Определите типы реакций замещение присоединение отщепление уравнения

Классификация химических реакций в органической химии

Классификация органических реакций

Классификацию органических реакций проводят на основе общих для всех реакций признаков: строение и состав исходных и конечных продуктов; изменение степеней окисления реагирующих частиц; тепловой эффект реакции; ее обратимость и т.п.

Наиболее часто органические реакции классифицируют по следующим признакам:

· по конечному результату реакции (на основе сопоставления строения исходных и конечных продуктов);

· по минимальному числу частиц, участвующих в элементарной реакции;

· по механизму разрыва ковалентных связей в реагирующих молекулах.

Тип многостадийных реакций определяют по самой медленной (лимитирующей) стадии. Различные способы классификации часто сочетаются друг с другом.

1. Классификация реакций по конечному результату

В основе этой классификации лежит сопоставление числа, состава и строения исходных и конечных продуктов по уравнению реакции. В соответствии с конечным результатом различают следующие типы органических реакций:

Если процесс сопровождается изменением степени окисления атома углерода в органическом соединении, то выделяют также реакции окисления и восстановления. Окисление и восстановление органических веществ может проходить по какому-либо из названных выше типов реакций.

Реакции замещения

Атом или атомная группировка в молекуле органического соединения замещается на другой атом (или атомную группировку):

Реакции этого типа можно рассматривать как реакции обмена, но в органической химии предпочтительней термин «замещение», поскольку в обмене участвует (замещается) лишь меньшая часть органической молекулы.

C 2H 6 + Cl 2 (на свету)→CH 3CH 2Cl + HCl хлорирование этана

CH 3CH 2Cl + KOH (водн. р-р) → CH 3CH 2OH + KCl щелочной гидролиз хлорэтана

Реакции присоединения

В реакциях присоединения молекула органического соединения и молекула простого или сложного вещества соединяются в новую молекулу, при этом другие продукты реакции не образуются:

CH 2=CH-CH 3 + Br 2 →CH 2Br-CHBr-CH 3 бромирование пропена

CH 2=CH 2 + H 2O→CH 3CH 2OH гидратация этилена

К реакциям присоединения относятся также реакции полимеризации :

Например, образование полиэтилена: n CH 2=CH 2→(-CH 2-CH 2-) n

Реакции отщепления

В реакции отщепления ( элиминирования ) происходит отрыв атомов или атомных групп от молекулы исходного вещества при сохранении ее углеродного скелета.

· отщепление хлороводорода (при действии на хлоралкан спиртовым раствором щёлочи)

· отщепление воды (при нагревании спирта с серной кислотой)

CH 3-CH 2OH→CH 2=CH 2 + H 2O дегидратация этанола

· отщепление водорода от алкана (в присутствии катализатора)

CH 3-CH 3 →CH 2=CH 2 + H 2 дегидрирование этана

Реакции изомеризации или перегруппировки

В органическом соединении происходит переход (миграция) отдельных атомов или групп атомов от одного участка молекулы к другому без изменения ее качественного и количественного состава:

В этом случае исходное вещество и продукт реакции являются изомерами (структурными или пространственными).

Например, в результате перегруппировки может изменяться углеродный скелет молекулы:

Реакции разложения

В результате реакции разложения из молекулы сложного органического вещества образуется несколько менее сложных или простых веществ:

К этому типу реакций относится процесс крекинга – расщепление углеродного скелета крупных молекул при нагревании и в присутствии катализаторов:

Реакции разложения при высокой температуре называют пиролизом, например:

Реакции окисления и восстановления

Окислительно-восстановительные реакции — реакции, в ходе которых меняется степень окисления атомов, входящих в молекулу. Для органических реакций этого типа применимы те же законы, что и для неорганических. Отличием является то, что в органической химии окислительно-восстановительные процессы рассматриваются прежде всего по отношению к органическому веществу и связываются с изменением степени окисления углерода, являющегося реакционным центром молекулы. Эти реакции могут проходить по типу реакций присоединения, отщепления, замещения и т.п.

Если атом углерода в органической молекуле окисляется (отдает электроны более электроотрицательному атому), то этот процесс относят к реакциям окисления, т.к. продукт восстановления окислителя (обычно неорганическое вещество) не является конечной целью данной реакции. И наоборот, реакцией восстановления считают процесс восстановления атома углерода в органическом веществе.

Часто в органической химии ограничиваются рассмотрением реакций окисления и восстановления как реакций, связанных с потерей и приобретением атомов водорода и кислорода.

Вещество окисляется, если оно теряет атомы H и (или) приобретает атомы O. Кислородсодержащий окислитель обозначают символом [O]:

Типы химических реакций в органической химии

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция элиминирования (отщепления)
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции конденсации и поликонденсации
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

  1. Галогенирование — присоединение молекулы галогена:
  2. Гидрогалогенирование — присоединение молекулы галогенводорода:
  3. Гидратация — присоединение молекулы воды:
  4. Полимеризация – образование высокомолекулярного соединения посредством многократного присоединения низкомолекулярного соединения, например:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования, дегидратации, дегидрогалогенирования и т.п.:

  1. Дегидрирование – отщепления молекулы водорода:
  2. Дегидратация – отщепление молекулы воды:
  3. Дегидрогалогенирования – отщепления молекулы галогеноводородов:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH2, H2O, NH3, C2H5OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R3C + , AlCl3, ZnCl2, SO3, BF3, R-Cl, R2C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения

Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

КЛАССИФИКАЦИЯ РЕАКЦИЙ ПО КОНЕЧНОМУ РЕЗУЛЬТАТУ (ИЗМЕНЕНИЮ В СТРУКТУРЕ СУБСТРАТА)

В органической химии различают четыре вида реакций по конечному результату и изменению в структуре субстрата:

присоединения, замещения, отщепления, или элиминирования, и перегруппировки (изомеризации).

Такая классификация аналогична классификации реакций в неорганической химии по числу исходных реагентов и образующихся веществ, с изменением или без изменения состава. Классификация по конечному результату основана на формальных признаках, так как стехиометрическое уравнение, как правило, не отражает механизм реакции. Сравним типы реакций в неорганической и органической химии.

Тип реакции в неорганической химииПримерТип реакции в органической химииРазновидность и пример реакции
1. СоединениеCl2+H2=2HClПрисоединение по кратным связямГидрирование Гидрогалогенирование
Галогенирование Гидратация
2. Разложение2H2O=2H2+O2ЭлиминированиеДегидрирование Дегидрогалогенирование
Дегалогенирование Дегидратация
3. ЗамещениеZn+2HCl=ZnCl2+H2Замещение
4. Обмен (частный случай — нейтрализация)H2SO4+2NaOH= Na2SO4+2H2Oчастный случай — этерификация
5.Аллотропизацияграфит⇔ алмаз красн. бел.Pкрасн.⇔P бел. ромб.пласт.Sромб.⇔Sпласт.ИзомеризацияИзомеризация алканов

Элиминирование — отщепление от молекулы органических соединений частиц (атомов или атомных групп) без замены их другими.

В зависимости от того, какие атомы отщепляются — соседние CC или изолированные двумя-тремя, или более атомами углерода –C–C–C–C–, –C–C–C–C–C–, могут образовываться соединения с кратными связями или циклические соединения. Отщепление галогеноводородов из алкилгалогенидов либо воды из спиртов происходит по правилу Зайцева.

Правило Зайцева: атом водорода Н отщепляется от наименее гидрогенизированного атома углерода.

Например, отщепление молекулы бромоводорода происходит от соседних атомов в присутствии щелочи, при этом образуется бромид натрия и вода.

Перегруппировка — химическая реакция, в результате которой происходит изменение взаимного расположения атомов в молекуле, перемещение кратных связей или изменение их кратности.

Перегруппировка может осуществляться с сохранением атомного состава молекулы (изомеризация) или с его изменением.

Изомеризация — частный случай реакции перегруппировки, приводящая к превращению химического соединения в изомер путем структурного изменения углеродного скелета.

Перегруппировка тоже может осуществляться по гомолитическому или гетеролитическому механизму. Молекулярные перегруппировки могут классифицироваться по разным признакам, например, по насыщенности систем, по природе мигрирующей группы, по стереоспецифичности и др. Многие реакции перегруппировки имеют специфические названия — перегруппировка Кляйзена, перегруппировка Бекмана и др.

Реакции изомеризации широко используются в промышленных процессах, например, при переработке нефти для повышения октанового числа бензина. Примером изомеризации является превращение н-октана в изооктан:

КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ ПО ТИПУ РЕАГЕНТА РАЗРЫВ СВЯЗИ

Разрыв связи в органических соединениях может гомолитическим и гетеролитическим.

Гомолитический разрыв связи — это такой разрыв, в результате которого каждый атом получает неспаренный электрон и образуются две частицы, имеющие сходное электронное строение — свободные радикалы.

Гомолитический разрыв характерен для неполярных или слабополярных связей, например, C–C, Cl–Cl, C–H, и требует большого количества энергии.

Образующиеся радикалы, имеющие неспаренный электрон, обладают высокой реакционной способностью, поэтому химические процессы, протекающие с участием таких частиц, часто носят «цепной» характер, их трудно контролировать, а в результате реакции получается набор продуктов замещения. Так, при хлорировании метана продуктами замещения являются хлорметан CH3Cl, дихлорметан CH2Cl2, хлороформ CHCl3 и четыреххлористый углерод CCl4. Реакции с участием свободных радикалов протекают по обменному механизму образования химических связей.

Образующиеся в ходе такого разрыва связи радикалы обуславливают радикальный механизм протекания реакции. Радикальные реакции обычно протекают при повышенных температурах или при излучении (например, свет).

В силу своей высокой реакционной способности свободные радикалы могут оказывать негативное воздействие на организм человека, разрушая клеточные мембраны, воздействуя на ДНК и вызывая преждевременное старение. Эти процессы связаны, в первую очередь, с пероксидным окислением липидов, то есть разрушением структуры полиненасыщенных кислот, образующих жир внутри клеточной мембраны.

Гетеролитический разрыв связи — это такой разрыв, при котором электронная пара остается у более электроотрицательного атома и образуются две заряженные частицы — ионы: катион (положительный) и анион (отрицательный).

В химических реакциях эти частицы выполняют функции «нуклеофилов» («фил» — от гр. любить) и «электрофилов», образуя химическую связь с партнером по реакции по донорно-акцепторному механизму. Частицы-нуклеофилы предоставляют электронную пару для образования новой связи.

Нуклеофил — электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями.

Примерами нуклеофилов являются любые анионы (Cl − , I − , NO3 − и др.), а также соединения, имеющие неподеленную электронную пару (NH3, H2O).

Таким образом, при разрыве связи могут образоваться радикалы или нуклеофилы и электрофилы. Исходя из этого выделяют три механизма протекания органических реакций.

МЕХАНИЗМЫ ПРОТЕКАНИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ

Свободно-радикальный механизм: реакцию начинают свободные радикалы, образующиеся при гомолитическом разрыве связи в молекуле.

Наиболее типичный вариант — образование радикалов хлора или брома при УФ-облучении.

1. Свободно-радикальное замещение

Метан — хлорметан

Рост цепи

Обрыв цепи

2. Свободно-радикальное присоединение

Этен полиэтилен

Электрофильный механизм: реакцию начинают частицы-электрофилы, получающие положительный заряд в результате гетеролитического разрыва связи. Все электрофилы — кислоты Льюиса.

Такие частицы активно образуются под действием кислот Льюиса, которые усиливают положительный заряд частицы. Чаще других используются AlCl3, FeCl3, FeBr3, ZnCl2, выполняющие функции катализатора.

Местом атаки частицы-электрофила являются те участки молекулы, которые имеют повышенную электронную плотность, т. е. кратная связь и бензольное кольцо.

Общий вид реакций электрофильного замещения можно выразить уравнением:

1. Электрофильное замещение

Бензол бромбензол

2. Электрофильное присоединение

Пропен 2-бромпропан

Пропин 1,2-дихлорпропен

Присоединение к несимметричным непредельным углеводородам происходит в соответствии с правилом Марковникова.

Правило Марковникова: присоединение к несимметричным алкенам молекул сложных веществ с условной формулой НХ (где Х — это атом галогена или гидроксильная группа ОН – ) атом водорода присоединяется к наиболее гидрогенизированному (содержащему больше всего атомов водорода) атому углерода при двойной связи, а Х — к наименее гидрогенизированному.

Например, присоединение хлороводорода HCl к молекуле пропена CH3–CH=CH2.

Реакция протекает по механизму электрофильного присоединения. За счет электронодонорного влияния CH3-группы электронная плотность в молекуле субстрата смещена к центральному атому углерода (индуктивный эффект), а затем по системе двойных связей — к концевому атому углерода CH2-группы (мезомерный эффект). Таким образом, избыточный отрицательный заряд локализован именно на этом атоме. Поэтому атаку начинает протон водорода H + , являющийся электрофильной частицей. Образуется положительно заряженный карбеновый ион [CH3–CH−CH3] + , к которому присоединяется анион хлора Cl − .

Исключения из правила Марковникова: реакция присоединения протекает против правила Марковникова, если в реакцию вступают соединения, у которых атом углерода, соседний с атомом углерода двойной связи, оттягивает на себя частично электронную плотность, то есть при наличии заместителей, проявляющих значительный электроноакцепторный эффект (–CCl3,–CN,–COOH и др.).

Нуклеофильный механизм: реакцию начинают частицы-нуклеофилы, имеющие отрицательный заряд, образовавшиеся в результате гетеролитического разрыва связи. Все нуклеофилы — основания Льюиса.

В нуклеофильных реакциях реагент (нуклеофил) имеет на одном из атомов свободную пару электронов и является нейтральной молекулой или анионом (Hal – , OH – , RO − , RS – , RCOO – , R – , CN – , H2O, ROH, NH3, RNH2 и др.).

Нуклеофил атакует в субстрате атом с наименьшей электронной плотностью (т. е. с частичным или полным положительным зарядом). Первой стадией реакции нуклеофильного замещения является ионизация субстрата с образованием карбкатиона. При этом новая связь образуется за счет электронной пары нуклеофила, а старая претерпевает гетеролитический разрыв с последующим отщеплением катиона. Примером нуклеофильной реакции может служить нуклеофильное замещение (символ SN) у насыщенного атома углерода, например, щелочной гидролиз бромпроизводных.

1. Нуклеофильное замещение

2. Нуклеофильное присоединение

Этаналь циангидрин

Упражнения.

1. Для следующих ниже реакций укажите, какие связи разрываются и какие новые связи образуются:

№ реакцииРазрываются связиОбразуются связи

2. Какой состав смеси монобромидов, образовавшихся при бромировании изобутана (СН3)2СНСН3, если известно, что отношение реакционных способностей С–Н-связей в этой реакции у первичного, вторичного и третичного атомов углерода равно 1:82:1600?

3.Какие радикалы теоретически могут образоваться при гомолитическом разрыве связей в соединениях:

4. Из предложенных ниже реакций определите реакции замещения, реакции присоединения, реакции элиминирования:

5. В приведенных ниже соединениях у элементов, разность электроотрицательностей которых равна 0,5 или более, обозначьте частичные заряды + и – (т.е. укажите полярность):

6. Сколько — и сколько -связей в молекулах соединений:

7.Выберите из приведенных ниже частиц карбкатионы и карбанионы:

8. Какие из приведенных частиц и молекул являются нуклеофилами (обозначьте Nu) и какие электрофилами (Е):

9.Для приведенных ниже реакций укажите: а) субстрат; б) реагент; в) продукт реакции; г) уходящую группу. Определите реакции: нуклеофильного замещения (NuS), электрофильного присоединения (ЕАd), элиминирования под действием оснований (ЕlNu) и элиминирования под действием кислот (ЕlE).

10.Укажите, какие реакции протекают по радикальному механизму, а какие по ионному:

Ответы на упражнения к теме 1

Урок 6

№ реакцииРазрываются связиОбразуются связи
С–Н и Cl–ClC–Cl и Н–Сl
C–H и C–Cl
C–Cl и K + OH –C–OH и K + Cl –

2. В молекуле (СН3)2СНСН3 девять первичных атомов Н и один третичный Н. С учетом разной реакционной способности связей С–Н соотношение продуктов монобромирования: (СН3)2СНСН2Вr/(СН3)2СВrСН3 = 9/1600 1/178, или 0 ,56% и 99,44%.

3. При гомолитическом разрыве связей в принципе могут образоваться радикалы:


источники:

http://zadachi-po-khimii.ru/organic-chemistry/tipy-ximicheskix-reakcij-v-organicheskoj-ximii.html

http://poisk-ru.ru/s34761t12.html