Определить уравнение линии центров двух окружностей

Геометрия

План урока:

Уравнение линии в координатах

Если какое-то уравнение содержит две переменные – х и у, то какие-то пары значений этих чисел будут являться его решением, а какие-то нет. Однако каждой такой паре чисел можно сопоставить точку на координатной плоскости. Все вместе такие точки могут образовать линию, которую можно обозначить буквой L. В таком случае исходное уравнение называют уравнением линии L.

Мы уже рассматривали некоторые уравнения линий на плоскости, когда изучали графики функций. Если некоторую функцию у = у(х) рассматривать как уравнение, то тогда график функции у(х) будет той самой линией, которая задается уравнением. Например, парабола может быть задана уравнением у = х 2 .

Однако уравнение линии не обязательно выглядит как функция. Наиболее простой задачей является определение факта, принадлежит ли та или иная точка той линии, которая задана уравнением.

Задание. Какие из точек А (2;1), В (3; 2), С (– 2; 5) и D(0; 0) принадлежат линии, заданной уравнением:

Решение. Надо просто подставить координаты точек в уравнение и посмотреть, превратится ли оно при этом в верное равенство. Сначала подставляем точку А (2; 1):

Получилось верное равенство, значит, А принадлежит заданной линии. Теперь подставляем координаты В (3; 2):

Равенство неверное, следовательно, В на заданной линии не лежит. Проверяем третью точку С (– 2; 5):

Получили, что и С не является частью линии. Проверяем последнюю точку D (0; 0):

Справедливость равенства означает, что D принадлежит линии.

Использование координат и уравнений линии порождает две обратные друг другу задачи:

1) по заранее заданному уравнению определить геометрический вид линии;

2) для заданной геометрической фигуры, построенной на координатной плоскости, найти уравнение линии.

Геометрия занимается в первую очередь решением второй задачи. Первая же задача рассматривается по большей части в курсе алгебры при изучении графиков функций.

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

Но расстояние между точками М и С может быть вычислено по формуле

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры x0 и y0 окруж-ти равны нулю, и уравнение

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

Это ошибочное равенство, ведь в реальности левая часть больше:

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

Задание. Дано уравнение окружности

(x — 2) 2 + (y — 4) 2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

Далее можно, например, вычесть из (2) уравнение (3):

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

Ответ: (х – 3) 2 + (у – 3) 2 = 25

Уравнение прямой

Пусть на координатной плоскости построена произвольная прямая m. Для составления его уравнения отметим две точки А(х1; у1) и В(х2; у2) так, чтобы прямая m оказалась серединным перпендикуляром для отрезка АВ:

Тогда, согласно свойству серединного перпендикуляра,про любую точку М(х; у), лежащую на m, можно сказать, что она равноудалена от А и В, и наоборот, любая точка, НЕ лежащая на m, НЕ равноудалена от А и В. Это означает, что для точки M, если она лежит на m, должно выполняться равенство:

Квадратные корни равны, если одинаковы их подкоренные выражения, поэтому

Заметим, что так как точки А и В – различные, то хотя бы одна из разностей (2х2 – 2х1) и (2у2 – 2у1) будет не равна нулю, поэтому в (2) хотя бы один их коэффициентов а и b точно ненулевой. Это означает, что уравнение (2) является уравнением первой степени. Заметим, что (2) называют общим уравнением прямой, так как оно описывает любую прямую на плоскости. При более глубоком изучении геометрии вы познакомитесь с множеством других видов уравнений прямой (нормальным, каноническим, тангенциальным, параметрическим и т. п.).

В последнем примере коэффициент с равен нулю, поэтому его просто не записали.

Заметим важный аспект – одна и та же прямая может описываться различными уравнениями вида (2). Например, пусть уравнение прямой выглядит так:

Это уравнение равносильно предыдущему, хотя у них и различны коэффициенты а, b и c. Это значит, что однозначно определить эти коэффициенты при решении задач в большинстве случаев невозможно. Поэтому удобней рассмотреть два отдельных случая.

1) Если коэффициент b в уравнении прямой (2) не равен нулю, то его можно привести к виду:

Из курса алгебры мы помним, что ее графиком как раз является прямая. В большинстве случаев уравнение прямой удобно записывать именно в таком виде. Напомним, что число k называется угловым коэффициентом прямой.Поэтому (3) так и называют – уравнением прямой с угловым коэффициентом. В качестве примера подобных уравнений можно привести:

Каждое из них описывает вертикальную прямую, параллельную оси Оу.

Задание. Прямая задана уравнением

Постройте ее на координатной плоскости

Решение. Для построения прямой надо всего лишь найти две различные точки, лежащие на ней, и соединить их. Мы будем брать произвольные значения координаты х, подставлять их в уравнение и находить соответствующее им значение координаты у. Подставим х = 1:

Получили другую точку (– 1; – 1). Осталось отметить эти две точки на и соединить их:

Задание. Составьте уравнение прямой, проходящей через точки D(1; 10) и Е(– 1; – 4).

Решение. Задачу можно решить разными способами.

Способ 1 – универсальный и более сложный.

В общем виде уравнение прямой выглядит так:

Нам надо найти коэффициенты а, b и c. Для этого просто подставляем координаты известных точек в уравнение. Начнем с координат D:

Нам удалось выразить коэффициента двумя различными выражениями (1) и (2). Так как в них одинаковы левые части, то можно приравнять и правые части:

Мы можем взять любое значение коэффициента с (кроме нуля), и при этом получатся различные, но равносильные друг другу уравнения. Удобно взять с = 3, тогда в уравнении исчезнут дроби:

Это и есть ответ задания.

Далее рассмотрим более простой способ, который, однако, может потребовать анализа различных вариантов.

Уравнение прямой может иметь либо вид

если прямая является графиком линейной функции, либо вид

если прямая параллельна оси Оу. Во втором случае у всех точек прямой абсцисса должна быть одинакова, однако у точек D(1; 10) и Е(– 1; – 4) она различна, поэтому ее точно можно описать уравнением

Надо найти коэффициенты k и d. Подставим в уравнение координаты D(1; 10):

Итак, уравнение можно записать так:

Задание. Запишите уравнение прямой, если ей принадлежат точки:

Подставим сюда уже известное нам значение d:

В (1) и (2) мы выразили d с помощью разных выражений, которые теперь можно приравнять:

То, что коэффициент k оказался нулевым, означает, что прямая параллельна оси Ох.

в) Попытаемся сделать те же действия, что и в двух предыдущих примерах, подставляя точки в уравнение у = kx + d:

На этот раз мы не смогли найти коэффициент k, а вместо этого получили ошибочное равенство. То есть уравнение просто не имеет решений. Что же это значит? Из этого факта следует, что в этом примере уравнение прямой НЕ может иметь вид

Значит, оно имеет другой вид:

Действительно, у обеих точек (2; 7) и (2; 8) одинаковы абсциссы. Это значит, что прямая, проходящая через них, вертикальная. Коэффициент С как раз равен значению этой абсциссы, так что уравнение выглядит так:

Ответ а) у = 1,5х + 3; б) у = 8; в) х = 2.

Задание. Найдите площадь треугольника MON, изображенного на рисунке, если известно, что M и N лежат на прямой, задаваемой уравнением:

Решение. ∆MON – прямоугольный, и для вычисления его площади нужно найти длины OM и ON. По рисунку видно, что М лежит на оси Ох, то есть у неё ордината нулевая:

Зная это, легко найдем и абсциссу М, ведь координаты М при их подстановке в уравнение прямой должны давать верное равенство:

Далее рассмотрим точку N. Она уже лежит на Оу, а потому у нее нулевой оказывается абсцисса:

Напомним, что площадь прямоугольного треугольника может быть вычислена по формуле:

Задачи на пересечение двух фигур

Метод координат помогает находить точки, в которых пересекаются те или иные геометрические фигуры. В большинстве случаев надо просто составить систему из уравнений, задающих эти фигуры, и найти их общее решение. В курсе алгебры мы уже рассматривали как решение простых, в основном линейных систем, так и решение более сложных, нелинейных систем. Рассмотрим несколько задач на эту тему.

Задание. Две прямые заданы уравнениями:

Определите, в какой точке они пересекаются.

Решение. Если точка пересечения прямых существует, то ее координаты являются решением каждого из двух уравнений. Таким, образом, нам надо просто решить систему:

Мы нашли единственное решение системы – это пара чисел (3; – 2). Эта же пара определяет координаты искомой нами точки.

Задание. Найдите точки пересечения окруж-ти и прямой, если они задаются уравнениями

Решаем квадратное уравнение, используя дискриминант:

Мы нашли два различных значения у. Это значит, что прямая пересекается с окруж-тью в двух различных точках, а найденные нами числа – их ординаты. Отметим, что возможны случаи, когда корень только один (и тогда у окруж-ти с прямой одна общая точка, то есть они касаются), и когда корней вовсе нет (тогда окруж-ть и прямая не пересекаются). В нашем же примере осталось найти абсциссы точек. Для этого используем уравнение (3):

Получили в итоге пары точек (3; 8) и (6; 7), в которых заданная окруж-ть и прямая пересекаются.

Ответ: (3; 8) и (6; 7).

Задание. Две окруж-ти заданы уравнениями:

Для ее решения сначала раскроем скобки в обоих уравнениях и приведем подобные слагаемые:

Нам удалось выразить у через х. Теперь снова запишем одно из исходных уравнений окруж-ти, но заменим в нем у с помощью только что найденного выражения:

Мы нашли абсциссы точек пересечения окруж-тей, теперь можно вернуться к (1), чтобы найти и ординаты:

Получили точки (5; 2) и (4; 3).

В конце решим одну задачу чуть более высокого уровня сложности.

Задание. К окруж-ти радиусом 5, чей центр совпадает с началом координат, построена касательная в точке (3; 4). Составьте уравнение этой касательной.

Решение. Сначала составим уравнение окруж-ти. Так как ее центр находится в начале координат, а радиус имеет длину 5, то оно примет вид:

Нам надо найти коэффициенты k и d, а для этого надо составить какие-нибудь уравнения с этими переменными. Нам известно, что касательная проходит через точку (3; 4), а потому эти координаты можно подставить в (2):

Обратите внимание, что мы получили квадратное уравнение относительно переменной х. Если бы нам были известны k и d, то мы смогли бы его решить, и тогда мы определили бы точки пересечения прямой и окруж-ти. В этой задаче k и d нам неизвестны, но мы знаем, что окруж-ть и прямая касаются, то есть имеют ровно одну общую точку. Но тогда и квадратное уравнение (4) должно иметь только одно решение! Это означает, что его дискриминант равен нулю. Сначала выпишем коэффициенты квадратного уравнения, используемые при вычислении дискриминанта:

Теперь у нас есть два уравнения, (3) и (5), которые содержат только переменные k и d. Осталось лишь совместно решить их. Для этого подставим (3) в (5):

В рамках урока мы выяснили, как выглядят уравнения окруж-ти и прямой, а также научились решать несколько типовых заданий, в которых эти уравнения необходимо использовать. Хотя формулы, используемые при этом, могут показаться слишком сложными, главное – просто набить руку в их применении, решая как можно больше задач.

Две окружности на плоскости.
Общие касательные к двум окружностям

Взаимное расположение двух окружностей
Общие касательные к двум окружностям
Формулы для длин общих касательных и общей хорды
Доказательства формул для длин общих касательных и общей хорды

Взаимное расположение двух окружностей

Взаимное расположение на плоскости двух окружностей радиусов r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей больше суммы их радиусов

Расстояние между центрами окружностей равно сумме их радиусов

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Расстояние между центрами окружностей меньше разности их радиусов

d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей больше суммы их радиусов

Расстояние между центрами окружностей равно сумме их радиусов

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Расстояние между центрами окружностей меньше разности их радиусов

d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей

Расстояние между центрами окружностей равно разности их радиусов

Расстояние между центрами окружностей меньше разности их радиусов

d внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также
две общих внешних касательных. Других общих касательных нет.

Каждая из окружностей лежит вне другой

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

ФигураРисунокСвойства
Две окружности на плоскости
Каждая из окружностей лежит вне другой
Внешнее касание двух окружностей
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Каждая из окружностей лежит вне другой
Внешнее касание двух окружностей
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Каждая из окружностей лежит вне другой

Расстояние между центрами окружностей больше суммы их радиусов

Внешнее касание двух окружностей

Расстояние между центрами окружностей равно сумме их радиусов

Внутреннее касание двух окружностей
Окружности пересекаются в двух точках

Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов

r1 – r2 лежит внутри другой

Внутренняя касательная к двум окружностям
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Внешнее касание двух окружностей

Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Внешнее касание двух окружностей
Каждая из окружностей лежит вне другой

Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.

Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.

Существует единственная общая внешняя касательная. Других общих касательных нет.

Существуют две общих внешних касательных. Других общих касательных нет.

Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.

Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет

Формулы для длин общих касательных и общей хорды двух окружностей

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Внутреннее касание двух окружностей
Окружности пересекаются в двух точках
Внешнее касание двух окружностей
Каждая из окружностей лежит вне другой

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Длина общей хорды двух окружностей вычисляется по формуле

ФигураРисунокФормула
Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Общая хорда двух пересекающихся окружностей

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Длина общей хорды двух окружностей вычисляется по формуле

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Общая хорда двух пересекающихся окружностей

Длина общей внешней касательной к двум окружностям вычисляется по формуле

Длина общей внутренней касательной к двум окружностям вычисляется по формуле

Внешняя касательная к двум окружностям
Внутренняя касательная к двум окружностям
Общая хорда двух пересекающихся окружностей

Длина общей хорды двух окружностей вычисляется по формуле

Доказательства формул для длин общих касательных и общей хорды двух окружностей

Утверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле

что и требовалось доказать.

Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле

что и требовалось доказать.

Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле

Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3,

1.3. Аналитическая геометрия. Аналитическая геометрия на плоскости

1.3.1. Аналитическая геометрия на плоскости

Если на плоскости произвольно взята декартова система координат, то всякое уравнение первой степени относительно текущих координат х и у

где А и B одновременно не равны нулю, определяет прямую в этой системе координат.

Верно и обратное утверждение: в декартовой системе координат всякая прямая может быть представлена уравнением первой степени вида (1.24).

Уравнение (1.24) называется общим уравнением прямой.

Углом наклона прямой к оси Ох называется наименьший угол j, на который нужно повернуть в положительном направлении ось абсцисс до ее совпадения с данной прямой. Направление любой прямой характеризуется ее угловым коэффициентом к, который определяется как тангенс угла наклона j этой прямой к оси Ох, т. е.

Исключение составляет только лишь прямая, перпендикулярная оси Ох, которая не имеет углового коэффициента.

Уравнение прямой, имеющей угловой коэффициент к и пересекающей ось Оу в точке, ордината которой равна b (начальная ордината), записывается в виде:

Частные случаи уравнения (1.24) приведены в следующей таблице.

Угловой коэффициент к прямой, заданной общим уравнением Ax + By + C= 0, находится как коэффициент при х в выражении у через х:

Угловой коэффициент к прямой, заданной двумя точками вычисляется по формуле

Уравнением прямой в отрезках называется уравнение вида:

где а и b — соответственно абсцисса и ордината точек пересечения прямой с осями Ох и Oy, т. е. длины отрезков, отсекаемых прямой на координатных осях, взятые с определенными знаками.

Уравнение прямой, проходящей через точкуИ имею

щей угловой коэффициент к, записывается в виде:

Пучком прямых называется совокупность прямых плоскости, проходящих через одну и ту же точку А — центр пучка. Уравнение (1.28) можно рассматривать как уравнение пучка прямых, поскольку любая прямая пучка может быть получены из уравнения (1) при соответствующем значении углового коэффициента к. Исключение составляет лишь одна прямая пучка, которая параллельна оси Oy — ее уравнение х = xA.

Уравнение прямой, проходящей через две данные точки имеет вид:

Если точки A и B определяют прямую, параллельную оси Или оси, то уравнение такой прямой за

писывается соответственно в виде:

Условия пересечения, параллельности или совпадения двух прямых, заданными своими общими уравнениями

приведены в следующей таблице.


Если известны угловые коэффициенты прямых, то ус

ловие параллельности этих прямых состоит в равенстве их угловых коэффициентов:

Условие перпендикулярности двух прямых, угловые коэффициенты которых соответственно равныСостоит в выполнении соотношения

т. е. угловые коэффициенты этих прямых обратны по абсолютной величине и противоположны по знаку.

Под углом между двумя прямыми понимается один из двух смежных углов, образованных при их пересечении. Тангенс угла j между двумя прямыми, угловые коэффициенты которых соответственно равны к1 и к2, вычисляется по формуле

причем знак «плюс» соответствует острому углу, а знак «минус» — тупому.

Уравнение окружности с центром в точке S^; b) и радиусом r имеем вид:

Это каноническое уравнение окружности (рис. 7).

Уравнение второй степени относительно текущих координат х и у является уравнением окружности тогда и только тогда, когда в этом уравнении коэффициенты при квадратах координат равны, а член с произведением координат отсутствует. Таким образом, это уравнение имеет вид:

В этом случае говорят, что окружность задана общим уравнением.

Для определения координат центра и радиуса окружности, заданной общим уравнением, надо с помощью тождественных преобразований уравнение (1.35) привести к виду (1.34).

Эллипс есть геометрическое место точек, сумма расстояний которых от двух фиксированных точек, называемых фокусами эллипса, есть величина постоянная (2а), большая, чем расстояние между фокусами (2с).

Простейшее уравнение эллипса получается, если расположить координатную систему следующим образом: за ось Оx принять прямую, проходящую через фокусы F1 и F2, а за ось Оу — перпен-

дикуляр к оси абсцисс в середине отрезка F1F2 (рис. 8). Тогда уравнение эллипса примет вид:

Точки А1 и А2, B1 и B2 пересечения эллипса с его осями симметрии (координатными осями) называются вершинами эллипса. Отрезки А1А2 = 2а и B1B2 = 2b называются осями эллипса, причем А1А2 — большой осью, а B1B2 — малой осью, так как а > b. Таким образом, параметры а и b, входящие в уравнение эллипса, равны его полуосям.

Эксцентриситетом эллипса называется отношение расстояния между фокусами к его большой оси, т. е.

Очевидно, что е а и уже большой осью будет отрезок B1B2 = 2b, а малой осью — отрезок А1А2 = 2а. Эксцентриситет такого эллипса вычисляется по формуле

Гиперболой называется геометрическое место точек, абсолютная величина разности расстояний которых от двух данных точек, называемых фокусами, есть величина постоянная (2а), меньшая, чем расстояние между фокусами (2с).

Простейшее уравнение гиперболы получается, если расположить координатную систему следующим образом: за ось Ох принять прямую, проходящую через фокусыА за ось Оу — перпендикуляр в середине отрезка(рис. 10). Тогда уравнение гиперболы примет вид:

Гипербола имеет две оси симметрии (координатные оси), с одной из которых (осью абсцисс) она пересекается в двух точках А1 и А2, называемых вершинами гиперболы. Отрезок.Называется действительной осью гиперболы, а отрезок— мнимой осью гиперболы.

Таким образом, параметры а и b, входящие в уравнение гиперболы, равны ее полуосям.

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к ее действительной оси:

Ее асимптоты те же, что и у гиперболы (1.39).

Гиперболы (1.39) и (1.42) называются сопряженными. Гипербола называется равносторонней, если ее действительные и мнимые оси равны, т. е. а = b. Простейшее уравнение равносторонней гиперболы имеет вид:

Если мнимая ось гиперболы направлена по оси Ох и имеет длину 2а, а действительная ось длиной 2b направлена по оси Oy, то уравнение гиперболы (рис. 11) имеет вид:


Эксцентриситет такой гиперболы вычисляется по формуле


Параболой называется геометрическое место точек, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой параболы.

Величина р, равная расстоянию от фокуса до директрисы, называется параметром параболы; прямая, проходящая через фокус параболы перпендикулярно ее директрисе, называется осью, а точка пересечения параболы с ее осью — вершиной параболы.

Простейшее уравнение параболы получается, если координатная система расположена следующим образом: за одну из координатных осей берется ось параболы, а за другую — прямая, перпендикулярная оси параболы и проведенная посредине между фокусом и директрисой.

Тогда уравнение параболы примет вид:




определяет параболу, ось которой перпендикулярна оси абсцисс.

определяет параболу, ось которой перпендикулярна оси ординат.

Уравнения (1.48) и (1.49) приводятся к простейшему виду (1.44 — 1.47) путем тождественных преобразований с последующим параллельным переносом координатной системы.

Пример 1.16. Даны вершины А (2; 1), В (6; 3), C (4; 5) треугольника. Найти: 1) длину стороны АВ; 2) внутренний угол А в радианах с точностью до 0,01; 3) уравнение высоты, проведенной через вершину С; 4) уравнение медианы, проведенной через вершину С;

5) точку пересечения высот треугольника; 6) длину высоты, опущенной из вершины С; 7) систему линейных неравенств, определяющую внутреннюю область треугольника. Сделать чертеж.

Делаем чертеж (рис. 16).

1. Длину стороны АВ находим как расстояние между двумя точками А и В.

2. Для определения внутреннего угла А найдем уравнение прямой AC:

отсюда 2х — у — 3 = 0 или у = 2х — 3 и угловой коэффициент прямой AC равен: kAC = 2; далее находим уравнение прямой АВ:

Находим угол А отсюда

3. Уравнение высоты, проведенной через вершину C, ищем в виде у — yC = kCD (x — xC) и так как CD А прямой АВ, то

4. Для определения уравнения медианы CM находим координаты точки M, которая делит прямую АВ пополам

Уравнение прямой CM ищем в виде:

а это означает, что уравнение медианы имеет вид х = 4, т. е. прямая CM L Ох.

5. Точку пересечения высот треугольника найдем как точку К пересечения высот CD и BK.

Находим уравнение высоты ВК:

Решаем систему уравнений, описывающих прямые CD и BK:

Тогдат. е. координаты точ

ки К будут:

6. Для нахождения длины высоты CD запишем нормальное уравнение прямой АВ:


7. Находим систему линейных неравенств, определяющих внутреннюю область треугольника.

Найдем уравнение прямой BC:

Итак:

Берем любую точку, лежащую внутри треугольника, например, (4; 3) и подставляем ее координаты в левую часть уравнений прямых:

следовательно, система неравенств имеет вид:

Пример 1.17. Составить уравнение прямой I, проходящей через точку А (2; -4) и отстоящей от начала координат на расстоянии, равном 2 единицам.

Решение. Пусть уравнение искомой прямой имеет вид:

Для определения углового коэффициента к этой прямой воспользуемся тем, что она отстоит от начала координат на расстоянии, равном 2 единицам. Найдем это расстояние непосредственно. Уравнение перпендикуляра, опущенного из начала координат на прямую, имеет вид илиРешив совместно уравнения этих двух прямых

С другой стороны, по условию OC = 2. Таким образом, получаем уравнение для нахождения углового коэффициента к искомой прямой I:

получим координаты точки C их пересечения:

Отсюда находим расстояние от начала координат до прямой I:


В заключение отметим, что отыскивая уравнение прямой I в виде у — yA = k(x — Xa), мы предполагали тем самым, что эта прямая не параллельна оси ординат. Но очевидно, что прямая х = 2 (параллельная оси Оу) также удовлетворяет условию задачи, так как она проходит через точку А (2; -4) и отстоит от начала координат на расстоянии, равном 2 единицам (рис. 17).

Пример 1.18. Составить уравнения прямых, параллельных прямой 3х + 4у — 1 = 0 (I) и отстоящих от нее на расстоянии равном 1.

Решение. Уравнение каждой из прямых будем искать в виде Так как искомая прямая параллельна прямой I, то ее

угловой коэффициентИ, следовательно, ее уравнение при

нимает вид:

Для отыскания параметра b воспользуемся тем, что расстояние от любой точки прямой I, например, от точки А (3; -2) до прямой (*) согласно условию равно 1. Но это расстояние может быть вычислено и непосредственно. Запишем для этого

уравнение прямой h, проведенной из точки А перпендикулярно прямой I:

Решив, далее, совместно уравнения прямых h и I найдем координаты точки В их пересечения:


Тогда искомое расстояние равно длине отрезка АВ:

Приравнивая это выражение единице, получим уравнение относительно b:

Решения этого уравнения таковы:. Подставляя полученные значения b в уравнение (*), запишем уравнения искомых прямых:

Пример 1.19. Составить уравнение линии, расстояние каждой точки которой от точки F (8; 0) вдвое больше, чем от прямой х — 2 = 0. Сделать чертеж.

Пусть М(х; у) — текущая точка линии. По условию задачи MF = 2MN.

Возводя в квадрат и раскрывая скобки, получим

Это есть каноническое уравнение гиперболы (рис. 18).

Пример 1.20. Составить уравнение линии, каждая точка которой равноудалена от точки F (0; — 4) и от прямой у + 2 = 0. Сделать чертеж.

Если M(x; у) есть текущая точка линии, то по условию задачи MF = MN или

Подставляя координаты точек

И возводя в квадрат, после преобразований


источники:

http://www.resolventa.ru/demo/him/demohim.htm

http://matica.org.ua/metodichki-i-knigi-po-matematike/a-s-shapkin-zadachi-po-vysshei-matematike-teorii-veroiatnostei-matematicheskoi-statistike-matematicheskomu-programmirovaniiu-s-resheniia/1-3-analiticheskaia-geometriia-analiticheskaia-geometriia-na-ploskosti