метод подстановки z = y 1 — a , которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1 -го порядка. Также применим метод представления функции у в качестве y ( x ) = u ( x ) v ( x ) .

Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.

Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0

Если для любых значений x и y выполняется ∂ P ( x , y ) ∂ y = ∂ Q ( x , y ) ∂ x , то этого условия необходимо и достаточно, чтобы выражение P ( x , y ) d x + Q ( x , y ) d y представляло собой полный дифференциал некоторой функции U ( x , y ) = 0 , то есть, d U ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y . Таким образом, задача сводится к восстановлению функции U ( x , y ) = 0 по ее полному дифференциалу.

Выражение, расположенное в левой части записи уравнения ( x 2 — y 2 ) d x — 2 x y d y = 0 представляет собой полный дифференциал функции x 3 3 — x y 2 + C = 0

Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».

Дифференциальные уравнения второго порядка

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R

Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k 2 + p k + q = 0 . Здесь возможны три варианта в зависимости от различных p и q :

  • действительные и различающиеся корни характеристического уравнения k 1 ≠ k 2 , k 1 , k 2 ∈ R ;
  • действительные и совпадающие k 1 = k 2 = k , k ∈ R ;
  • комплексно сопряженные k 1 = α + i · β , k 2 = α — i · β .

Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:

  • y = C 1 e k 1 x + C 2 e k 2 x ;
  • y = C 1 e k x + C 2 x e k x ;
  • y = e a · x · ( C 1 cos β x + C 2 sin β x ) .

Пример 13

Предположим, что у нас есть линейное однородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами y ‘ ‘ + 3 y ‘ = 0 . Найдем корни характеристического уравнения k 2 + 3 k = 0 . Это действительные и различные k 1 = — 3 и k 2 = 0 . Это значит, что общее решение исходного уравнения будет иметь вид:

y = C 1 e k 1 x + C 2 e k 2 x ⇔ y = C 1 e — 3 x + C 2 e 0 x ⇔ y = C 1 e — 3 x + C 2

Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2 -го порядка с постоянными коэффициентами».

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R

Основным способом решение уравнений данного вида является нахождение суммы общего решения y 0 , которое соответствует линейному однородному дифференциальному уравнению y ‘ ‘ + p y ‘ + q y = 0 , и частного решения y

исходного уравнения. Получаем: y = y 0 + y

Способ нахождения y 0 мы рассмотрели в предыдущем пункте. Найти частное решение y

мы можем методом неопределенных коэффициентов при определенном виде функции f ( x ) , которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.

К числу линейных неоднородных дифференциальных уравнений 2 -го порядка с постоянными коэффициентами относятся:

y ‘ ‘ — 2 y ‘ = ( x 2 + 1 ) e x ; y ‘ ‘ + 36 y = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x

Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2 -го порядка с постоянными коэффициентами».

Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )

Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.

На некотором отрезке [ a ; b ] общее решение линейного однородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 представлено линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, y = C 1 y 1 + C 2 y 2 .

Частные решения мы можем выбрать из систем независимых функций:

1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 x , e k 2 x , . . . , e k n x 3 ) e k 1 x , x · e k 1 x , . . . , x n 1 · e k 1 x , e k 2 x , x · e k 2 x , . . . , x n 2 · e k 2 x , . . . e k p x , x · e k p x , . . . , x n p · e k p x 4 ) 1 , c h x , s h x

Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.

Возьмем для примера линейное однородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = 0 .

Общее решение линейного неоднородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x ) мы можем найти в виде суммы y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

частное решение исходного дифференциального уравнения. Найти y 0 можно описанным выше способом. Определить y

нам поможет метод вариации произвольных постоянных.

Возьмем для примера линейное неоднородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = x 2 + 1 .

Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».

Дифференциальные уравнения высших порядков

Дифференциальные уравнения, допускающие понижение порядка

Мы можем провести замену y ( k ) = p ( x ) для того, чтобы понизить порядок исходного дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , которое не содержит искомой функции и ее производных до k — 1 порядка.

В этом случае y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p ‘ ‘ ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) , и исходное дифференциальное уравнение сведется к F 1 ( x , p , p ‘ , . . . , p ( n — k ) ) = 0 . После нахождения его решения p ( x ) останется вернуться к замене y ( k ) = p ( x ) и определить неизвестную функцию y .

Дифференциальное уравнение y ‘ ‘ ‘ x ln ( x ) = y ‘ ‘ после замены y ‘ ‘ = p ( x ) станет уравнением с разделяющимися переменными y ‘ ‘ = p ( x ) , и его порядок с третьего понизится до первого.

В уравнении, которое не содержит аргумента х и имеет вид F ( y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 , порядок может быть заменен на единицу следующим образом: необходимо провести замену d y d x = p ( y ) , где p ( y ( x ) ) будет сложной функцией. Применив правило дифференцирования, получаем:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y )
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.

Рассмотрим решение уравнения 4 y 3 y ‘ ‘ = y 4 — 1 . Путем замены d y d x = p ( y ) приведем исходное выражение к уравнению с разделяющимися переменными 4 y 3 p d p d y = y 4 — 1 .

Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )

Решение уравнений данного вида предполагает выполнение следующих простых шагов:

  • находим корни характеристического уравнения k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 ;
  • записываем общее решение ЛОДУ y 0 в стандартной форме, а общее решение ЛНДУ представляем суммой y = y 0 + y

— частное решение неоднородного дифференциального уравнения.

Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y

целесообразно использовать метод вариации произвольных постоянных.

Линейному неоднородному ДУ с постоянными коэффициентами y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = x cos x + sin x соответствует линейное однородное ДУ y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = 0 .

Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )

Найти решение ЛНДУ высших порядков можно благодаря сумме y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

— частное решение неоднородного дифференциального уравнения.

y 0 представляет собой линейную комбинацию линейно независимых функций y 1 , y 2 , . . . , y n , каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 в тождество. Частные решения y 1 , y 2 , . . . , y n обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.

После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y = y 0 + y

Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».

Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2

Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.


источники:

http://www.bestreferat.ru/referat-120286.html

http://zaochnik.com/spravochnik/matematika/differentsialnye-uravnenija/vidy-differentsialnyh-uravnenij/

Название: Решение параболических уравнений
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 21:20:53 10 октября 2009 Похожие работы
Просмотров: 900 Комментариев: 21 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно Скачать